
Supplementary materials to ”Kernel Bayes’ Rule”

A Proof of Propositions 3 and 4

These propositions can be proved in a similar manner with simple linear algebra. We show the
proofs for completeness.

Proof of Proposition 3.We show only the proof forCZW , as the case ofCWW is exactly the same.
Let h = (ĈXX + εnI)

−1m̂
(ℓ)
Π , and decompose it ash =

∑n
i=1 αikX (·, Xi) + h⊥ = αT

kX + h⊥,

whereh⊥ is orthogonal to allkX (·, Xi). Expansion of(ĈXX + εnI)h = m̂
(ℓ)
Π derives1

nk
T
XGXα+

εnk
T
Xα+ εnh⊥ = m̂

(ℓ)
Π . By taking the inner product withkX (·, Xj), we have

( 1

n
GX + εnIn

)
GXα = m̂Π.

The coefficient̂µ in CZW = Ĉ(Y X)Xh =
∑n

i=1 µ̂ikX (·, Xi) ⊗ kY(·, Yi) is given byµ̂ = GXα,
and thus

µ̂ =
( 1

n
GX + εnIn

)−1

m̂Π.

Proof of Proposition 4.Let h = (Ĉ2
WW + δnI)

−1ĈWW kY(·, y), and decompose it ash =∑n
i=1 αikY(·, Yi) + h⊥ = αT

kY + h⊥, whereh⊥ is orthogonal to allkY(·, Yi). Expansion of
(Ĉ2

WW + δnI)h = ĈWW kY(·, y) deriveskT
Y (ΛGY )

2α + δnk
T
Y α + δnh⊥ = k

T
Y ΛkY (y). Taking

the inner product withkY(·, Yj) derives
(
(GY Λ)

2 + δnIn
)
GY α = GY ΛkY (y).

The coefficientw in m̂QX |y = ĈZWh =
∑n

i=1 wikX (·, Xi) is given byw = ΛGY α, and thus

w = Λ
(
(GY Λ)

2 + δnIn
)−1

GY ΛkY (y) = ΛGY

(
(ΛGY )

2 + δnIn
)−1

ΛkY (y).

B Derivation of the KBR update rule for nonparametric state-space model

This section gives a more detailed derivation of the update rule for nonparametric state-space model,
which we sketched in Section 3.

Given the estimate of the kernel mean expression forp(xt|ỹ1, . . . , ỹt), the forward filtering with

p(yt+1|ỹ1, . . . , ỹt) =
∫
p(yt+1|xt+1)

∫
p(xt+1|xt)p(xt|ỹ1, . . . , ỹt)dxt+1dxt

can be realized by the two-times applications of forward filtering procedure similar to Proposition
3. Namely, first the kernel mean ofp(xt+1|ỹ1, . . . , ỹt) =

∫
p(xt+1|xt)p(xt|ỹ1, . . . , ỹt)dxt can be

estimated by

m̂xt+1|ỹ1,...,ỹt
=

T∑

i=1

βikX (·, Xi+1), where β =
(
1
TGX + εT IT

)−1
GXα.

In the same way, the second step is to compute the kernel mean of p(yt+1|ỹ1, . . . , ỹt) =∫
p(yt+1|xt+1)p(xt+1|ỹ1, . . . , ỹt)dxt+1, which is estimated by

m̂yt+1|ỹ1,...,ỹt
=

T∑

i=1

γikX (·, Yi), where γ =
(
1
TGY + εT IT

)−1
GX,X+1

β.
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C Rates of consistency

The proof idea for the consistency rates of the KBR estimators is essentially the same as [1, 3], in
which the basic techniques are taken from the general theoryof regularization [2].

First we give integral expression for the kernel mean and covariance operators. Reacll that the kernel
meanmX of X onHX satisfies

〈f,mX〉 = E[f(X)]

for anyf ∈ HX . Pluggingf = kX (·, u) into this relation derives

mX(u) = E[k(u,X)] =

∫
kX (u, x̃)dPX(x̃), (15)

which shows the explicit functional form of the kernel mean.In a similar manner, the explicit
integral expression of the covariance operatorsCY X andCXX are given by

(CY Xf)(y) =

∫
kY(y, ỹ)f(x̃)dP (x̃, ỹ), (CXXf)(x) =

∫
kX (x, x̃)f(x̃)dPX(x̃), (16)

respectively. The covariance operators are thus integral operators with integral kernelkX or kY .

