
Stochastic convex optimization with bandit
feedback

Alekh Agarwal
Department of EECS

UC Berkeley
alekh@cs.berkeley.edu

Dean P. Foster
Department of Statistics

University of Pennysylvania
dean.foster@gmail.com

Daniel Hsu
Microsoft Research

New England
dahsu@microsoft.com

Sham M. Kakade
Department of Statistics Microsoft Research

University of Pennysylvania New England
skakade@microsoft.com

Alexander Rakhlin
Department of Statistics

University of Pennysylvania
rakhlin@wharton.upenn.edu

Abstract

This paper addresses the problem of minimizing a convex, Lipschitz func-
tion f over a convex, compact set X under a stochastic bandit feedback
model. In this model, the algorithm is allowed to observe noisy realizations
of the function value f(x) at any query point x ∈ X . We demonstrate

a generalization of the ellipsoid algorithm that incurs Õ(poly(d)
√
T) re-

gret. Since any algorithm has regret at least Ω(
√
T) on this problem, our

algorithm is optimal in terms of the scaling with T .

1 Introduction

This paper considers the problem of stochastic convex optimization under bandit feedback
which is a generalization of the classical multi-armed bandit problem, formulated by Robbins
in 1952. Our problem is specified by a mean cost function f which is assumed to be convex
and Lipschitz, and a convex, compact domain X . The algorithm repeatedly queries f at
points x ∈ X and observes noisy realizations of f(x). Performance of an algorithm is
measured by regret, that is the difference between values of f at the query points and the
minimum value of f over X . This specializes to the classical K-armed setting when X is
the probability simplex and f is linear. Several recent works consider the continuum-armed
bandit problem, making different assumptions on the structure of f over X . For instance,
the f is assumed to be linear in the paper [9], a Lipschitz condition on f is assumed in
the works [3, 12, 13], and Srinivas et al. [16] exploit the structure of a Gaussian processes.
For these “non-parametric” bandit problems, the rates of regret (after T queries) are of the
form Tα, with exponent α approaching 1 for large dimension d.

The question addressed in the present paper is: How can we leverage convexity of the mean
cost function as a structural assumption? Our main contribution is an algorithm which
achieves, with high probability, an Õ(poly(d)

√
T) regret after T requests. This result holds

for all convex Lipschitz mean cost functions. We observe that the rate with respect to T
does not deteriorate with d unlike the non-parametric problems mentioned earlier. Let us
also remark that Ω(

√
dT) lower bounds have been shown for linear mean cost functions,

making our algorithm optimal up to factors polynomial in d and logarithmic in T .

Prior Work Asymptotic rates of
√
T have been previously achieved by Cope [8] for uni-

modal functions under stringent conditions (smoothness and strong convexity of the mean

1

cost function, in addition to the maxima being achieved inside the set). Auer et al. [4]

show a regret of Õ(
√
T) for a one-dimensional non-convex problem with finite number of

maximizers. Yu and Mannor [17] recently studied unimodal bandits in one dimension, but

they do not consider higher dimensional cases. Bubeck et al. [7] show
√
T regret for a subset

of Lipschitz functions with certain metric properties. Convex, Lipschitz cost functions have
also been looked at in the adversarial model [10, 12], but the best-known regret bounds for
these algorithms are O(T 3/4). We also note that previous results of Agarwal et al. [1] and
Nesterov [15] do not apply to our setting as noted in the full-length version of this paper [2].

The problem addressed in this paper is closely related to noisy zeroth order convex optimiza-
tion, whereby the algorithm queries a point of the domain X and receives a noisy evaluation
of the function. While the literature on stochastic optimization is vast, we emphasize that
an optimization guarantee does not necessarily imply a bound on regret. In particular,
we directly build on an optimization method that has been developed by Nemirovski and
Yudin [14, Chapter 9]. Given ε > 0, the method is guaranteed to produce an ε-minimizer

in Õ(poly(d)ε−2) iterations, yet this does not immediately imply small regret. The latter is
the quantity of interest in this paper, since it is the standard performance measure in de-
cision theory. More importantly, in many applications every query to the function involves
a consumption of resources or a monetary cost. A low regret guarantees that the net cost
over the entire process is bounded unlike an optimization error bound.

