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Abstract

We derive algorithms for generalised tensor factorisation(GTF) by building upon
the well-established theory of Generalised Linear Models.Our algorithms are
general in the sense that we can compute arbitrary factorisations in a message
passing framework, derived for a broad class of exponentialfamily distribu-
tions including special cases such as Tweedie’s distributions corresponding toβ-
divergences. By bounding the step size of the Fisher Scoringiteration of the GLM,
we obtain general updates for real data and multiplicative updates for non-negative
data. The GTF framework is, then extended easily to address the problems when
multiple observed tensors are factorised simultaneously.We illustrate our coupled
factorisation approach on synthetic data as well as on a musical audio restoration
problem.

1 Introduction

A fruitful modelling approach for extracting meaningful information from highly structured mul-
tivariate datasets is based on matrix factorisations (MFs). In fact, many standard data processing
methods of machine learning and statistics such as clustering, source separation, independent com-
ponents analysis (ICA), nonnegative matrix factorisation(NMF), latent semantic indexing (LSI)
can be expressed and understood as MF problems. These MF models also have well understood
probabilistic interpretations as probabilistic generative models. Indeed, many standard algorithms
mentioned above can be derived as maximum likelihood or maximum a-posteriori parameter esti-
mation procedures. It is also possible to do a full Bayesian treatment for model selection [1].

Tensors appear as a natural generalisation of matrix factorisation, when observed data and/or a latent
representation have several semantically meaningful dimensions. Before giving a formal definition,
consider the following motivating example

Xi,j,k
1 ≈

∑

r

Zi,r
1 Zj,r

2 Zk,r
3 Xj,p

2 ≈
∑

r

Zj,r
2 Zp,r

4 Xj,q
3 ≈

∑

r

Zj,r
2 Zq,r

5 (1)

whereX1 is an observed3-way array andX2, X3 are2-way arrays, whileZα for α = 1 . . . 5 are
the latent2-way arrays. Here, the2-way arrays are just matrices but this can be easily extendedto
objects having arbitrary number of indices. As the term ’N -way array’ is awkward, we prefer using
the more convenient termtensor. Here,Z2 is a shared factor, coupling all models. As the first model
is a CP (Parafac) while the second and the third ones are MF’s,we call the combined factorization
as CP/MF/MF model. Such models are of interest when one can obtain different ’views’ of the
same piece of information (hereZ2) under different experimental conditions. Singh and Gordon
[2] focused on a similar problem called ascollective matrix factorisation(CMF) or multi-matrix
factorisation, for relational learning but only for matrix factors and observations. In addition, their
generalised Bregman divergence minimisation procedure assumes matching link and loss functions.
For coupled matrix and tensor factorization(CMTF), recently [3] proposed a gradient-based all-
at-once optimization method as an alternative toalternating least square(ALS) optimization and
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demonstrated their approach for a CP/MF coupled model. Similar models are used for protein-
protein interactions (PPI) problems in gene regulation [4].

The main motivation of the current paper is to construct a general and practical framework for
computation of tensor factorisations (TF), by extending the well-established theory of Generalised
Linear Models (GLM). Our approach is also partially inspired by probabilistic graphical models:
our computation procedures for a given factorisation have anatural message passing interpretation.
This provides a structured and efficient approach that enables very easy development of application
specific custom models, priors or error measures as well as algorithms for joint factorisations where
an arbitrary set of tensors can be factorised simultaneously. Well known models of multiway analysis
(Parafac, Tucker [5]) appear as special cases and novel models and associated inference algorithms
can be automatically be developed. In [6], the authors take asimilar approach to tensor factorisations
as ours, but that work is limited toKL and Euclidean costs, generalising MF models of [7] to the
tensor case. It is possible to generalise this line of work toβ-divergences [8] but none of these works
address the coupled factorisation case and consider only a restricted class of cost functions.