The first preliminary result is a rate of convergence for the mean transition in Theorem 2. In the
following R(C0

XX) meansHX .

Theorem 6. Assume thatπ/pX ∈ R(Cβ
XX) for someβ ≥ 0, whereπ andpX are the p.d.f. ofΠ

andPX , respectively. Let̂m(n)
Π be an estimator ofmΠ such that‖m̂(n)

Π −mΠ‖HX
= Op(n

−α) as

n→ ∞ for some0 < α ≤ 1/2. Then, withεn = n−max{ 2
3α,

α
1+β }, we have

∥∥Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1
m̂

(n)
Π −mQY

∥∥
HY

= Op(n
−min{ 2

3α,
2β+1
2β+2α}), (n→ ∞).

Proof. Takeη ∈ HX such thatπ/pX = Cβ
XXη. Then, from Eqs. (15) and (16),

mΠ =

∫
kX (·, x) π(x)

pX(x)
pX(x)dµX (x) = Cβ+1

XX η. (17)

First we show the rate of the estimation error:
∥∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1
m̂

(n)
Π − CY X

(
CXX + εnI

)−1
mΠ

∥∥
HY

= Op

(
n−αε−1/2

n

)
, (18)

asn→ ∞. By using the fact thatB−1−A−1 = B−1(A−B)A−1 holds for any invertible operators
A andB, the left hand side of Eq. (18) is upper bounded by

∥∥Ĉ(n)
Y X

(
Ĉ

(n)
XX + εnI

)−1(
m̂

(n)
Π −mΠ

)∥∥
HY

+
∥∥(Ĉ(n)

Y X − CY X

)(
CXX + εnI

)−1
mΠ

∥∥
HY

+
∥∥Ĉ(n)

Y X

(
Ĉ

(n)
XX + εnI

)−1(
CXX − Ĉ

(n)
XX

)(
CXX + εnI

)−1
mΠ

∥∥
HY
.

By the decomposition̂C(n)
Y X = Ĉ

(n)1/2
Y Y Ŵ

(n)
Y XĈ

(n)1/2
XX with ‖Ŵ (n)

Y X‖ ≤ 1 (see [2]), the first term

is of Op(n
−αε

−1/2
n ). From Eq. (17), the second and third terms are of the orderOp(n

−1/2) and

Op(n
−1/2ε

−1/2
n ), respectively, by‖(CXX + εnI)

−1CXX‖ ≤ 1. This means Eq. (18).

Next, we show
∥∥CY X

(
CXX + εnI

)−1
mΠ −mQY

∥∥
HY

= O(εmin{(1+2β)/2,1}
n ) (n→ ∞). (19)

LetCY X = C
1/2
Y YWY XC

1/2
XX be the decomposition with‖WY X‖ ≤ 1. It follows from the relation

mQY
=

∫ ∫
k(·, y) π(x)

pX(x)
p(x, y)dµX (x)dµY(y) = CY XC

β
XXη

that the left hand side of Eq. (19) is upper bounded by

‖C1/2
Y YWY X‖ ‖

(
CXX + εnI

)−1
C

(2β+3)/2
XX η − C

(2β+1)/2
XX η‖HX

.
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By the eigendecompositionCXX =
∑

i λiφi〈φi, ·〉, where{φi} are the unit eigenvectors and{λi}
are the corresponding eigenvalues, the expansion

∥∥(CXX + εnI
)−1

C
(2β+3)/2
XX η − C

(2β+1)/2
XX η

∥∥2
HX

=
∑

i

(
εnλ

(2β+1)/2
i

λi + εn

)2

〈η, φi〉2

holds. If 0 ≤ β < 1/2, we have εnλ
(2β+1)/2
i

λi+εn
=

λ
(2β+1)/2
i

(λi+εn)(2β+1)/2

ε(1−2β)/2
n

(λi+εn)(1−2β)/2 ε
(2β+1)/2
n ≤

ε
(2β+1)/2
n . If β ≥ 1/2, then εnλ

(2β+1)/2
i

λi+εn
≤ ‖CXX‖εn. The dominated convergence theorem shows

that the the above sum converges to zero asεn → 0 of the orderO(ε
min{2β+1,2}
n ).

