
Supplementary Material

A Details of the Experiment Presented in the Introduction

We obtained the dingshen data set including the training and test split used in [4]. The dingshen
data set consists of 27 fold classes with 313 proteins used for training and 385 for testing. There are
a number of observational features relevant to predicting fold class, and in this study, 12 different
informative data-types were used. This included the RNA sequence and various physical measure-
ments such as hydrophobicity, polarity and van der Waals volume resulting in 12 kernels [4].

We precisely replicate the experimental setup of [4]: we carry out MKL via one-vs.-rest SVMs
to deal with the multiple classes and report on test set accuracy. However, in contrast to [4], we
investigate `p>1-norm MKL instead of just `1-norm MKL. We perform model selection by cross
validation on the training set over C ∈ 10[−4,−3.5,...,4].

Results The results are shown in Figure 1 (LEFT) in the introduction of this paper. The vertical bars
indicate the test set accuracy for the single-kernel SVMs (e.g., H denotes the Hydrophobicity kernel,
P the Polarity kernel, etc.). The horizontal bar indicates the performance of the MKL algorithm with
all data-types included. The best single-kernel SVM is the one using the SW2-kernel and has a
test set accuracy of 64.0%; in contrast, the SVM using a uniform kernel combintation achieves a
substantially better accuracy of 68.9%, which is slightly better than the 68.4% that `1-norm MKL
achieves. Interestingly, there is a huge improvement in using non-sparse `p>1-norm MKL: the best
performing norm is p = 1.14, which has an impressive accuracy of 74.4%. This indicates the
relevance of this method for the application domain.

Figure 1 (RIGHT) gives the values of the kernel coefficients θ. We observe that `1-norm MKL puts
most of the weights into SW1- and SW2-kernels, which also have the highest single-kernel perfor-
mance. Generally, the chosen kernel combinations nicely reflect the single-kernel performances as
determined by the single-kernel SVMs. The `p>1-norm variants yield precisely the same “ranking”
of weights θi but stronger distributes the weights among the kernels.

Interpretation The superior performance of `1.14-norm MKL compared to `1-norm MKL and the
SVM using a uniform kernel combination indicates that all 12 types of data are relevant—but not
equally relevant at all. For example, the features SW1 and SW2, which are based on sequence
alignments, appear to be more informative than the others.

To further analyze the result, we compute the pairwise kernel alignments shown in Figure A.1.
One can see from the figure that the Kernels L1–L30 and SW1–SW2 corelate quite strongly. This
resembles the similarity in the generation process of those kernels (they differ by different parameter
values). However, the other kernels correlate surprisingly few—this indicates that here orthogonal
information is contained in the kernels. Therefore discarding or overly downgrading one of those
kernels can be disadvantageous, which explains the poor `1-norm MKL performance. On the other
hand we know that from the single-kernel performances that not all kernels are equally informative,
which explains the rather bad performance of the uniform-combination SVM. We conclude that an
intermediate norms must be optimal—and this also what we observe in terms of test errors.
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Figure A.1: Pairwise kernel alignments of the protein fold prediction experiment.
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B Global Rademacher Complexity Bound

Proof of Proposition 1 (GRC Upper Bound). First note that it suffices to prove the result for t = p
as trivially ‖w‖2,t ≤ ‖w‖2,p holds for all t ≥ p so that Hp ⊆ Ht and therefore R(Hp) ≤ R(Ht).
We can use a block-structured version of Hölder’s inequality (cf. Lemma B.1) and the Khintchine-
Kahane (K.-K.) inequality (cf. Lemma B.2) to bound the empirical version of the global RC as
follows:
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what was to show.

The following result gives a block-structured version of Hölder’s inequality
Lemma B.1 (BLOCK-STRUCTURED HÖLDER INEQUALITY). Let v = (v1, . . . ,vm), w =
(w1, . . . ,wm) ∈ H = H1 × · · · × HM . Then, for any p ≥ 1, it holds

〈v,w〉 ≤ ‖v‖2,p‖w‖2,p∗ .