2 Generalised Linear Models for Matrix/Tensor Factorisation

To set the notation and our approach, we briefly review GLMs following closely the original notation
of [9, ch 5]. A GLM assumes that a data vectorx has conditionally independently drawn components
xi according to an exponential family density

xi ∼ exp
(xiγi − b(γi)

τ2
− c(xi, τ)

)

〈xi〉 = x̂i =
∂b(γi)

∂γi
var(xi) = τ2

∂2b(γi)

∂γ2
i

(2)

Here,γi arecanonical parametersandτ2 is a known dispersion parameter.〈xi〉 is the expectation of
xi andb(·) is the log partition function, enforcing normalization. The canonical parameters are not
directly estimated, instead one assumes a link functiong(·) that ’links’ the mean of the distribution
x̂i and assumes thatg(x̂i) = l⊤i z wherel⊤i is theith row vector of a known model matrixL and
z is the parameter vector to be estimated,A⊤ denotes matrix transpose ofA. The model is linear
in the sense that a function of the mean is linear in parameters, i.e.,g(x̂) = Lz . A Linear Model
(LM) is a special case of GLM that assumes normality, i.e.xi ∼ N (xi; x̂i, σ

2) as well as linearity
that implies identity link function asg(x̂i) = x̂i = l⊤i z assumingli are known. Logistic regression
assumes a log link,g(x̂i) = log x̂i = l⊤i z; herelog x̂i andz have a linear relationship [9].

The goal in classical GLM is to estimate the parameter vectorz. This is typically achieved via
a Gauss-Newton method (Fisher Scoring). The necessary objects for this computation are the log
likelihood, the derivative and the Fisher Information (theexpected value of negative of the Fisher
Score). These are easily derived as:

L =
∑

i

[xiγi − b(γi)]/τ
2 −

∑

i

c(xi, τ)
∂L

∂z
=

1

τ2

∑

i

(xi − x̂i)wigx̂(x̂i)l
⊤
i (3)

∂L

∂z
=

1

τ2
L⊤DG(x− x̂)

〈

∂2L

∂z2

〉

=
1

τ2
L⊤DL (4)

wherew is a vector with elementswi, D andG are the diagonal matrices asD = diag(w), G =
diag(gx̂(x̂i)) and

wi =
(

v(x̂i)g
2
x̂(x̂i)

)−1

gx̂(x̂i) =
∂g(x̂i)

∂x̂i
(5)

with v(x̂i) being thevariance functionrelated to the observation variance by var(xi) = τ2v(x̂i).
Via Fisher Scoring, the general update equation in matrix form is written as

z ← z +
(

L⊤DL
)−1

L⊤DG(x− x̂) (6)

Although this formulation is somewhat abstract, it covers avery broad range of model classes that
are used in practice. For example, an important special caseappears when the variance functions
are in the form ofv(x̂) = x̂p. By settingp = {0, 1, 2, 3} these correspond to Gaussian, Poisson,
Exponential/Gamma, and Inverse Gaussian distributions [10, pp.30], which are special cases of the
exponential family of distributions for anyp named Tweedie’s family [11]. Those forp = {0, 1, 2},
in turn, correspond to EU, KL and IS cost functions often usedfor NMF decompositions [12, 7].
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2.1 Tensor Factorisations (TF) as GLM’s

The key observation for expressing a TF model as a GLM is to identify the multilinear structure
and using an alternating optimization approach. To hide thenotational complexity, we will give an
example with a simple matrix factorisation model; extension to tensors will require heavier notation,
but are otherwise conceptually straightforward. Considera MF model

g(X̂) = Z1Z2 in scalar g(X̂)i,j =
∑

r

Zi,r
1 Zj,r

2 (7)

whereZ1, Z2 andg(X̂) are matrices of compatible sizes. Indeed, by applying thevec operator
(vectorization, stacking columns of a matrix to obtain a vector) to both sides of (7) we obtain two
equivalent representation of the same system

vec(g(X̂)) = (I|j| ⊗ Z1)vec(Z2) =
∂(Z1Z2)

∂Z2
vec(Z2) =

∂g(X̂)

∂Z2
vec(Z2) ≡ ∇2

~Z2 (8)

whereI|j| denotes the|j| × |j| identity matrix,⊗ denotes the Kronecker product [13], andvecZ ≡
~Z. Clearly, this is a GLM where∇2 plays the role of a model matrix and~Z2 is the parameter
vector. By alternating betweenZ1 andZ2, we can maximise the log-likelihood iteratively; indeed
this alternating maximisation is standard for solving matrix factorisation problems. In the sequel, we
will show that a much broader range of algorithms can be readily derived in the GLM framework.