From Eqs. (18) and (19), the optimal order ofεn and the optimal rate of consistency are given as
claimed.

The following theorem shows the consistency rate of the estimator used in the conditioning step
Eq. (8).

Theorem 7. Let f be a function inHX , and(Z,W ) be a random variable taking value inX × Y.

Assume thatE[f(Z)|W = ·] ∈ R(Cν
WW ) for someν ≥ 0, andĈ(n)

WZ : HX → HY and Ĉ(n)
WW :

HY → HY be compact operators, which may not be positive definite, such that‖Ĉ(n)
WZ − CWZ‖ =

Op(n
−γ) and‖Ĉ(n)

WW − CWW ‖ = Op(n
−γ) for someγ > 0. Then, forδn = n−max{ 4

9γ,
4

2ν+5γ}

and anyy ∈ Y, we have asn→ ∞
∥∥Ĉ(n)

WW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WZf − E[f(X)|W = ·]

∥∥
HX

= Op(n
−min{ 4

9γ,
2ν

2ν+5γ}).

Proof. Let η ∈ HX such thatE[f(Z)|W = ·] = Cν
WW η. First we show

∥∥Ĉ(n)
WW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WZf − CWW (C2

WW + δnI)
−1CWZf

∥∥
HX

= Op(n
−γδ−5/4

n ).

(20)

The left hand side of Eq. (20) is upper bounded by
∥∥Ĉ(n)

WW

(
(Ĉ

(n)
WW )2+δnI

)−1
(Ĉ

(n)
WZ−CWZ)f

∥∥
HY

+
∥∥(Ĉ(n)

WW−CWW )(C2
WW+δnI)

−1CWZf
∥∥
HY

+
∥∥Ĉ(n)

WW ((Ĉ
(n)
WW )2 + δnI

)−1(
(Ĉ

(n)
WW )2 − C2

WW

)(
C2

WW + δnI
)−1

CWZf
∥∥
HY
.

Let Ĉ(n)
WW =

∑
i λiφi〈φi, ·〉 be the eigendecomposition, where{φi} is the unit eigenvec-

tors and{λi} is the corresponding eigenvalues. From
∣∣λi/(λ2i + δn)

∣∣ = 1/|λi + δn/λi| ≤
1/(2

√
|λi|

√
δn/|λi|) = 1/(2

√
δn), we have‖Ĉ(n)

WW

(
(Ĉ

(n)
WW )2 + δnI

)−1‖ ≤ 1/(2
√
δn), and thus

the first term of the above bound is ofOp(n
−γδ

−1/2
n ). A similar argument by the eigendecomposi-

tion ofCWW combined with the decompositionCWZ = C
1/2
WWUWZC

1/2
ZZ with ‖UWZ‖ ≤ 1 shows

that the second term is ofOp(n
−γδ

−3/4
n ). From the fact‖(Ĉ(n)

WW )2 − C2
WW ‖ ≤ ‖Ĉ(n)

WW (Ĉ
(n)
WW −

CWW )‖+ ‖(Ĉ(n)
WW −CWW )CWW ‖ = Op(n

−γ), the third term is ofOp(n
−γδ

−5/4
n ). This implies

Eq. (20).

FromE[f(Z)|W = ·] = Cν
WW η andCWZf = CWWE[f(Z)|W = ·] = Cν+1

WW η, the convergence
rate ∥∥CWW (C2

WW + δnI)
−1CWZf − E[f(Z)|W = ·]

∥∥
HY

= O(δ
min{1, ν2 }
n ). (21)

can be proved by the same way as Eq. (19).

Combination of Eqs.(20) and (21) proves the assertion.