The remainder of this paper is organized as follows. In the next section, we give the formal
problem setup and highlight differences between the regret and optimization error settings.
We then present a simple algorithm and its analysis for 1-dimension that illustrates some of
the key insights behind the general d-dimensional algorithm in Section 3. Section 4 describes
our generalization of the ellipsoid algorithm for d dimensions along with its regret guarantee.
Proofs of our results can be found in the full-length version [2].

2 Setup

In this section we will give the basic setup and the performance criterion, and explain the
differences between the metrics of regret and optimization error.

2.1 Problem definition and notation

Let X be a compact and convex subset of Rd, and let f : X → R be a 1-Lipschitz convex
function on X , so f(x) − f(x′) ≤ ‖x − x′‖ for all x, x′ ∈ X . We assume X is specified in
a way so that the algorithm can efficiently construct the smallest Euclidian ball containing
X . Furthermore, we assume the algorithm has noisy black-box access to f . Specifically, the
algorithm is allowed to query the value of f at any x ∈ X , and it observes y = f(x)+ε where ε
is an independent σ-subgaussian random variable with mean zero: E[exp(λε)] ≤ exp(λ2σ2/2)
for all λ ∈ R. The goal of the algorithm is to minimize its regret : after making T queries
x1, . . . , xT ∈ X , the regret of the algorithm compared to any x∗ ∈ arg minx∈X f(x) is

RT =
∑T
t=1

[
f(xt)− f(x∗)

]
. (1)

We will construct an average and confidence interval (henceforth CI) for the function values
at points queried by the algorithm. Letting LBγi(x) and UBγi(x) denote the lower and
upper bounds of a CI of width γi for the function estimate of a point x, we will say that
CI’s at two points are γ-separated if LBγi(x) ≥ UBγi(y) + γ or LBγi(y) ≥ UBγi(x) + γ.

2.2 Regret vs. optimization error

Since f is convex, the average x̄T = 1
T

∑T
t=1 xt satisfies f(x̄T)− f(x∗) ≤ RT /T so that low

regret (1) also gives a small optimization error. The converse, however, is not necessarily
true. An optimization method might can query far from the minimum of the function (that
is, explore) on most rounds, and output the solution at the last step. Guaranteeing a small
regret typically involves a more careful balancing of exploration and exploitation.

2

To better understand the difference, suppose X = [0, 1], and let f(x) be one of
xT−1/3,−xT−1/3 and x(x − 1). Let us sample function values at x = 1/4 and x = 3/4.
To distinguish the first two cases, we need Ω(T 2/3) points. If f is linear indeed, we only
incur O(T 1/3) regret on these rounds. However, if instead f(x) = x(x − 1), we incur an
undesirable Ω(T 2/3) regret. For purposes of optimization, it suffices to eventually distin-
guish the three cases. For the purposes of regret minimization, however, an algorithm has
to detect that the function curves between the two sampled points. To address this issue,
we additionally sample at x = 1/2. The center point acts as a sentinel : if it is recognized
that f(1/2) is noticeably below the other two values, the region [0, 1/4] or [3/4, 1] can be
discarded. Similarly, one of these regions can be discarded if it is recognized that the value
of f either at x = 1/4 or at x = 3/4 is greater than others. Finally, if f at all three points
appears to be similar at a given scale, we have a certificate (due to convexity) that the
algorithm is not paying regret per query larger than this scale.

This center-point device that allows to quickly detect that the optimization method might
be paying high regret and to act on this information is the main novel tool of our paper.
Unlike discretization-based methods, the proposed algorithm uses convexity in a crucial way.
We first demonstrate the device on one-dimensional problems in the next section, where the
solution is clean and intuitive. We then develop a version of the algorithm for higher
dimensions, basing our construction on the beautiful zeroth order optimization method of
Nemirovski and Yudin [14]. Their method does not guarantee vanishing regret by itself, and
a careful fusion of this algorithm with our center-point device is required.

3 One-dimensional case

We start with a special case of 1-dimension to illustrate some of the key ideas including
the center-point device. We assume wlog that the domain X = [0, 1], and f(x) ∈ [0, 1] (the
latter can be achieved by pinning f(x∗) = 0 since f is 1-Lipschitz).

