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Abstract

A model of human visual search is proposed. It predicts both response time (RT)
and error rates (RT) as a function of image parameters such as target contrast and
clutter. The model is an ideal observer, in that it optimizes the Bayes ratio of target
present vs target absent. The ratio is computed on the firing pattern of V1/V2 neu-
rons, modeled by Poisson distributions. The optimal mechanism for integrating
information over time is shown to be a ‘soft max’ of diffusions, computed over
the visual field by ‘hypercolumns’ of neurons that share the same receptive field
and have different response properties to image features. An approximation of the
optimal Bayesian observer, based on integrating local decisions, rather than diffu-
sions, is also derived; it is shown experimentally to produce very similar predic-
tions to the optimal observer in common psychophysics conditions. A psychophy-
isics experiment is proposed that may discriminate between which mechanism is
used in the human brain.

A B C
Figure 1: Visual search. (A) Clutter and camouflage make visual search difficult. (B,C) Psychologists and
neuroscientists build synthetic displays to study visual search. In (B) the target ‘pops out’ (∆θ = 450), while
in (C) the target requires more time to be detected (∆θ = 100) [1].

1 Introduction

Animals and humans often use vision to find things: mushrooms in the woods, keys on a desk, a
predator hiding in tall grass. Visual search is challenging because the location of the object that
one is looking for is not known in advance, and surrounding clutter may generate false alarms. The
three ecologically relevant performance parameters of visual search are the two error rates (ER):
false alarms (FA) and false rejects (FR), and response time (RT). The design of a visual system is
crucial in obtaining low ER and RT. These parameters may be traded off by manipulating suitable
thresholds [2, 3, 4].

Psychologists and physiologists have long been interested in understanding the performance and the
mechanisms of visual search. In order to approach this difficult problem they present human sub-
jects with synthetic stimuli composed of a variable number of ‘items’ which may include a ‘target’
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and multiple ‘distractors’ (see Fig. 1). By varying the number of items one may vary the amount of
clutter; by designing different target-distractor pairs one may probe different visual cues (contrast,
orientation, color, motion) and by varying the visual distinctiveness of the target vis-a-vis the dis-
tractors one may study the effect of the signal-to-noise ratio (SNR). Several studies since 1980s have
investigated how RT and ER are affected by the complexity of the stimulus (number of distractors),
and by target-distractor discriminability with different visual cues. One early observation is that
when the target and distractor features are widely separated in feature space (e.g., red target among
green distractors), the target ‘pops out’. In these situations the ER is nearly zero, and the slope of
RT vs. setsize is flat, i.e., RT to find the target is independent of number of items in the display [1].
Decreasing the discriminability between the target and distractor increases error rates, and increases
the slope of RT vs. setsize [5]. Moreover, it was found that the RT for displays with no target is
longer than where the target is present (see review in [6]). Recent studies investigated the shape of
RT distributions in visual search [7, 8].

Neurophysiologically plausible models have been recently proposed to predict RTs in visual discrim-
ination tasks [9] and various other 2AFC tasks [10] at a single spatial location in the visual field.
They are based on sequential tests of statistical hypotheses (target present vs target absent) [11] com-
puted on the response of stimulus-tuned neurons [2, 3]. We do not yet have satisfactory models for
explaining RTs in visual search, which is harder as it involves integrating information across several
locations across the visual field, as well as time. Existing models predicting RT in visual search are
either qualitative (e.g. [12]) or descriptive (e.g., the drift-diffusion model [13, 14, 15]), and do not
attempt to predict experimental results with new set sizes, target and distractor settings.

We propose a Bayesian model of visual search that predicts both ER and RT. Our study makes a
number of contributions. First, while visual search has been modeled using signal-detection theory
to predict ER [16], our model is based on neuron-like mechanisms and predicts both ER and RT.
Second, our model is an optimal observer, given a physiologically plausible front-end of the visual
system. Third, our model shows that in visual search the optimal computation is not a diffusion, as
one might believe by analogy with single-location discrimination models [17, 18], rather, it is a ‘soft-
max’ nonlinear combination of locally-computed diffusions. Fourth, we study a physiologically
parsimonious approximation to the optimal observer, we show that it is almost optimal when the
characteristics of the task are known in advance and held constant, and we explore whether there are
psychophysical experiments that could discriminate between the two models.