2.2 Generalised Tensor Factorisation

We define atensorΛ as a multiway array with an index setV = {i1, i2, . . . , i|α|} where each index
in for n = 1 . . . |α| runs asin = 1 . . . |in|. An element of the tensorΛ is a scalar that we denote
by Λ(i1, i2, . . . , i|α|) or Λi1,i2,...,i|α| or as a shorthand notation byΛ(v) with v being a particular
configuration.|v| denotes number of all distinct configurations forV, and e.g. ifV = {i1, i2} then
|v| = |i1||i2|. We call the formΛ(v) aselement-wise; the notation[ ] yields a tensor by enumerating
all the indices, i.e.,Λ = [Λi1,i2,...,i|α| ] or Λ = [Λ(v)]. For any two tensorsX andY of compatible
order,X ◦Y is an element-wise multiplication and if not explicitly stressedX/Y is an element-wise
division. 1 is an object of all ones whose order depends on the context where it is used.

A generalised tensor factorisation problem is specified by an observed tensorX (with possibly
missing entries, to be treated later) and acollection of latent tensorsto be estimated,Z1:|α| = {Zα}
for α = 1 . . . |α|, and by an exponential family of form (2). The index set ofX is denoted byV0 and
the index set of eachZα by Vα. The set of all model indices isV =

⋃|α|
α=1 Vα. We usevα (or v0)

to denote a particular configuration of the indices forZα (or X) while v̄α denoting a configuration
of the complimentV̄α = V/Vα. The goal is to find the latentZα that maximize the likelihood
p(X|Z1:α) where〈X〉 = X̂ is given via

g(X̂(v0)) =
∑

v̄0

∏

α

Zα(vα) (9)

To clarify our notation with an example, we express the CP (Parafac) model, defined aŝX(i, j, k) =
∑

r Z1(i, r)Z2(j, r)Z3(k, r). In our notation, we take identity linkg(X̂) = X̂ and the index sets
with V = {i, j, k, r}, V0 = {i, j, k}, V̄0 = {r}, V1 = {i, r}, V2 = {j, r} andV3 = {k, r}. Our
notation deliberately follows that of graphical models; the reader might find it useful to associate
indices with discrete random variables and factors with probability tables [14]. Obviously, while a
TF model does not represent a discrete probability measure,the algebraic structure is nevertheless
analogous.

To extend the discussion in Section 2.1 to the tensor case, weneed the equivalent of the model
matrix, when updatingZα. This is obtained by summing over the product of all remaining factors

g(X̂(v0)) =
∑

v̄0∩vα

Zα(vα)
∑

v̄0∩v̄α

∏

α′ 6=α

Zα′(vα′) =
∑

v̄0∩vα

Zα(vα)Lα(oα)

Lα(oα) =
∑

v̄0∩v̄α

∏

α′ 6=α

Zα′(vα′) with oα ≡ (v0 ∪ vα) ∩ (v̄0 ∪ v̄α)
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One related quantity toLα is the derivative of the tensorg(X̂) wrt the latent tensorZα denoted as
∇α and is defined as (following the convention [13, pp 196])

∇α =
∂g(X̂)

∂Zα
= I|v0∩vα| ⊗ Lα with Lα ∈ R

|v0∩v̄α|×|v̄0∩vα| (10)

The importance ofLα is that, all the update rules can be formulated by a product and subsequent
contraction ofLα with another tensorQ having exactly the same index set of the observed tensor
X. As a notational abstraction, it is useful to formulate the following function,