3.1 Algorithm description

Algorithm 1 One-dimensional stochastic convex bandit algorithm

input noisy black-box access to f : [0, 1]→ R, total number of queries allowed T .
1: Let l1 := 0 and r1 := 1.
2: for epoch τ = 1, 2, . . . do
3: Let wτ := rτ − lτ .
4: Let xl := lτ + wτ/4, xc := lτ + wτ/2, and xr := lτ + 3wτ/4.
5: for round i = 1, 2, . . . do
6: Let γi := 2−i.
7: For each x ∈ {xl, xc, xr}, query f(x) 2σ

γ2
i

log T times.

8: if max{LBγi(xl),LBγi(xr)} ≥ min{UBγi(xl),UBγi(xr)}+ γi then
9: {Case 1: CI’s at xl and xr are γi separated}

10: if LBγi(xl) ≥ LBγi(xr) then let lτ+1 := xl and rτ+1 := rτ .
11: if LBγi(xl) < LBγi(xr) then let lτ+1 := lτ and rτ+1 := xr.
12: Continue to epoch τ + 1.
13: else if max{LBγi(xl),LBγi(xr)} ≥ UBγi(xc) + γi then
14: {Case 2: CI’s at xc and xl or xr are γi separated}
15: if LBγi(xl) ≥ LBγi(xr) then let lτ+1 := xl and rτ+1 := rτ .
16: if LBγi(xl) < LBγi(xr) then let lτ+1 := lτ and rτ+1 := xr.
17: Continue to epoch τ + 1.
18: end if
19: end for
20: end for

Algorithm 1 proceeds in a series of epochs demarcated by a working feasible region (the
interval Xτ = [lτ , rτ] in epoch τ). In each epoch, the algorithm aims to discard a portion
of Xτ determined to only contain suboptimal points. To do this, the algorithm repeatedly

3

makes noisy queries to f at three different points in Xτ . Each epoch is further subdivided
into rounds, where we query the function (2σ log T)/γ2i times in round i at each of the
points. By Hoeffding’s inequality, this implies that we know the function value to within
γi with high probability. The value γi is halved at every round. At the end of an epoch τ ,
Xτ is reduced to a subset Xτ+1 = [lτ+1, rτ+1] ⊂ [lτ , rτ] of the current region for the next
epoch τ + 1, and this reduction is such that the new region is smaller in size by a constant
fraction. This geometric rate of reduction guarantees that only a small number of epochs
can occur before Xτ only contains near-optimal points.

For the algorithm to identify a sizable portion of Xτ to discard, the queries in each epoch
should be suitably chosen, and the convexity of f must be exploited. To this end, the
algorithm makes its queries at three equally-spaced points xl < xc < xr in Xτ (see Section
4.1 of the full-length version for graphical illustrations of these cases).

Case 1: If the CIs around f(xl) and f(xr) are sufficiently separated, the algorithm discards
a fourth of [lτ , rτ] (to the left of xl or right of xr) which does not contain x∗.

Case 2: If the above separation fails, the algorithm checks if the CI around f(xc) is
sufficiently below at least one of the other CIs (for f(xl) or f(xr)). If that happens, the
algorithm again discards a quartile of [lτ , rτ] that does not contain x∗.

Case 3: Finally, if none of the earlier cases is true, then the algorithm is assured (by
convexity) that the function is sufficiently flat on Xτ and hence it has not incurred much
regret so far . The algorithm continues the epoch, with an increased number of queries to
obtain smaller confidence intervals at each of the three points.

3.2 Analysis

The analysis of Algorithm 1 relies on the function values being contained in the confi-
dence intervals we construct at each round of each epoch. To avoid having probabilities
throughout our analysis, we define an event E where at each epoch τ , and each round i,
f(x) ∈ [LBγi(x),UBγi(x)] for x ∈ {xl, xc, xr}. We will carry out the remainder of the
analysis conditioned on E and bound the probability of Ec at the end.

The following theorem bounds the regret incurred by Algorithm 1. We note that the regret
would be maintained in terms of the points xt queried by the algorithm at time t. Within
any given round, the order of queries is immaterial to the regret.

Theorem 1 (Regret bound for Algorithm 1). Suppose Algorithm 1 is run on a convex,
1-Lipschitz function f bounded in [0,1]. Suppose the noise in observations is i.i.d. and
σ-subGaussian. Then with probability at least 1− 1/T we have

T∑
t=1

f(xt)− f(x∗) ≤ 108
√
σT log T log4/3

(
T

8σ log T

)
.

