
A Review of t-exponential family

The t-exponential family has been regarded as a useful generalization of the exponential family. To
introduce the t-exponential family, one need to first define the t-exponential function and t-logarithm
function,

expt(x) =

�
exp(x) if t = 1

[1 + (1− t)x]
1

1−t

+ otherwise.
(49)

logt(x) :=

�
log(x) if t = 1�
x1−t − 1

�
/(1− t) otherwise.

(50)

where [x]+ be x if the x > 0 and 0 otherwise. Figure 4 depicts the expt function, which shows a
slower decay than the exp function for t > 1.
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Figure 4: Left: expt Function. Right: Zoom of expt function in domain of [-5,0].

The t-exponential family is then defined as

p(x; θ) := expt (�Φ(x), θ� − gt(θ)) . (51)

Although gt(θ) cannot usually be analytically obtained, it still preserves convexity. In addition, it is
very close to being a moment generating function,

∇θgt(θ) = Eq [Φ(x)] . (52)

where q(x) is called the escort distribution of p(x), which is defined as:

q(x; θ) := p(x; θ)t/Z(θ) (53)

Here Z(θ) =
�
pt(x; θ)dx is the normalizing constant which ensures that the escort distribution

integrates to 1. A general version of this result appears as Lemma 3.8 in Sears [12] and a version
specialized to the generalized φ-exponential families appears as Proposition 5.2 in [17].

A prominent member of the t-exponential family is the Student’s t-distribution [13] as shown in the
following example.

Example 5 (Student’s t-distribution) A k-dimensional Student’s t-distribution p(x) =
St(x;µ,Σ, v) with v > 2 degrees of freedom has the following probability density function:

St(x;µ,Σ, v) =
Γ ((v + k)/2)

(πv)
k/2

Γ(v/2)|Σ |1/2
·
�
1 + (x−µ)�(vΣ)−1(x−µ)

�−(v+k)/2
. (54)

Let −(v + k)/2 = 1/(1− t) and

Ψ =

�
Γ ((v + k)/2)

(πv)
k/2

Γ(v/2)|Σ |1/2

�−2/(v+k)
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then (54) becomes

St(x;µ,Σ, v) = (1 + (1− t) �Φ(x),θ� − gt(θ))
1/(1−t)

= expt (�Φ(x),θ� − gt(θ)) .

where

K = (vΣ)−1 ,Φ(x) = [x;xx�] ,θ = [θ1,θ2]

θ1 = −2ΨKµ/(1− t) ,θ2 = ΨK /(1− t)

gt(θ) = −
�

Ψ

1− t

��
µ� Kµ+ 1

�
+

1

1− t

The escort of Student’s t-distribution is,

q(x;θ) =
1

Z
St(x;µ,Σ, v)t = St(x;µ, vΣ /(v + 2), v + 2)

Interestingly, the mean of the Student’s t-pdf is µ, and its variance is vΣ /(v − 2) while the mean
and variance of the escort are µ and Σ respectively.

B Proof of Theorem 2

Theorem For any µ, define θ(µ) (if exists) to be the parameter of the t-exponential family s.t.

µ = Eq(x;θ(µ)) [Φ(x)] =

�
Φ(x)q(x; θ(µ)) dx. (55)

Then g∗t (µ) =

�−Ht(p(x; θ(µ))) if θ(µ) exists
+∞ otherwise .

(56)

where g∗t (µ) denotes the Fenchel dual of gt(θ). By duality it also follows that

gt(θ) = sup
µ

{�µ, θ� − g∗t (µ)} . (57)

Proof In view of (3) and (9),

µ = Eq(x;θ(µ)) [Φ(x)] = ∇θgt(θ).

We only need to consider the case when θ(µ) exists since otherwise g∗t (µ) is trivially defined as
+∞. When θ(µ) exists, clearly θ(µ) ∈ (∇gt)

−1(µ). Therefore, we have,

sup
θ

{�µ, θ� − gt(θ)} =sup
θ

��
Eq(x;θ(µ)) [Φ(x)] , θ

�
− gt(θ)

�

=
�
Eq(x;θ(µ)) [Φ(x)] , θ(µ)

�
− gt(θ(µ)) (58)

=

�
q(x; θ(µ)) (�Φ(x), θ(µ)� − gt(θ(µ))) dx

=

�
q(x; θ(µ)) logt p(x; θ(µ))dx (59)

=−Ht(p(x; θ(µ)))

Equation (58) follows because of the duality between θ(µ) and µ, while (59) is because
logt p(x; θ(µ)) = (�Φ(x), θ(µ)� − gt(θ(µ))).