It is possible to extend the covariance operatorCWW to the one defined onL2(QW ) by

C̃WWφ =

∫
kY(y, w)φ(w)dQW (w), (φ ∈ L2(QW )). (22)

The following theorem shows the consistency rate on average. HereR(C̃0
WW ) meansL2(QW ).
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Theorem 8. Letf be a function inHX , and(Z,W ) be a random variable taking values inX × Y
with distributionQ. Assume thatE[f(Z)|W = ·] ∈ R(C̃ν

WW ) ∩ HY for someν > 0, andĈ(n)
WZ :

HX → HY andĈ(n)
WW : HY → HY be compact operators, which may not be positive definite, such

that ‖Ĉ(n)
WZ − CWZ‖ = Op(n

−γ) and‖Ĉ(n)
WW − CWW ‖ = Op(n

−γ) for someγ > 0. Then, for

δn = n−max{ 1
2γ,

2
ν+2γ}, we have asn→ ∞

∥∥Ĉ(n)
WW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WZf − E[f(X)|W = ·]

∥∥
L2(QW )

= Op(n
−min{ 1

2γ,
ν

ν+2γ}),

whereQW is the marginal distribution ofW .

Proof. Note that forh, g ∈ HY we have(h, g)L2(QW ) = E[h(W )g(W )] = 〈h,CWW g〉HY
. It

follows that the left hand side of the assertion is equal to
∥∥C1/2

WW Ĉ
(n)
WW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WZf − C

1/2
WWE[f(Z)|W = ·]

∥∥
HY
.

First, by the similar argument to the proof of Eq. (20), it is easy to show that the rate of the estimation
error is given by

∥∥C1/2
WW

{
Ĉ

(n)
WW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WZf − CWW (C2

WW + δnI)
−1CWZf

}∥∥
HY

= Op(n
−γδ−1

n ).

It suffices then to prove
∥∥CWW (C2

WW + δnI)
−1CWZf − E[f(Z)|W = ·]

∥∥
L2(QW )

= O(δ
min{1, ν2 }
n ).

Let ξ ∈ L2(QW ) such thatE[f(Z)|W = ·] = C̃ν
WW ξ. In a similar way to Theorem 1,

C̃WWE[f(Z)|W ] = C̃WZf holds, whereC̃WZ is the extension ofCWZ , and thusCWZf =

C̃ν+1
WW ξ. The left hand side of the above equation is equal to

∥∥C̃WW (C̃2
WW + δnI)

−1C̃ν+1
WW ξ − C̃ν

WW ξ
∥∥
L2(QW )

.

By the eigendecomposition of̃CWW in L2(QW ), a similar argument to the proof of Eq. (21) shows
the assertion.

Combining the above theorems, we have the following consistency of KBR.

Theorem 9. Let f be a function inHX , (Z,W ) be a random variable that has the distributionQ

with p.d.f.p(y|x)π(x), andm̂(n)
Π be an estimator ofmΠ such that‖m̂(n)

Π −mΠ‖HX
= Op(n

−α)

(n → ∞) for some0 < α ≤ 1/2. Assume thatπ/pX ∈ R(Cβ
XX) with β ≥ 0, andE[f(Z)|W =

·] ∈ R(Cν
WW ) for someν ≥ 0. For the regularization constantsεn = n−max{ 2

3α,
1

1+βα} and

δn = n−max{ 4
9γ,

4
2ν+5γ}, whereγ = min{ 2

3α,
2β+1
2β+2α}, we have for anyy ∈ Y

f
T
XRX|Y kY (y)− E[f(Z)|W = y] = Op(n

−min{ 4
9γ,

2ν
2ν+5γ}), (n→ ∞),

wherefTXRX|Y kY (y) is the estimator ofE[f(Z)|W = y] given by Eq. (11).

Proof. By applying Theorem 6 toY = (Y,X) andY = (Y, Y ), we see that both of‖Ĉ(n)
ZW −CZW ‖

and‖Ĉ(n)
WW − CWW ‖ are ofOp(n

−γ). Since

f
T
XRX|Y kY (y)− E[f(Z)|W = y]

= 〈kY(·, y), Ĉ(n)
WW

(
(Ĉ

(n)
Y Y )

2 + δnI
)−1

Ĉ
(n)
WZf − E[f(Z)|W = ·]〉HY

,

combination of Theorems 6 and 7 proves the theorem.