Remarks: As stated Algorithm 1 and Theorem 1 assume knowledge of T , but we can make
the algorithm adaptive to T by a standard doubling argument. We remark that O(

√
T) is

the smallest possible regret for any algorithm even with noisy gradient information. Hence,
this result shows that for purposes of regret, noisy zeroth order information is no worse than
noisy first-order information apart from logarithmic factors.

Theorem 1 is proved via a series of lemmas below. The key idea is to show that the regret
on any epoch is small and the total number of epochs is bounded. To bound the per-epoch
regret, we will show that the total number of queries made on any epoch depends on how
flat the function is on Xτ . We either take a long time, but the function is very flat, or we
stop early when the function has sufficient slope, never accruing too much regret. We start
by showing that the reduction in Xτ after each epoch always preserves near-optimal points.

Lemma 1 (Survival of approx. minima). If epoch τ ends in round i, then [lτ+1, rτ+1]
contains every x ∈ [lτ , rτ] such that f(x) ≤ f(x∗) + γi. In particular, x∗ ∈ [lτ , rτ] for all τ .

4

The next two lemmas bound the regret incurred in any single epoch. To show this, we first
establish that an algorithm incurs low regret in a round as long as it does not end an epoch.
Then, as a consequence of the doubling trick, we show that the regret incurred in an epoch
is on the same order as that incurred in the last round of the epoch.

Lemma 2 (Certificate of low regret). If epoch τ continues from round i to round i+1, then
the regret incurred in round i is at most 72γ−1i σ log T.

Lemma 3 (Regret in an epoch). If epoch τ ends in round i, then the regret incurred in the
entire epoch is at most 216γ−1i σ log T.

To obtain a bound on the overall regret, we bound the number of epochs that can occur
before Xτ only contains near-optimal points. The final regret bound is simply the product
of the number of epochs and the regret incurred in any single epoch.

Lemma 4 (Bound on the number of epochs). The total number of epochs τ performed by

Algorithm 1 is bounded as τ ≤ 1
2 log4/3

(
T

8σ log T

)
.

4 Algorithm for optimization in higher dimensions

We now move to present the general algorithm that works in d-dimensions. The natural
approach would be to try and generalize Algorithm 1 to work in multiple dimensions. How-
ever, the obvious extension requires querying the function along every direction in a covering
of the unit sphere so that we know the behavior of the function along every direction. Such
an approach yields regret and running time that scales exponentially with the dimension d.
Nemirovski and Yudin [14] address this problem in the setup of zeroth order optimization
by a clever construction to capture all the directions in polynomially many queries. We
define a pyramid to be a d-dimensional polyhedron defined by d + 1 points; d points form
a d-dimensional regular polygon that is the base of the pyramid, and the apex lies above
the hyperplane containing the base (see Figure 1 for a graphic illustration in 3 dimensions).
The idea of Nemirovski and Yudin is to build a sequence of pyramids, each capturing the
variation of function in certain directions, in such a way that with O(d log d) pyramids we
can explore all the directions. However, as mentioned earlier, their approach fails to give a
low regret. We combine their geometric construction with ideas from the one-dimensional
case to obtain Algorithm 2 which incurs a bounded regret.

ϕ

h

APEX

Figure 1: Pyramid in 3-dimensions

x0

x2xd+1

x1

rτ

RτXτ

Figure 2: The regular simplex constructed at round
i of epoch τ with radius rτ , center x0 and vertices
x1, . . . , xd+1.

Just like the 1-dimensional case, Algorithm 2 proceeds in epochs. We start with the opti-
mization domain X , and at the beginning we set X0 = X . At the beginning of epoch τ ,
we have a current feasible set Xτ which contains at least one approximate optimum of the
convex function. The epoch ends with discarding some portion of the set Xτ in such a way
that we still retain at least one approximate optimum in the remaining set Xτ+1.

At the start of the epoch τ , we apply an affine transformation to Xτ so that the smallest
volume ellipsoid containing it is a Euclidian ball of radius Rτ (denoted as B(Rτ)). We define
rτ = Rτ/c1d for a constant c1 ≥ 1, so that B(rτ) ⊆ Xτ (see e.g. Lecture 1, p. 2 [5]). We
will use the notation Bτ to refer to the enclosing ball. Within each epoch, the algorithm
proceeds in several rounds, each round maintaining a value γi which is successively halved.

5

Algorithm 2 Stochastic convex bandit algorithm

input feasible region X ⊂ Rd; noisy black-box access to f : X → R, constants c1 and c2, functions
∆τ (γ), ∆τ (γ) and number of queries T allowed.