Our model is based on a number of simplifying assumptions. First, we assume that stimulus items
are centered on cortical hypercolumns [19] and at locations where there is no item neuronal firing is
negligible. Second, retinal and cortical magnification [19] are ignored, since psychophysicists have
developed displays that sidestep this issue (by placing items on a constant-eccentricity ring as shown
in Fig 1). Third, we do not account for overt and covert attentional shifts. Overt attentional shifts
are manifested by saccades (eye motions), which happen every 200ms or so. Since the post-decision
motor response to a stimulus by pressing a button takes about 250-300ms, one does not need to
worry about eye motions when response times are shorter than 500ms. For longer RTs, one may
enforce eye fixation at the center of the display so as to prevent overt attentional shifts. Furthermore,
our model explains serial search without the need to invoke covert attentional shifts [20] which are
difficult to prove neurophysiologically.

2 Target discrimination at a single location with Poisson neurons

We first consider probabilistic reasoning at one location, where two possible stimuli may appear.
The stimuli differ in one respect, e.g. they have different orientations θ(1) and θ(2). We will call
them distractor (D) and target (T), also labeled C = 1 and C = 2 (call c ∈ {1, 2} the generic value
of C). Based on the response of N neurons (a hypercolumn) we will decide whether the stimulus
was a target or a distractor. Crucially, a decision should be reached as soon as possible, i.e. as soon
as there is sufficient evidence for T or D [11].

Given the evidence T (defined further below in terms of the neurons’ activity) we wish to decide
whether the stimulus was of type 1 or 2. We may do so when the probability P (C = 1|T ) of the
stimulus being of type 1 given the observations in T exceeds a given threshold T1 (T1 = 0.99).
We may instead decide in favor of C = 2 e.g. when P (C = 1|T ) < T2 (e.g. T2 = 0.01). If
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Figure 2: (Left three panels) Model of a hypercolumn in V1/V2 cortex composed of four orientation-tuned
neurons (our simulations use 32). The left panel shows the neurons’ tuning curve λ(θ) representing the expected
Poisson firing rate when the stimulus has orientation θ. The middle plot shows the expected firing rate of the
population of neurons for two stimuli whose orientation is indicated with a red (distractor) and green (target)
vertical line. The third plot shows the step-change in the value of the diffusion when an action potential is
registered from a given neuron. (Right panel) Diagram of the decision models. (A) One-location Bayesian
observer. The action potentials of a hypercolumn of neurons (top) are integrated in time to produce a diffusion.
When the diffusion reaches either an upper bound T1 or a lower bound T0 the decision is taken that either
the target is present (1) or the target is absent (0). (B–D) Multi-location ideal Bayesian observer. (B) While
not a diffusion, it may be seen as a ‘soft maximum’ combination of local diffusions: the local diffusions are
first exponentiated, then averaged; the log of the result is compared to two thresholds to reach a decision. (C)
The ‘Max approximation’ is a simplified approximation of the ideal observer, where the maximum of local
diffusions replaces a soft-maximum. (D) Equivalently, in the Max approximation decisions are reached locally
and combined by logical operators. The white AND in a dark field indicates inverted AND of multiple inverted
inputs.

P (C = 1|T ) ∈ (T2, T1) we will wait for more evidence. Thus, we need to compute P (C = 1|T ) :

Pr(C = 1|T ) =
1

1 + P (C=2|T )
P (C=1|T )

=
1

1 +R(T )P (C=2)
P (C=1)

where R(T ) =
P (T |C = 2)

P (T |C = 1)
=
P (C = 2|T )

P (C = 1|T )

P (C = 1)

P (C = 2)
(1)

where P (C = 1) = 1 − P (C = 2) is the prior probability of C = 1. Thus, it is equivalent to take
decisions by thresholding logR(T )1; we will elaborate on this in Sec. 3.

We will model the firing rate of the neurons with a Poisson pdf: the number n of action potentials
that will be observed during one second is distributed as P (n|λ) = λne−λ/n!. The constant λ is
the expectation of the number of action potentials per second. Each neuron i ∈ {1, . . . , N} is tuned
to a different orientation θi; for the sake of simplicity we will assume that the width of the tuning
curve is the same for all neurons; i.e. each neuron i will respond to stimulus c with expectation
λic = f(|θ(c)−θi|) (in spikes per second) which are determined by the distance between the neuron’s
preferred orientation θi and by the stimulus orientation θ(c).