C Proof of Theorem 4

Theorem The relative t-entropy is the Bregman divergence defined on the negative t-entropy
−Ht(p).
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Proof First, we know the concavity ofHt from Theorem 2 which leads to the convexity of −Ht. In
addition, since p(x) and q(x) are one-to-one mapped, Ht(p) can also work with q(x) equivalently.
Let us take the functional derivative of Ht(p) with respect to the q(x),

dHt(p(x))

dq(x)
=− d

��
q(z) logt p(z)dz

�

dq(x)

=− logt p(x)−
�

q(z)
d logt p(z)

dq(x)
dz

=− logt p(x)−
�

q(z)

p(z)t
dp(z)

dq(x)
dz (60)

=− logt p(x)−
1�

p(z)tdz

�
dp(z)

dq(x)
dz (61)

=− logt p(x) (62)

where, (60) comes from d logt(x)/dx = 1/xt by definition of logt function; (61) is because q(z) =
p(z)t/

�
p(z)tdz; and (62) is because

�
p(z)dz = 1.

Then the Bregman divergence between two distributions p(x) and p̃(x) is defined based on their
escort, using the fact that −Ht(p) is a convex function:

Dt(p� p̃) = −Ht(p) +Ht(p̃)−
�

dHt(p̃(x))

d q̃(x)
(q̃(x)− q(x))

=

�
q(x) logt p(x)− q̃(x) logt p̃(x)− logt p̃(x)(q(x)− q̃(x))dx

=

�
q(x) logt p(x)− q(x) logt p̃(x)dx

D Mean field approximation in the t-exponential family

Mean field method is another widely used deterministic approximate method. Consider the N -
dimensional multivariate t-exponential family of distribution

p(x; θ) = expt (�Φ(x), θ� − gt(θ)) .

where x = (x1, . . . , xN ). Similar to the case of the exponential family [2], the approximation error
incurred as a result of replacing p by p̃ is given by the relative t-entropy

gt(θ)− sup
µ̃

�
�µ̃, θ�+Ht(p̃(x; θ̃(µ̃)))

�
= inf

µ̃
Dt(p̃ �p). (63)

where

µ̃ =

�
Φ(x) q̃(x; θ̃(µ̃))dx = Eq̃[Φ(x)]

Note that unlike minimizing Dt(p� p̃) in the previous method that we introduced, the mean field
method (63) is attempting to minimize Dt(p̃ �p). As in the exponential family, we choose to ap-
proximate p(x; θ) by

p̃(x; θ̃(µ̃)) =

N�

n=1

p̃n(xn; θ̃n), where (64)

p̃n(xn; θ̃n) = expt

��
Φn(xn), θ̃n

�
− gt,n(θ̃n)

�
.
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If we fix a n ∈ {1, . . . , N} and denote p̃j = p̃j(xj ; θ̃j), and q̃j the corresponding escort distribution,
then one can rewrite the KL divergence as

Dt(p̃ �p) =
�

q̃n





�
logt p̃(x; θ̃)

�

j �=n

q̃j dxj



 dxn −

�
q̃n





�
logt p(x; θ)

�

j �=n

q̃j dxj



 dxn.

If we keep all θ̃j for j �= n fixed, then the KL divergence is minimized by setting
�

logt p̃(x; θ̃)
�

j �=n

q̃j dxj =

�
logt p(x; θ)

�

j �=n

q̃j dxj + const. (65)

Using the fact that
� �

j �=n q̃j dxj = 1, we can write
�

logt p̃(x; θ̃)
�

j �=n

q̃j dxj =
1

1− t

�
p̃1−t(x; θ̃)

�

j �=n

q̃j dxj −
1

1− t
�

logt p(x; θ)
�

j �=n

q̃j dxj =
1

1− t

�
p1−t(x; θ)

�

j �=n

q̃j dxj −
1

1− t
.

Since p(x; θ) is t-exponential family,
�

p1−t(x; θ)
�

j �=n

q̃j dxj =

�
(1 + (1− t) �Φ(x), θ� − gt(θ))

�

j �=n

q̃j dxj

=
�
1 + (1− t)(

�
Eq̃j �=n

[Φ(x)] , θ
�
− gt(θ))

�
, (66)

where we defined Eq̃j �=n
[Φ(x)] =

�
Φ(x)

�
j �=n q̃j dxj . Similarly,

�
p̃1−t(x; θ̃)

�

j �=n

q̃j dxj

=

� �
1 + (1− t)

�
Φn(xn), θ̃n

�
− gt,n(θ̃n)

�

�

j �=n

�
1 + (1− t)

�
Φj(xj), θ̃j

�
− gt,j(θ̃j)

�
q̃j dxj

=
�
1 + (1− t)(

�
Φn(xn), θ̃n

�
− gt,n(θ̃n))

�

�

j �=n

�
1 + (1− t)(

�
Eq̃j

[Φj(xj)] , θ̃j

�
− gt,j(θ̃j))

�
, (67)

where we defined Eq̃j
[Φj(xj)] =

�
Φj(xj) q̃j dxj . Putting together (66) and (67) by using (65)

yields
�
1 + (1− t)(

�
Eq̃j �=n

(Φ(x)) , θ
�
− gt(θ))

�

=
�
1 + (1− t)(

�
Φn(xn), θ̃n

�
− gt,n(θ̃n))

�

�

j �=n

�
1 + (1− t)(

�
Eq̃j

[Φj(xj)], θ̃j

�
− gt,j(θ̃j))

�
+ const.