1: Let X1 := X .
2: for epoch τ = 1, 2, . . . do
3: Round Xτ so B(rτ) ⊆ Xτ ⊆ B(Rτ), Rτ is minimized, and rτ := Rτ/(c1d). Let Bτ = B(Rτ).
4: Construct regular simplex with vertices x1, . . . , xd+1 on the surface of B(rτ).
5: for round i = 1, 2, . . . do
6: Let γi := 2−i.
7: Query f at xj for each j = 1, . . . , d+ 1 2σ log T

γ2i
times.

8: Let y1 := arg maxj LBγi(xj).
9: for k = 1, 2, . . . do

10: Construct pyramid Πk with apex yk; let z1, . . . , zd be the vertices of the base of Πk and
z0 be the center of Πk.

11: Let γ̂ := 2−1.
12: loop
13: Query f at each of {yk, z0, z1, . . . , zd} 2σ log T

γ̂2
times.

14: Let center := z0, apex := yk, top be the vertex v of Πk maximizing LBγ̂(v),
bottom be the vertex v of Πk minimizing LBγ̂(v).

15: if LBγ̂(top) ≥ UBγ̂(bottom) + ∆τ (γ̂) and LBγ̂(top) ≥ UBγ̂(apex) + γ̂ then
16: {Case (1a)}
17: Let yk+1 := top, and immediately continue to pyramid k + 1.
18: else if LBγ̂(top) ≥ UBγ̂(bottom) + ∆τ (γ̂) and LBγ̂(top) < UBγ̂(apex) + γ̂ then
19: {Case (1b)}
20: Set (Xτ+1,B

′
τ+1) = Cone-cutting(Πk,Xτ ,Bτ), and proceed to epoch τ + 1.

21: else if LBγ̂(top) < UBγ̂(bottom) + ∆τ (γ̂) and UBγ̂(center) ≥ LBγ̂(bottom) −
∆τ (γ̂) then

22: {Case (2a)}
23: Let γ̂ := γ̂/2.
24: if γ̂ < γi then start next round i+ 1.
25: else if LBγ̂(top) < UBγ̂(bottom) + ∆τ (γ̂) and UBγ̂(center) < LBγ̂(bottom) −

∆τ (γ̂) then
26: {Case (2b)}
27: Set (Xτ+1,B

′
τ+1)= Hat-raising(Πk,Xτ ,Bτ), and proceed to epoch τ + 1.

28: end if
29: end loop
30: end for
31: end for
32: end for

Algorithm 3 Cone-cutting

input pyramid Π with apex y, (rounded) feasible region Xτ for epoch τ , enclosing ball Bτ
1: Let z1, . . . , zd be the vertices of the base of Π, and ϕ̄ the angle at its apex.
2: Define the cone

Kτ = {x | ∃λ > 0, α1, . . . , αd > 0,

d∑
i=1

αi = 1 : x = y − λ
d∑
i=1

αi(zi − y)}

3: Set B
′
τ+1 to be the min. volume ellipsoid containing Bτ \ Kτ .

4: Set Xτ+1 = Xτ ∩ B
′
τ+1.

output new feasible region Xτ+1 and enclosing ellipsoid B
′
τ+1.

Algorithm 4 Hat-raising

input pyramid Π with apex y, (rounded) feasible region Xτ for epoch τ , enclosing ball Bτ .
1: Let center be the center of Π.
2: Set y′ = y + (y − center).

3: Set Π
′

to be the pyramid with apex y′ and same base as Π.

4: Set Xτ+1,B
′
τ+1 = Cone-cutting(Π

′
,Xτ ,Bτ).

output new feasible region Xτ+1 and enclosing ellipsoid B
′
τ+1.

6

x0

ϕ
z1 z2

y1

x0

y1

y2

x0

y1

y2

y3

Figure 3: Sequence of pyramids constructed by Algorithm 2

Let x0 be the center of the ball B(Rτ) containing Xτ . At the start of a round i, we construct
a regular simplex centered at x0 and contained in B(rτ). The algorithm queries the function
f at all the vertices of the simplex, denoted by x1. . . . , xd+1, until the CI’s at each vertex
shrink to γi. The algorithm picks the point y1 that maximizes LBγi(xi). By construction,
f(y1) ≥ f(xj)− γi for all j = 1, . . . , d+ 1. This step is depicted in Figure 2.