Definition 1. The tensor valued function∆α(Q) : R|v0| → R
|vα| is defined as

∆ε
α(Q) =

[

∑

v0∩v̄α

Q(v0) Lα(oα)
ε
]

(11)

with ∆α(Q) being an object of the same order asZα andoα ≡ (v0 ∪ vα) ∩ (v̄0 ∪ v̄α). Here, on
the right side, the nonnegative integerε denotes the element-wise power, not to be confused with an
index. On the left, it should be interpreted as a parameter ofthe∆ function. Arguably,∆ function
abstracts away all the tedious reshape and unfolding operations [5]. This abstraction has also an
important practical facet: the computation of∆ is algebraically (almost) equivalent to computation
of marginal quantities on a factor graph, for which efficientmessage passing algorithms exist [14].

Example 1. TUCKER3 is defined asX̂i,j,k =
∑

p,q,r A
i,pBj,qCk,rGp,q,r with V =

{i, j, k, p, q, r}, V0 = {i, j, k}, VA = {i, p}, VB = {j, q}, VC = {k, r}, VG = {p, q, r}. Then
for the first factorA, the objectsLA and∆ε

A() are computed as follows

LA =

[

∑

q,r

Bj,qCk,rGp,q,r

]

=
[

((C ⊗B)G⊤)pk,j

]

=
[

(

LA

)p

k,j

]

(12)

∆ε
A(Q) =





∑

j,k

Qk,j
i

(

Lε
A

)p

k,j



 =
[(

QLε
A

)p

i

]

(13)

The index sets marginalised out forLA and∆A are V̄0 ∩ V̄A = {p, q, r} ∩ {j, q, k, r} = {q, r} and
V0 ∩ V̄A = {i, j, k} ∩ {j, q, k, r} = {j, k}. Also we verify the order of the gradient∇A (10) as
Iii ⊗ LA

p
k,j = ∇

i,p
i,k,j that conforms the matrix derivation convention [13, pp.196].

2.3 Iterative Solution for GTF

As we have now established a one to one relationship between GLM and GTF objects such as the
observationx ≡ vec X, the mean (and the model estimate)x̂ ≡ vecX̂, the model matrixL ≡ Lα

and the parameter vectorz ≡ vecZα, we can write directly from (6) as

~Zα ← ~Zα +
(

∇⊤
αD∇α

)−1

∇⊤
αDG( ~X −

~̂
X) with∇α =

∂g(X̂)

∂Zα
(14)

There are at least two ways that this update can further simplified. We may assume an identity
link function, or alternatively we may choose a matching link and lost functions such that they
cancel each other smoothly [2]. In the sequel we consider identity link g(X̂) = X̂ that results to
gX̂(X̂) = 1. This impliesG to be identity, i.e.G = I. We define a tensorW , that plays the same
role asw in (5), which becomes simply the precision (inverse variance function), i.e.W = 1/v(X̂)
where for the Gaussian, Poisson, Exponential and Inverse Gaussian distributions we have simply
W = X̂−p with p = {0, 1, 2, 3} [10, pp 30]. Then, the update (14) is reduced to

~Zα ← ~Zα +
(

∇⊤
αD∇α

)−1

∇⊤
αD( ~X −

~̂
X) (15)

After this simplification we obtain two update rules for GTF for non-negative and real data.

The update (15) can be used to derive multiplicative update rules (MUR) popularised by [15] for the
nonnegative matrix factorisation (NMF). MUR equations ensure the non-negative parameter updates
as long as starting some non-negative initial values.
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Theorem 1. The update equation(15) for nonnegative GTF is reduced to multiplicative form as

Zα ← Zα ◦
∆α(W ◦X)

∆α(W ◦ X̂)
s.t.Zα(vα) > 0 (16)

(Proof sketch)Due to space limitation we leave the full details of the proof, but idea is that inverse
of H = ∇⊤D∇ is identified as step size and by use of the results of the Perron-Frobenious theorem
[16, pp 125] we further bound it as