Let Ti = {tik} be the set of action potentials from neuron i produced starting at t = 0 and until
the end of the observation period t = T . Indicate with T = {tk} =

⋃
i Ti the complete set of

action potentials from all neurons (where the tk are sorted). We will indicate with i(k) the index of
the neuron who fired the action potential at time tk. Call Ik = (tk tk+1) the intervals of time in
between action potentials, where I0 = (0 t1). These intervals are open i.e. they do not contain the
boundaries, hence they do not contain the action potentials.

The signal coming from the neurons is thus a concatenation of ‘spikes’ and ‘intervals’, and the
interval (0, T ) may be viewed as the union of instants tk and open intervals (tk, tk+1). i.e. (0, T ) =
I0
⋃
t1
⋃
I1
⋃
t2
⋃
· · ·

Since the spike trains Ti and T are Poisson processes, once we condition on the class of the stimulus
the spike times are independent. This implies that: P (T |C = c) = ΠkP (Ik|C = c)P (tk|C = c).
This may be proven by dividing up (0, T ) into smaller and smaller intervals and taking the limit for

1We use base 10 for all our logarithms and exponentials, i.e. log(x) ≡ log10(x) and exp(x) ≡ 10x.
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the size of the intervals going to zero. The intervals containing action potentials converge to the ti
and the intervals not containing action potentials may be merged into the intervals Ii.

Let’s analyze separately the log likelihood ratio for the intervals and for the spikes.

Diffusion drift during the intervals. During the intervals no neuron spiked. The ratio therefore
is computed as a function of the Poissons P (n = 0|λ) when the spike count n is zero. The Poisson
expectation has to be multiplied by the time-length of the interval; call ∆tk = tk+1 − tk the length
of the interval Ik. Assuming that the neurons i = 1, . . . , N are independent we obtain:

logR(Ik) = log
P (n = 0|C = 2, t ∈ Ik)

P (n = 0|C = 1, t ∈ Ik)
= log

ΠN
i=1P (n = 0|λi2∆tk)

ΠN
i=1P (n = 0|λi1∆tk)

= ∆tk

N∑

i=1

(λi1 − λi2)

(2)

Thus, during the time-intervals where no action potential is observed, the diffusion drifts linearly
with a slope equal to the sum over all neurons of the difference between the expected firing rate with
stimulus 1 and the expected firing rate with stimulus 2.

Notice that if there are neurons that fire equally well to targets and distractors, and if the population
of neurons is large and made of neurons whose tuning curve’s shape is identical and whose preferred
orientation θi is regularly spaced, then

∑
i λ

i
1 ≈

∑
i λ

i
2, thus the diffusion has drift with slope close

to zero and the drift term may be ignored. In this case intervals carry no information.

Diffusion jump at the action potentials. If the neurons are uncorrelated, then the probability of
two or more action potentials happening at the same time is zero. Thus, at any time tk there is only
one action potential from one neuron. We can compute the likelihood ratio by taking a limit for the
length δt of the interval t ∈ (tk − δt/2, tk + δt/2) going to zero. As seen in the previous section,
the contribution from the neurons who did not register a spike is δt(λi1 − λi2) and goes to zero as
δt → 0. Thus we are only left with the contribution of the neuron i(k) whose spike happened at
time tk.

logR(tk) = lim
δt→0

log
P (n = 1|λi(k)2 δt)

P (n = 1|λi(k)1 δtk)
= lim
δt→0

log
(λ
i(k)
2 δt)1e−λ

i(k)
2 δt

(λ
i(k)
1 δt)1e−λ

i(k)
1 δt

= log
λ
i(k)
2

λ
i(k)
1

(3)

As a result, at each action potential tk the diffusion jumps by an amount that is the log of the ratio
of the expected firing rate of the neuron i(k)’s response to target vs distractor. Thus:

1. Neurons that are equally tuned to target and distractor, whether they respond much or not,
will not contribute to the diffusion, while neurons whose response is very different for
target and distractor will contribute substantially to the diffusion.