The algorithm now successively constructs a sequence of pyramids, with the goal of iden-
tifying a region of the feasible set Xτ such that at least one approximate optimum of f
lies outside the selected region. This region will be discarded at the end of the epoch.
The construction of the pyramids follows the construction from Section 9.2.2 of Nemirovski
and Yudin [14]. The pyramids we construct will have an angle 2ϕ at the apex, where
cosϕ = c2/d. The base of the pyramid consists of vertices z1, . . . , zd such that zi − x0 and
y1−zi are orthogonal. We note that the construction of such a pyramid is always possible—
we take a sphere with y1 − x0 as the diameter, and arrange z1, . . . , zd on the boundary of
the sphere such that the angle between y1 − x0 and y1 − zi is ϕ. The construction of the
pyramid is depicted in Figure 3. Given this pyramid, we set γ̂ = 1, and sample the function
at y1 and z1, . . . , zd as well as the center of the pyramid until the CI’s all shrink to γ̂. Let
top and bottom denote the vertices of the pyramid (including y1) with the largest and the
smallest function value estimates resp. For consistency, we will also use apex to denote the
apex y1. We then check for one of the following conditions (see Section 5 of the full-length
version [2] for graphical illustrations of these cases):

(1) If LBγ̂(top) ≥ UBγ̂(bottom) + ∆τ (γ̂), we proceed based on the separation between
top and apex CI’s.

(a) If LBγ̂(top) ≥ UBγ̂(apex) + γ̂, then we know that with high probability

f(top) ≥ f(apex) + γ̂ ≥ f(apex) + γi. (2)

In this case, we set top to be the apex of the next pyramid, reset γ̂ = 1 and
continue the sampling procedure on the next pyramid.

(b) If LBγ̂(top) ≤ UBγ̂(apex)+ γ̂, then we know that LBγ̂(apex) ≥ UBγ̂(bottom)+
∆τ (γ̂)− 2γ̂. In this case, we declare the epoch over and pass the current apex to
the cone-cutting step.

(2) If LBγ̂(top) ≤ UBγ̂(bottom) + ∆τ (γ̂), then one of the following happens:

(a) If UBγ̂(center) ≥ LBγ̂(bottom)−∆τ (γ̂), then all of the vertices and the center
of the pyramid have their function values within a 2∆τ (γ̂) + 3γ̂ interval. In this
case, we set γ̂ = γ̂/2. If this sets γ̂ < γi, we start the next round with γi+1 = γi/2.
Otherwise, we continue sampling the current pyramid with the new value of γ̂.

(b) If UBγ̂(center) ≤ LBγ̂(bottom)−∆τ (γ̂), then we terminate the epoch and pass
the center and the current apex to the hat-raising step.

Hat-Raising: This step happens when the algorithm enters case 2(b). In this case, we

will show that if we move the apex of the pyramid a little from yi to y
′
i, then y

′
i’s CI is above

the top CI while the angle of the new pyramid at y
′
i is not much smaller than ϕ. Letting

centeri denote the center of the pyramid, we set y
′
i = yi + (yi − centeri) and denote the

angle at the apex y
′
i by 2ϕ̄. Figure 4 shows the transformation involved in this step.

7

z1 z2

yi

y
�
i

ϕ̄

ϕ

Figure 4: Transformation of the
pyramid Π in the hat-raising step.

Bτ

B�
τ+1Kτ

Figure 5: Cone-cutting step at epoch τ . Solid circle is
the enclosing ball Bτ . Shaded region is the intersection
of Kτ with Bτ . The dotted ellipsoid is the new enclosing

ellipsoid B
′
τ+1.

Cone-cutting: This step concludes an epoch. The algorithm gets here either through
case 1(b) or through the hat-raising step. In either case, we have a pyramid with an apex y,
base z1, . . . , zd and an angle 2ϕ̄ at the apex, where cos(ϕ̄) ≤ 2c2/d. We now define a cone

Kτ = {x | ∃λ > 0, α1, . . . , αd > 0,

d∑
i=1

αi = 1 : x = y − λ
d∑
i=1

αi(zi − y)} (3)

which is centered at y and a reflection of the pyramid around the apex. By construction, the
cone Kτ has an angle 2ϕ̄ at its apex. We set B′

τ+1 to be the ellipsoid of minimum volume

containing Bτ \ Kτ and define Xτ+1 = Xτ ∩ B
′
τ+1. This is illustrated in Figure 5. Finally,

we put things back into an isotropic position and Bτ+1 is the ball containing Xτ+1 is in the

isotropic coordinates, which is just obtained by applying an affine transformation to B′
τ+1.

