
See the Tree through the Lines: **T82** The Shazoo Algorithm

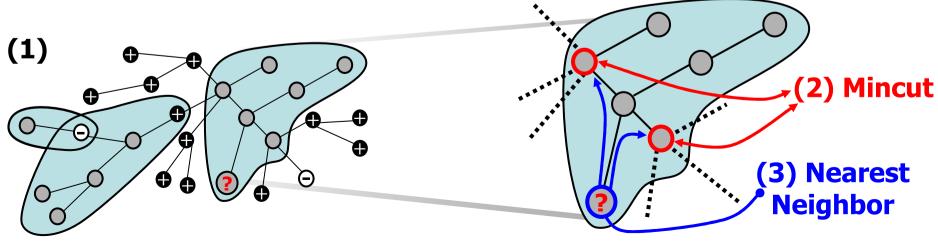
F. Vitale*, N. Cesa-Bianchi*, C. Gentile°, G. Zappella*

*Università degli Studi di Milano

°Università degli Studi dell'Insubria

- Learning on graphs/trees domains: hyperlinked webpages, social networks, co-author networks, biological networks, ...
- Our learning problem: node classification of weighted, connected and undirected trees (and graphs) based only on graph topology
- We focus on **binary labeling**
- Bias: strongly connected nodes → same label
 → ○ = cut edge weight of cut-edges is small

Learning protocol The Shazoo algorithm



On-line learning protocol: Vertices are issued one by one in an arbitrary order $v_1, v_2, ..., v_n$ **At each time step t:** - learner **predicts** the label of v_t

- learner $\ensuremath{\textbf{observes}}$ the label of $\ensuremath{\textbf{v}}_t$

Goal: few prediction mistakes

- The Shazoo algorithm: input = weighted trees T
 (if the input is a graph G we can run Shazoo on a spanning tree T of G)
- Shazoo (1) partitions T into components (satisfying some properties), (2) uses mincut for estimating the labels of the component border vertices, (3) uses a NN method for predicting the required label

Accuracy: mistake bound of Shazoo is optimal (up to log factors)

Implementation: simple and fast recursive method (based on sum-product algorithm) for using the mincut strategy

Time complexity:

- On line protocol: Worst case time per prediction: O(#vertices)
- Batch protocol (vertices are split into training and test sets) :
 Worst case time for predicting all labels of the test set: *O*(#vertices)

Space complexity: Linear in #vertices

Experimental results: Shazoo outperforms most of its competitors (e.g Label Propagation) on all our experiments on real-world datasets

Come to poster T82!

Shazoo

- Accuracy analysis: optimal mistake bound
- Scalability: very fast
- Easy to implement
- Works well in practice on real world datasets
- Easily extendible to multiclass prediction