2. A larger number of neurons will produce more action potentials and thus a faster action-
potential-driven drift in the diffusion.

Diffusion overall. Given the analysis presented above:

logR(T ) =
∑

k

∆tk
∑

i

(λi1 − λi2) +
∑

k

log
λ
i(k)
2

λ
i(k)
1

= |T |
∑

i

(λi1 − λi2) +
∑

k

log
λ
i(k)
2

λ
i(k)
1

(4)

Ignoring diffusion during the intervals, the diffusion at a single location where the stimulus is of
type c can be described as:

logR(T ) ∼
N∑

i=1

(log
λi2
λi1

)Poiss(λic|T |) (5)

E[logR(T )] = ac|T |,V[logR(T )] = b2c |T | (6)

where Poiss(λ) denotes a Poisson distributed variable with mean λ, ac ≡
∑N
i=1(log

λi
2

λi
1
)λic and

b2c ≡
∑N
i=1(log

λi
2

λi
1
)2λic. The mean and variance of the diffusion grows linearly with time.
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Figure 3: (A) Diffusions realized at 10 spatial locations when the target is absent (black). The ideal
observer Bayes ratio is shown in green, the max-model approximation is shown in red. Thresholds
Θ1 = −2,Θ2 = 2 are shown, which produce 1% error rates in the ideal observer. (B) Target present
case. Notice that the decision takes longer when the target is absent (see also Fig. 4). (C) Error rates
vs. number of items and (D) vs target contrast when decision thresholds are held constant. Decision
thresholds were chosen to obtain 5% error rates in the condition M = 10,∆θ = π/6. As we change
target contrast and the number of targets the optimal observer has constant error rates, while the
Max approximation produces variable error rates. Testing human subjects with a mix of stimuli
with different values of M and ∆θ may prevent them from adjusting decision thresholds between
stimuli; thus, one would expect constant error rates if the visual system uses the ideal observer and
variable error rates if it uses the Max approximation.

3 Visual search: detection across M locations with Poisson neurons

We now consider the case with M locations with N Poisson neurons each. At each location we
may either have a target T or a distractor D. In the whole display we have two hypotheses: no target
(C = 1) or one target at a location l (C = 2). The second hypothesis may be broken up into the
target being at any ofM locations l. Because of this, the numerator of the likelihood ratio is the sum
of M terms. The Bayesian observer must integrate the action potentials from each unit to a central
unit that computes the posterior beliefs. The multi-location Bayesian observer may be computed by
observing that the target-present event is the union of the target-present events in each one of the
locations, while the target absent event implies that each location has no target. Thus, the likelihood
can be computed as the weighted sum of local likelihoods at each location in the display.

We assume that

1. The likelihood at each location is independent from the rest when the stimulus type at that
location is known; i.e. P (T |Cl,∀l) =

∏
l P (T l|Cl) .

2. The target, if present, is equally likely to occur at any location in the display; i.e.
∀l, P (Cl = 2, Cl = 1|C = 2) = 1/M.

Calling l a location and l the complement of that location (i.e. all locations but l) we have:

P (T |C = 1) =

M∏

l=1

P (T l|Cl = 1)

P (T |C = 2) =

M∑

l=1

P (T |Cl = 2, Cl = 1)P (Cl = 2, Cl = 1|C = 2)

=
1

M
(

M∏

l=1

P (T l|Cl = 1))

M∑

l=1

Rl(T l)

logRtot(T ) = log
P (T |C = 2)

P (T |C = 1)
= log

1

M

M∑

l=1

Rl(T l) = log
1

M

M∑

l=1

exp(logRl(T l)) (7)

Eqn. 7 tells us two things:
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1. The process logRtot is not a diffusion, in that logRtot at time t + 1 can not be computed
by incrementing its value at time t by a term that depends only on the interval (t, t+ 1).

2. The process logRtot may be computed easily from the local diffusions logRl(T l) (in
Sec. 4 we find an approximation that has a natural neural implementation).

Now that we know how to compute logR(T ) for single and multi-location Bayesian observer, we
may take our decision by thresholding logR(T ) (Eqn. 1). Specifically, we choose separate thresh-
olds for making the target absent and the target present decision, and adjusted the thresholds based
on tolerance levels for the false positive rate (FPR) and the false negative rate (FNR). We keep
accumulating evidence until either decision can be made.