Absorbing all the terms which do not depend on xn into the constant, we can rewrite the update
equation for the t-exponential distributions as

�
Φn(xn), θ̃n

�
=

�
Eq̃j �=n

[Φ(x)] , θ
� �

j �=n

expt

��
Eq̃j

[Φj(xj)] , θ̃j

�
− gt,j(θ̃j)

�t−1

+ const.
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E Mean field approximation on the multivariate Student’s t-distribution

Suppose we want to approximate a k-dimensional Student’s t-distribution with degree of freedom
v and parameters µ and Σ as in (54) by k one-dimensional Student’s t-distributions with degree
of freedom ṽ. Recall that the t parameter of the expt distribution and the degree of freedom v of
the Student’s t-distribution are related by 1

t−1 = v+k
2 . Therefore, we need to set 1

t−1 = v+k
2 =

ṽ +1
2 , which yields ṽ = v + k − 1. We now write the approximating distribution as p̃(x; θ̃) =�
n p̃n(xn; θ̃n) where

p̃n(xn; θ̃n) = expt

��
θ̃n,Φn(xn)

�
− g̃t,n(θ̃n)

�
.

If we define K̃n = (ṽ σ̃2
n)

−1 and

Ψ̃n =

�
Γ((ṽ +1)/2)

Γ(ṽ /2)(π ṽ σ̃2
n)

1/2

�−2/(ṽ +1)

then,

g̃t,n(θ̃n) = −
�
Ψ̃nK̃n µ̃

2
n +Ψ̃n − 1

�
/(1− t).

Furthermore, Φn(xn) = [xn;x
2
n] and θ̃n = [θ̃n,1; θ̃n,2] with θ̃n,1 = −2Ψ̃nK̃n µ̃n /(1 − t) and

θ̃n,2 = Ψ̃nK̃n/(1− t). Now we can write
�
θ̃n,Φn(xn)

�
=

1

1− t
Ψ̃n ·

�
−2K̃n µ̃n xn + K̃nx

2
n

�

�
θ,Eq̃j �=n

[Φ(x)]
�
=

1

1− t
Ψ ·

�
−2µ� KEq̃j �=n

[x] + tr
�
KEq̃j �=n

[xx�]
��

=
1

1− t
Ψ ·

�
−2µ� kn xn + 2µ̃�

j �=n kj �=n,n xn + knnx
2
n

�
+ const.

where µ̃j �=n denotes the vector
�
µ̃j

�
j=1...k,j �=n

, kn denotes the n-th column of K, and kj �=n,n

denotes the n-th column of K after its n-th element is deleted. Recall that µ̃j = Eq̃j
[xj ] and

σ̃2
j = Eq̃j

[x2
j ]− Eq̃j

[xj ]
2. Therefore

expt

��
θ̃j ,Eq̃j

[Φj(xj)]
�
− g̃t,j(θ̃j)

�
= expt

�
Ψ̃jK̃j

1− t
·
�
−2 µ̃j Eq̃j

[xj ] + Eq̃j
[x2

j ]
�
− g̃t,j(θ̃j)

�

= expt

�
Ψ̃jK̃j

1− t
(−2 µ̃2

j +σ̃2
j )− g̃t,j(θ̃j)

�

= expt

�
1

1− t
(
Ψ̃j

ṽ
+ Ψ̃j − 1)

�
.

The last line follows because K̃n = (ṽ σ̃2
n)

−1 and by expanding g̃t,j(θ̃j).

Putting everything together, the iterative updates for the Student’s t-distribution are given by

µ̃n =
1

knn

�
−2µ� kn +2µ̃�

j �=n kj �=n,n

�

(σ̃n)
2 =

�
K̃nΨ̃n

�−(ṽ +1)/ ṽ

· Γ(ṽ /2)2/ ṽπ1/ ṽ

Γ((ṽ +1)/2)2/ ṽ ṽ

where, K̃nΨ̃n = Ψknn
�

j �=n

expt

�
1

1− t
(
Ψ̃j

ṽ
+ Ψ̃j − 1)

�t−1

To empirically validate the above updates, we use a 10-dimensional Student’s t-distribution with
degrees of freedom v = 5, which corresponds to setting t = 1.13. Overall 500 variational updates
were made and the negative relative entropy (−Dt(p̃ �p)) is plotted as a function of the number of
iterations in Figure 5. The graph shows that the approximate distribution monotonically gets close to
the real distribution until it hits a stationary point. The stationary point indicates the optimal product
of one dimensional Student’s t-distributions which approximate the multi-dimensional Student’s
t-distribution.
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Figure 5: Negative relative entropy vs. the number of mean field updates
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