η =
~Zα

∇⊤D
~̂
X

<
2~Zα

∇⊤D
~̂
X
≤

2

λmax(∇⊤D∇)
sinceλmax(H) ≤ max

vα

(

H ~Zα

)

(vα)

Zα(vα)
(17)

For the special case of the Tweedie family where the precision is a function of the mean asW =

X̂−p for p = {0, 1, 2, 3} the update (15) is reduced to

Zα ← Zα ◦
∆α(X̂

−p ◦X)

∆α(X̂1−p)
(18)

For example, to updateZ2 for the NMF modelX̂ = Z1Z2, ∆2 is ∆2(Q) = Z⊤
1 Q. Then for the

Gaussian (p = 0) this reduces to NMF-EU asZ2 ← Z2 ◦ (Z
⊤
1 X)/(Z⊤

1 X̂). For the Poisson (p = 1)
it reduces to NMF-KL asZ2 ← Z2 ◦

(

Z⊤
1 (X/X̂)

)

/
(

Z⊤
1 1

)

[15].

By dropping the non-negativity requirement we obtain the following update equation:

Theorem 2. The update equation for GTF with real data can be expressed as

Zα ← Zα +
2

λα/0

∆α(W ◦ (X − X̂))

∆2
α(W )

with λα/0 = |vα ∩ v̄0| (19)

(Proof sketch)Again skipping the full details, as part of the proof we setZα = 1 in (17) specifically,
and replacing matrix multiplication of∇⊤D∇1 by ∇⊤2

D1λα/0 completes the proof. Here the
multiplier λα/0 is the cardinality arising from the fact that onlyλα/0 elements are non-zero in a row
of∇⊤D∇. Note the example forλα/0 that ifVα ∩ V̄0 = {p, q} thenλα/0 = |p||q| which is number
of all distinct configurations for the index set{p, q}.

Missing datacan be handled easily by dropping the missing data terms fromthe likelihood [17]. The
net effect of this is the addition of an indicator variablemi to the gradient∂L/∂z = τ−2

∑

i(xi −
x̂i)miwigx̂(x̂i)l

⊤
i with mi = 1 if xi is observed otherwisemi = 0. Hence we simply define a mask

tensorM having the same order as the observationX, where the elementM(v0) is 1 if X(v0) is
observed and zero otherwise. In the update equations, we merely replaceW with W ◦M .

3 Coupled Tensor Factorization

Here we address the problem when multiple observed tensorsXν for ν = 1 . . . |ν| are factorised
simultaneously. Each observed tensorXν now has a corresponding index setV0,ν and a particular
configuration will be denoted byv0,ν ≡ uν . Next, we define a|ν| × |α| coupling matrixR where

Rν,α =

{

1 Xν andZα connected
0 otherwise X̂ν(uν) =

∑

ūν

∏

α

Zα(vα)
Rν,α

(20)

For the coupled factorisation, we get the following expression as the derivative of the log likelihood

∂L

∂Zα(vα)
=

∑

ν

Rν,α
∑

uν∩v̄α

(

Xν(uν)− X̂ν(uν)
)

Wν(uν)
∂X̂ν(uν)

∂Zα(vα)
(21)

whereWν ≡ W (X̂ν(uν)) are the precisions. Then proceeding as in section 2.3 (i.e. getting the
Hessian and finding Fisher Information) we arrive at the update rule in vector form as

~Zα ← ~Zα +
(

∑

ν

Rν,α∇⊤
α,νDν∇α,ν

)−1(∑

ν

Rν,α∇⊤
α,νDν

(

~Xν −
~̂
Xν

)

)

(22)
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. . . . . .Z1 Zα Z|α|

. . . . . .X1 Xν X|ν|

A B C D E

X1 X2 X3

Figure 1: (Left) Coupled factorisation structure where thearrow indicates the existence of the influ-
ence of latent tensorZα onto the observed tensorXν . (Right) The CP/MF/MF coupled factorisation
problem in 1.

where∇α,ν = ∂g(X̂ν)/∂Zα. The update equations for the coupled case are quite intuitive; we
calculate the∆α,ν functions defined as