The relationship between FPR, FNR and the two thresholds can be derived using analysis similar
to [11]. When logRtot(T ) reaches the target present threshold (Θ2), with probability P (C = 2|T ),
the target is present and with probability P (C = 1|T ) the target is absent, i.e. FPR = P (C = 1|T )
and 1− FNR = P (C = 2|T ). We have:

Θ2 = logRtot(T ) = log
P (C = 2|T )

P (C = 1|T )
= log

1− FNR
FPR

(8)

Similarly, when logR(T ) reaches the target absent threshold (Θ1), we have:

Θ1 = logRtot(T ) = log
P (C = 2|T )

P (C = 1|T )
= log

FPR

1− FNR
(9)

Therefore, given desired FPR and FNR, we can analytically compute the upper and lower thresholds
for the Full Bayesian model using Eqn. 8 and 9.

4 Max approximation

An alternative, more economic, approach to full Bayesian decision is to approximate the global
belief using the largest local diffusion and suppress the rest. This is because, in the limit where
|T | is large, the diffusion at the location where the target is present will dominate over the other
diffusions and thus it is a good approximation of the sum in Eq. 7. We will call this approach “max
approximation” and also “Max model”. In this scheme, at each location a diffusion based on the
local Bayesian observer is computed. If any location ‘detects’ a target, then a target is declared.
If all locations detect a distractor, then the ‘no target’ condition is declared. This may not be the
optimal method, but it has the advantage of requiring only two low-frequency communication lines
between each location and the central decision unit. Equivalently, the max approximation can be
implemented by computing the maximum of the local diffusions and comparing it to an adjusted
high and a low threshold for target present/absent decision (see Fig. 2).

More specifically, let l∗ denote the location of maximum diffusion in the display, and logRl
∗

denote
the maximum diffusion (i.e., logRl

∗
= maxMl=1 logRl(T l)). From eqn 7 we know that the global

likelihood ratio is the average of the local likelihood ratios, and equivalently, the log likelihood ratio
is the soft-max of the local diffusions:

logRtot(T ) = log

(
1

M

M∑

l=1

exp
(
logRl(T l)

)
)

= logRl∗ + log


 1

M
(1 +

∑

l 6=l∗
exp(logRl − logRl

∗
))


 (10)

Target present – When the target is present in the display, if the target is different from the distrac-
tor, the diffusion at the target’s location will frequently become much higher than at other locations,
and the terms corresponding to Rl

Rl∗ may be safely ignored. Thus, the total log likelihood ratio may
be approximated by the maximum local diffusions minus a constant:

logRtot ≈ logRl
∗
− logM if Rl << Rl

∗
(11)
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Figure 4: (A) Histogram of response-times (RT) when the target is present (green) and when the target is
absent (red) for M = 10 for different values of target contrast (∆θ). Response times are longer when the
contrast is smaller (see Fig. 1). Also, they are longer when the target is absent (see Fig. 3). Notice that the
response times have a Gaussian-like distribution when time is plotted on a log scale, and the width of the
distribution does not change significantly as the difficulty of the task changes; thus, the mean and median
response time are equivalently informative statistics of RT. (B) Mean RT as a function of the number M of
items for different values of target contrast; the curves appear linear as a function of logM [21]. Notice that RT
slope is almost zero (‘parallel search’) when the target has high contrast, while when target contrast is low RT
increases significantly with M (‘serial search’) [1]. The response times observed using the Max approximation
are almost identical to those obtained with the ideal observer. (C) Error vs. RT tradeoff curves obtained
by changing systematically the value of the decision threshold. The mean RT ±σ is shown. Ideal bayesian
observer (blue) and Max approximation (cyan) are almost identical indicating that the Max approximation’s
performance is almost as good as that of the optimal observer.