Let us end with a brief discussion regarding the computational aspects of this algorithm.
Clearly, the most computationally intensive steps of this algorithm are cone-cutting and the
isotropic transformation at the end. However, these are exactly analogous to the classical
ellipsoid method. In particular, the equation for B′

τ+1 is known in closed form [11]. Fur-
thermore, the affine transformations needed to the reshape the set can be computed via
rank-one matrix updates and hence computation of inverses can be done efficiently as well
(see e.g. [11] for the relevant implementation details of the ellipsoid method).

The following theorem states our regret guarantee on the performance of Algorithm 2.

Theorem 2. Suppose Algorithm 2 is run with c1 ≥ 64, c2 ≤ 1/32 and parameters

∆τ (γ) =

(
6c1d

4

c22
+ 3

)
γ and ∆τ (γ) =

(
6c1d

4

c22
+ 5

)
γ.

Then with probability at least 1− 1/T , the regret incurred by the algorithm is bounded by

768d3σ
√
T log2 T

(
2d2 log d

c22
+ 1

)(
4d7c1
c32

+
d(d+ 1)

c2

)(
12c1d

4

c22
+ 11

)
= Õ(d16

√
T).

Remarks: Theorem 2 is again optimal in the dependence on T . The large dependence on
d is also seen in Nemirovski and Yudin [14] who obtain a d7 scaling in noiseless case and
leave it an unspecified polynomial in the noisy case. Using random walk ideas [6] to improve
the dependence on d is an interesting question for future research.

Acknowledgments

Part of this work was done while AA and DH were at the University of Pennsylvania. AA
was partially supported by MSR and Google PhD fellowships and NSF grant CCF-1115788
while this work was done. DH was partially supported under grants AFOSR FA9550-09-1-
0425, NSF IIS-1016061, and NSF IIS-713540. AR gratefully acknowledges the support of
NSF under grant CAREER DMS-0954737.

8

References

[1] A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization
with multi-point bandit feedback. In COLT, 2010.

[2] A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin. Stochastic convex opti-
mization with bandit feedback. URL http://arxiv.org/abs/1107.1744, 2011.

[3] R. Agrawal. The continuum-armed bandit problem. SIAM journal on control and
optimization, 33:1926, 1995.

[4] P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic continuum-
armed bandit problem. Learning Theory, pages 454–468, 2007.

[5] K. Ball. An elementary introduction to modern convex geometry. In Flavors of Ge-
ometry, number 31 in Publications of the Mathematical Sciences Research Institute,
pages 1–55. 1997.

[6] D. Bertsimas and S. Vempala. Solving convex programs by random walks. Journal of
the ACM, 51(4):540–556, 2004.

[7] S. Bubeck, R. Munos, G. Stolz, and C. Szepesvári. X -armed bandits. Journal of
Machine Learning Research, 12:1655–1695, 2011.

[8] E.W. Cope. Regret and convergence bounds for a class of continuum-armed bandit
problems. Automatic Control, IEEE Transactions on, 54(6):1243–1253, 2009.

[9] V. Dani, T.P. Hayes, and S.M. Kakade. Stochastic linear optimization under bandit
feedback. In Proceedings of the 21st Annual Conference on Learning Theory (COLT),
2008.

[10] A. D. Flaxman, A. T. Kalai, and B. H. Mcmahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 385–394, 2005.

[11] Donald Goldfarb and Michael J. Todd. Modifications and implementation of the ellip-
soid algorithm for linear programming. Mathematical Programming, 23:1–19, 1982.

[12] R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. Advances
in Neural Information Processing Systems, 18, 2005.

[13] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In
Proceedings of the 40th annual ACM symposium on Theory of computing, pages 681–
690. ACM, 2008.

[14] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimiza-
tion. Wiley, New York, 1983.

[15] Y. Nesterov. Random gradient-free minimization of convex functions. Technical Report
2011/1, CORE DP, 2011.

[16] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. Arxiv preprint arXiv:0912.3995,
2009.

[17] J. Y. Yu and S. Mannor. Unimodal bandits. In ICML, 2011.

9