∆ε
α,ν(Q) =

[

∑

uν∩v̄α

Q(uν)
(

∏

α′ 6=α

Zα′(vα′)R
ν,α

)ε]

(23)

for each submodel and add the results:

Lemma 1. Update for non-negative CTF

Zα ← Zα ◦

∑

ν R
ν,α∆α,ν(Wν ◦Xν)

∑

ν R
ν,α∆α,ν

(

Wν ◦ X̂ν

) (24)

In the special case of a Tweedie family, i.e. for the distributions whose precision asWν = X̂−p
ν , the

update isZα ← Zα ◦
(

∑

ν R
ν,α∆α,ν

(

X̂−p
ν ◦Xν

))

/
(

∑

ν R
ν,α∆α,ν

(

X̂1−p
ν

))

.

Lemma 2. General update for CTF

Zα ← Zα +
2

λα/0

∑

ν R
ν,α∆α,ν

(

Wν ◦
(

Xν − X̂ν

)

)

∑

ν R
ν,α∆2

α,ν(Wν)
(25)

For the special case of the Tweedie family we plugWν = X̂−p
ν and get the related formula.

4 Experiments

Here we want to solve the CTF problem introduced (1), which isa coupled CP/MF/MF problem

X̂i,j,k
1 =

∑

r

Ai,rBj,rCk,r X̂j,p
2 =

∑

r

Bj,rDp,r X̂j,q
3 =

∑

r

Bj,rEq,r (26)

where we employ the symbolsA : E for the latent tensors instead ofZα. This factorisation problem
has the followingR matrix with |α| = 5, |ν| = 3

R =

[

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1

]

with
X̂1 =

∑

A1B1C1D0E0

X̂2 =
∑

A0B1C0D1E0

X̂3 =
∑

A0B1C0D0E1

(27)

We want to use the general update equation (25). This requires derivation of∆ε
α,ν() for ν = 1 (CP)

andν = 2 (MF) but not forν = 3 since that∆α,3() has the same shape as∆α,2(). Here we show
the computation forB, i.e. forZ2, which is the common factor

∆ε
B,1(Q) =

[

∑

ik

Qi,j,k
(

Ai,rCk,r
)ε

]

= Q(1)(C
ε ⊙Aε) (28)

∆ε
B,2(Q) =

[

∑

p

Qj,p
(

Dp,r
)ε

]

= QDε (29)
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with Q(n) beingmode-n unfolding operation that turns a tensor into matrix form [5]. In addition,
for ν = 1 the required scalar valueλB/0 is |r| here sinceVB ∩ V̄0 = {j, r} ∩ {r} = {r} noting that
valueλB/0 is the same forν = 2, 3. The simulated data size for observables is|i| = |j| = |k| =
|p| = |q| = 30 while the latent dimension is|r| = 5. The number of iterations is1000 with the
Euclidean cost while the experiment produced similar results for KL cost as shown in Figure 2.

0 5 10
0

5

A

0 5 10
0

5

10
B

0 5 10
0

5

C

0 5 10
0

5

10
D

0 5 10

5

10
E

 

 Orginal

Initial

Final

Figure 2: The figure compares the original, the initial (start up) and the final (estimate) factors for
Zα = A,B,C,D,E. Only the first column, i.e.Zα(1 : 10, 1) is plotted. Note that CP factorisation
is unique up to permutation and scaling [5] while MF factorisation is not unique, but when coupled
with CP it recovers the original data as shown in the figure. For visualisation, to find the correct
permutation, for each ofZα the matching permutation between the original and estimateare found
by solving anorthogonal Procrustes problem[18, pp 601].

4.1 Audio Experiments

In this section, we illustrate a real data application of ourapproach, where we reconstruct missing
parts of an audio spectrogramX(f, t), that represents the STFT coefficient magnitude at frequency
bin f and time framet of a piano piece, see top left panel of Fig.3. This is a difficult matrix
completion problem: as entire time frames (columns ofX) are missing, low rank reconstruction
techniques are likely to be ineffective. Yet such missing data patterns arise often in practice, e.g.,
when packets are dropped during digital communication. We will develop here a novel approach,
expressed as a coupled TF model. In particular, the reconstruction will be aided by an approximate
musical score, not necessarily belonging to the played piece, and spectra of isolated piano sounds.