From Eqn. 5 and 6 we know that the difference in diffusion value between the target location and
the distractor location grows linearly in time. Thus, the longer the process lasts, the better the
approximation. Conversely, when t = |T | is small, the approximation is unreliable, and a different
approximation term must be introduced (see supplementary material2 for derivation):

logRtot ≈ logRl
∗
−
(
a2t+ log(

1

M
+

(M − 1)

M
exp((a1 − a2 +

b21 + b22
2

)t))

)
if Rl ≈ Rl∗

(12)

Target absent – When the target is absent in the display, the value of all the local diffusions at
time t will be distributed according to the same density. According to Eqn. 6, the standard deviation
grows as

√
t, hence the expected value of logRl

∗ − logRl is monotonically increasing. When this
expected difference is large enough, we can make the same approximation as Eqn. 11:

logRtot ≈ logRl
∗
− logM if Rl << Rl

∗
(13)

On the other hand, when |T | is small, we resort to another approximation (see supplementary mate-
rial for derivation):

logRtot ≈ logRl
∗
− µMb1

√
t+

b21t

2
− 1

2
log(

exp(b2t) +M − 1

M
) if Rl ≈ Rl∗ (14)

where µM ≡ M
∫∞
−∞ zΦM−1(z)N (z)dz, and N (z) and Φ(z) denote the pdf and cdf of normal

distribution.

Since the max diffusion does not represent the global log likelihood ratio, its thresholds can not be
computed directly from the error rates. Nonetheless we can first compute analytically the thresholds
for the Bayesian observer (Eqn. 8 and 9), and adjust them based on the approximations stated above
(Eqn. 11, 12, 13 and 14). Finally, we threshold the maximum local diffusion logRl

∗
with respect to

the adjusted upper and lower threshold to make our decision.

5 Experiments

Experiment 1. - Overall model predictions. In this experiment we explore the model’s prediction
of response time over a series of interesting conditions. The default parameters are the number of

2http://vision.caltech.edu/˜bchen3/nips2011/supplementary.pdf
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neurons per location N = 32, the tuning width of each neuron = π/8, the maximum expected
firing rate (λ = 10 action potentials per second) and minimum expected firing rate (λ = 1 a.p./s)
of a neuron, which reflects the signal-to-noise ratio of the neuron’s tuning curves, the number of
items (locations) in the display M = 10 and the stimulus contrast ∆θ = π/6. Both M and ∆θ
refers to the display, while the other parameters refer to the brain. We will focus on how predictions
change when the display parameters are changed over a set of discrete settings: M ∈ {3, 10, 30}
and ∆θ ∈ {π/18, π/6, π/2}. For each setting of the parameters, we simulate the bayesian and the
max model for 1000 runs. The length of simulation is set to a large value (4 seconds) to make sure
that all decisions are made before the simulation terminates.

We are also interested in the trade-off between RT and ER η for η = {1%, 5%, 10%}. For each
η we search for the best pair of upper and lower thresholds that achieve FNR ≈ FPR ≈ η. We
search over the interval [0 3.5] for the optimal upper threshold and over [−3.5 0] for the optimal
lower threshold (an upper threshold of 3.5 corresponds to a FPR of 0.03%). The search is conducted
exhaustively over an [80 × 80] discretization of the joint space of the thresholds. We record the
response time distributions for all parameter settings and for all values of η (Fig. 4).

Experiment 2. - Conditions where Bayesian and Max models differ maximally In this exper-
iment we test the robustness of Bayesian and Max models with respect to a fixed threshold. For a
Bayesian observer, the thresholds yielding a given error rate can be computed exactly independent
of the display (Eqn. 9 and 8). On the contrary, in order for the max model to achieve the equivalent
performance, its threshold must be adjusted differently depending on the number of items M and
the target contrasts ∆θ (Eqn. 11-14). As a result, if a constant threshold is used for all conditions,
we would expect the Bayesian observer ER to be roughly constant, whereas the Max model would
have considerable ER variability. The error rates are shown in Fig. 3 as we vary M and ∆θ. The
threshold is set as the optimal threshold that produces 5% error for the Bayesian observer at a single
location M = 1 and with ∆θ = π/18.

6 Discussion and conclusions

We presented a Bayesian ideal observer model of visual search. To the best of our knowledge, this
is the first model that can predict the statistics of both response times (RT) and error rates (ER)
purely from physiologically relevant constants (number, tuning width, signal-to-noise ratio of cor-
tical mechanisms) and from image parameters (target contrast and number of distractors). Neurons
are modeled as Poisson units and the model has only four free parameters: the number of neurons per
hypercolumn, the tuning width of their response curve, the maximum and the minimum firing rate
of each neuron. The model predicts qualitatively the main phenomena that are observed in visual
search: serial vs. parallel search [1], the Gaussian-like shape of the response time histograms in log
time [7] and the faster response times when the target is present [3]. The model is easily adaptable
to predictions involving multiple targets, different image features and conjunction of features.