Proof. By the Cauchy-Schwarz inequality (C.-S.), we have for all x,y ∈ H:
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The following inequality is known as the Khintchine-Kahane inequality [12]; we employ the con-
stants taken from Lemma 3.3.1 and Proposition 3.4.1 in [17]:
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C Local Rademacher Complexity Bound

Proof of Theorem 3 (LRC Upper Bound, p > 2). The eigendecomposition Eφ(x) ⊗ φ(x) =∑∞
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Therefore, we can use, for any nonnegative integer h, the Cauchy-Schwarz inequality and a block-
structured version of Hölder’s inequality (see Lemma B.1) to bound the local Rademacher complex-
ity as follows:
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Lemma C.1 (ROSENTHAL + YOUNG). Let X1, . . . , Xn be independent nonnegative random vari-
ables satisfying ∀i : Xi ≤ B < ∞ almost surely. Then, denoting cq = (2qe)q , for any q ≥ 1
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Proof. It is clear that the result trivially holds for 1
2 ≤ p ≤ 1 with cq = 1 by Jensen’s inequality .

In the case p ≥ 1, we apply Rosenthal’s inequality to the sequence X1, . . . , Xn thereby using the
optimal constants computed in [11], that are, cq = 2 (q ≤ 2) and cq = EZq (q ≥ 2), respectively,
where Z is a random variable distributed according to a Poisson law with parameter λ = 1. This
yields
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By using that Xi ≤ B holds almost surely, we could readily obtain a bound of the form Bq

nq−1 on the
first term. However, this is loose and for q = 1 does not converge to zero when n→∞. Therefore,
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we follow a different approach based on Young’s inequality:
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where cq can be taken as 2 (q ≤ 2) and EZq (q ≥ 2), respectively, where Z is Poisson-distributed.
In the subsequent Lemma C.2 we show EZq ≤ (q + e)q . Clearly, for q ≥ 1

2 it holds q + e ≤
qe+ eq = 2eq so that in any case cq ≤ max(2, 2eq) ≤ 2eq, which concludes the result.

We use the following Lemma gives a handle on the q-th moment of a Poisson-distributed random
variable and is used in the previous Lemma.

Lemma C.2. For the q-moment of a random variable Z distributed according to a Poisson law with
parameter λ = 1, the following inequality holds for all q ≥ 1:
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where for (∗) note that eτkk ≤ eτk+q (k+q) can be shown by some algebra using 1
12k+1 < τk <
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which was to show.

Lemma C.3. For any a, b ∈ Rm+ it holds for all q ≥ 1
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D LRC Lower Bound

Proof of Theorem 4 (LRC Lower Bound). First note that since the φi(x) are centered and uncorre-
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so that we can use the i.i.d. assumption on φm(x) to equivalently rewrite the last term as
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together with the previous lemma to obtain the lower bound of Theorem 4.

E Excess Risk Bound

In [2, 15] it was shown that the rate of convergence of the excess risk is basically determined by the
fixed point of the local Rademacher complexity. To this end we show:
Lemma E.1. Assume that ‖k‖∞ ≤ B almost surely and let p ∈ [1, 2]. For the fixed point r∗ of the
local Rademacher complexity 2FLR r
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Proof. For this proof we make use of the bound (8) on the local Rademacher complexity. Defining
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We now address the issue of computing actual rates of convergence of the fixed point r∗ under the
assumption of algebraically decreasing eigenvalues of the kernel matrices, this means, we assume
for all m there exist dm > 0 and αm > 1 such that λ(m)

j ≤ dmj−αm . This is a common assumption
and, for example, met for finite rank kernels and convolution kernels. We are now ready to prove
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so that we can translate the result of the previous lemma by (9), (10), and (11) into
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Inserting the result of (E.1) into the above bound and setting the derivative with respect to hm to
zero we find the optimal hm as
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smallest decreasing spectrum (i.e., smallest αm).
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We have thus proved the theorem, which follows by the above inequality, Lemma E.2, and the fact
that our class Hp ranges in BDM

1
p∗ .

The above proof uses the following result, which is a slight modification of Corollary 5.3 in [2] that
is well-tailored to the class studied in this paper.1

Lemma E.2 (BARTLETT, BOUSQUET, AND MENDELSON, 2005 [2]). Let F be an absolute con-
vex class ranging in the interval [a, b] and let l be a Lipschitz continuous loss with constant L.
Assume there is a positive constant F such that ∀f ∈ F : P (f − f∗)2 ≤ F P (lf − lf∗). Then,
denoting by r∗ the fixed point of

2FLR r
4L2

(F)
for all z > 0 with probability at least 1− e−z the excess loss can be bounded as

P (lf̂ − lf∗) ≤ 7
r∗

F
+

(11L(b− a) + 27F )z

n
.

1We exploit the improved constants from Theorem 3.3 in [2] because an absolute convex class is star-shaped.
Compared to Corollary 5.3 in [2] we also use a slightly more general function class ranging in [a, b] instead of
the interval [−1, 1]. This is also justified by Theorem 3.3.
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