Pioneering work of [19] has demonstrated that, when a audio spectrogram of music is decomposed
using NMF asX1(f, t) ≈ X̂(f, t) =

∑

i D(f, i)E(i, t), the computed factorsD andE tend to be
semantically meaningful and correlate well with the intuitive notion of spectral templates (harmonic
profiles of musical notes) and a musical score (reminiscent of a piano roll representation such as a
MIDI file). However, as time frames are modeled conditionally independently, it is impossible to
reconstruct audio with this model when entire time frames are missing.

In order to restore the missing parts in the audio, we form a model that can incorporates musical
information of chords structures and how they evolve in time. In order to achieve this, we hierarchi-
cally decompose the excitation matrixE as a convolution of some basis matrices and their weights:
E(i, t) =

∑

k,τ B(i, τ, k)C(k, t − τ). Here the basis tensorB encapsulates both vertical and tem-
poral information of the notes that are likely to be used in a musical piece; the musical piece to
be reconstructed will shareB, possibly played at different times or tempi as modelled byG. After
replacingE with the decomposed version, we get the following model (eq 30):

X̂1(f, t) =
∑

i,τ,k,d

D(f, i)B(i, τ, k)C(k, d)Z(d, t, τ) Test file (30)

X̂2(i, n) =
∑

τ,k,m

B(i, τ, k)G(k,m)Y (m,n, τ) MIDI file (31)

X̂3(f, p) =
∑

i

D(f, i)F (i, p)T (i, p) Merged training files (32)
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Here we have introduced new dummy indicesd andm, and new (fixed) factorsZ(d, t, τ) = δ(d −
t + τ) andY (m,n, τ) = δ(m − n + τ) to express this model in our framework. In eq 32, while
forming X3 we concatenate isolated recordings corresponding to different notes. Besides,T is a
0 − 1 matrix, whereT (i, p) = 1(0) if the notei is played (not played) during the time framep and
F models the time varying amplitudes of the training data.R matrix for this model is defined as

R =

[

1 1 1 1 0 0 0 0
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1

]

with
X̂1 =

∑

D1B1C1Z1G0Y 0F 0T 0

X̂2 =
∑

D0B1C0Z0G1Y 1F 0T 0

X̂3 =
∑

D1B0C0Z0G0Y 0F 1T 1

(33)

Figure 3 illustrates the performance the model, usingKL cost (W = X̂−1) on a30 second piano
recording where the70% of the data is missing; we get about5dB SNR improvement, gracefully
degrading from10% to80% missing data: the results are encouraging as quite long portions of audio
are missing, see bottom right panel of Fig.3.
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Figure 3: Top row, left to right: Observed matricesX1: spectrum of the piano performance, darker
colors imply higher magnitude (missing data (70%) are shown white),X2, a piano roll obtained
from a musical score of the piece,X3, spectra of88 isolated notes from a piano. Bottom Row:
ReconstructedX1, the ground truth, and the SNR results with increasing missing data. Here, initial
SNR is computed by substituting0 as missing values.

5 Discussion

This paper establishes a link between GLMs and TFs and provides a general solution for the compu-
tation of arbitrary coupled TFs, using message passing primitives. The current treatment focused on
ML estimation; as immediate future work, the probabilisticinterpretation is to be extended to a full
Bayesian inference with appropriate priors and inference methods. A powerful aspect, which we
have not been able to summarize here is assigning different cost functions, i.e. distributions, to dif-
ferent observation tensors in a coupled factorization model. This requires only minor modifications
to the update equations. We believe that, as a whole, the GCTFframework covers a broad range
of models that can be useful in many different application areas beyond audio processing, such as
network analysis, bioinformatics or collaborative filtering.
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