Unlike the case of binary detection/decision, the ideal observer may not be implemented by a diffu-
sion. However, it may be implemented using a precisely defined ‘soft-max’ combination of diffu-
sions, each one of which is computed at a different location across the visual field. We discuss an
approximation of the ideal observer, the Max model, which has two natural and simple implemen-
tations in neural hardware. The Max model is found experimentally to have a performance that is
very close to that of the ideal observer when the task parameters do not change.

We explored whether any combinations of target contrast and number of distractors would produce
significantly different predictions of the ideal observer vs the Max model approximation and found
none in the case where the visual system can estimate decision thresholds in advance. However, our
simulations predict different error rates when interleaving images containing diverse contrast levels
and distractor numbers.
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8



References
[1] A.M. Treisman and G. Gelade. A feature-integration theory of attention. Cognitive psychology, 12(1):97–

136, 1980.

[2] W.T. Newsome, K.H. Britten, and J.A. Movshon. Neuronal correlates of a perceptual decision. Nature,
341(6237):52–54, 1989.

[3] P. Verghese. Visual search and attention:: A signal detection theory approach. Neuron, 31(4):523–535,
2001.

[4] Vidhya Navalpakkam and Laurent Itti. Search goal tunes visual features optimally. Neuron, 53(4):605–17,
Feb 2007.

[5] J. Duncan and G.W. Humphreys. Visual search and stimulus similarity. Psychological review, 96(3):433,
1989.

[6] J.M. Wolfe. Attention (Ed. H. Pashler), chapter Visual Search, pages 13–73. University College London
Press, London, U.K., 1998.

[7] J.M. Wolfe, E.M. Palmer, and T.S. Horowitz. Reaction time distributions constrain models of visual
search. Vision research, 50(14):1304–1311, 2010.

[8] E.M. Palmer, T.S. Horowitz, A. Torralba, and J.M. Wolfe. What are the shapes of response time dis-
tributions in visual search? Journal of Experimental Psychology: Human Perception and Performance,
37(1):58, 2011.

[9] Jeffrey M Beck, Wei Ji Ma, Roozbeh Kiani, Tim Hanks, Anne K Churchland, Jamie Roitman, Michael N
Shadlen, Peter E Latham, and Alexandre Pouget. Probabilistic population codes for bayesian decision
making. Neuron, 60(6):1142–52, Dec 2008.

[10] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J.D. Cohen. The physics of optimal decision making: A
formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review,
113(4):700, 2006.

[11] A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2):117–186,
1945.

[12] M.M. Chun and J.M. Wolfe. Just say no: How are visual searches terminated when there is no target
present? Cognitive Psychology, 30(1):39–78, 1996.

[13] R. Ratcliff. A theory of memory retrieval. Psychological Review, 85(2):59–108, 1978.

[14] Philip L Smith and Roger Ratcliff. Psychology and neurobiology of simple decisions. Trends Neurosci,
27(3):161–8, Mar 2004.

[15] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory and data for two-choice decision
tasks. Neural Comput, 20(4):873–922, Apr 2008.

[16] D.G. Pelli. Uncertainty explains many aspects of visual contrast detection and discrimination. JOSA A,
2(9):1508–1531, 1985.

[17] R. Ratcliff. A theory of order relations in perceptual matching. Psychological Review, 88(6):552, 1981.

[18] Joshua I Gold and Michael N Shadlen. The neural basis of decision making. Annu Rev Neurosci, 30:535–
74, 2007.

[19] R.L. De Valois and K.K. De Valois. Spatial vision. Oxford University Press, USA, 1990.

[20] MI Posner, Y. Cohen, and RD Rafal. Neural systems control of spatial orienting. Philosophical Transac-
tions of the Royal Society of London. B, Biological Sciences, 298(1089):187, 1982.

[21] W.E. Hick. On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1):11–
46, 1952.

9