The next theorem shows the rate on average w.r.t.QW . The proof is similar to the above theorem,
and omitted.
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Theorem 10. Let f be a function inHX , (Z,W ) be a random variable that has the distributionQ

with p.d.f.p(y|x)π(x), andm̂(n)
Π be an estimator ofmΠ such that‖m̂(n)

Π −mΠ‖HX
= Op(n

−α)

(n → ∞) for some0 < α ≤ 1/2. Assume thatπ/pX ∈ R(Cβ
XX) with β ≥ 0, andE[f(Z)|W =

·] ∈ R(C̃ν
WW ) ∩ HY for someν > 0. For the regularization constantsεn = n−max{ 2

3α,
1

1+βα} and

δn = n−max{ 1
2γ,

2
ν+2γ}, whereγ = min{ 2

3α,
2β+1
2β+2α}, we have

∥∥fTXRX|Y kY (W )− E[f(Z)|W ]
∥∥
L2(QW )

= Op(n
−min{ 1

2γ,
ν

ν+2γ}), (n→ ∞).

We have also the consistency of estimator for the kernel meanof posterior, if we make stronger as-
sumptions. First, we formulate the mean of the conditional probabilityq(x|y) in terms of operators.
Let (Z,W ) be a random variable with distributionQ. Assume that for anyf ∈ HX the conditional
meanE[f(Z)|W = ·] is included inHY . We have a linear operatorS defined by

S : HX → HY , f 7→ E[f(Z)|W = ·].
If we further assume thatS is bounded, the adjoint operatorS∗ : HY → HX satisfies

〈S∗kY(·, y), f〉HX
= 〈kY(·, y), Sf〉HY

= E[f(Z)|W = y]

for anyy ∈ Y, and thusS∗kY(·, y) is equal to the kernel mean of conditional probability distribution
of Z givenW = y.

We make the following further assumptions:
Assumption (S)

1. The canonical mapAW : HY → L2(QW ) is injective, that is,CWW is injective.
2. There existsν > 0 such that for anyf ∈ HX there isηf ∈ HX with Sf = Cν

WW ηf , and
the linear map

C−ν
WWS : HX → HY , f 7→ ηf

is bounded.

Theorem 11. Let (Z,W ) be a random variable that has the distributionQ with p.d.f.p(y|x)π(x),
and m̂(n)

Π be an estimator ofmΠ such that‖m̂(n)
Π − mΠ‖HX

= Op(n
−α) (n → ∞) for some

0 < α ≤ 1/2. Assume (S) above, andπ/pX ∈ R(Cβ
XX) with someβ ≥ 0. For the regularization

constantsεn = n−max{ 2
3α,

1
1+βα} andδn = n−max{ 4

9γ,
4

2ν+5γ}, whereγ = min{ 2
3α,

2β+1
2β+2α}, we

have ∥∥kT
XRX|Y kY (y)−mQX |y

∥∥
HX

= Op(n
−min{ 4

9γ,
2ν

2ν+5γ}),

asn→ ∞, wheremQX |y is the kernel mean of the posterior giveny.

Proof. First, in a similar manner to the proof of Eq. (20), we have

∥∥Ĉ(n)
ZW

(
(Ĉ

(n)
WW )2 + δnI

)−1
Ĉ

(n)
WW kY(·, y)− CZW (C2

WW + δnI)
−1CWW kY(·, y)

∥∥
HX

= Op(n
−γδ−5/4

n ).

The assertion is thus obtained if
∥∥CZW (C2

WW + δnI)
−1CWW kY(·, y)− S∗kY(·, y)

∥∥
HX

= O(δ
min{1, ν2 }
n ) (23)

is proved. The left hand side of Eq. (23) is upper-bounded by
∥∥CZW (C2

WW + δnI)
−1CWW − S∗‖ ‖kY(·, y)‖HY

=
∥∥CWW (C2

WW + δnI)
−1CWZ − S

∥∥ ‖kY(·, y)‖HY
.

It follows from Theorem 1 thatCWZ = CWWS, and thus‖CWW (C2
WW + δnI)

−1CWZ − S‖ =
‖CWW (C2

WW + δnI)
−1CWWS − S‖ ≤ δn‖(C2

WW + δnI)
−1Cν

WW ‖ ‖C−ν
WWS‖. The eigende-

composition ofCWW together with the inequalityδnλ
ν

λ2+δn
≤ δ

min{1,ν/2}
n (λ ≥ 0) completes the

proof.
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