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Abstract

We prove a new oracle inequality for support vector machines with Gaussian RBF
kernels solving the regularized least squares regression problem. To this end, we
apply the modulus of smoothness. With the help of the new oracle inequality we
then derive learning rates that can also be achieved by a simple data-dependent
parameter selection method. Finally, it turns out that our learning rates are asymp-
totically optimal for regression functions satisfying certain standard smoothness
conditions.

1 Introduction

On the basis of i.i.d. observationsD := ((x1, y1) , . . . , (xn, yn)) of input/output observations drawn
from an unknown distribution P on X × Y , where Y ⊂ R, the goal of non-parametric least squares
regression is to find a function fD : X → R such that, for the least squares loss L : Y ×R→ [0,∞)
defined by L (y, t) = (y − t)2, the risk

RL,P (fD) :=
∫
X×Y

L (y, fD (x)) dP (x, y) =
∫
X×Y

(y − fD (x))2
dP (x, y)

is small. This meansRL,P (fD) has to be close to the optimal risk

R∗L,P := inf {RL,P (f) | f : X → R measureable} ,
called the Bayes risk with respect to P and L. It is well known that the function f∗L,P : X → R
defined by f∗L,P (x) = EP (Y |x), x ∈ X , is the only function for which the Bayes risk is attained.
Furthermore, some simple transformations show

RL,P (f)−R∗L,P =
∫
X

∣∣f − f∗L,P∣∣2 dPX =
∥∥f − f∗L,P∥∥2

L2(PX)
, (1)

where PX is the marginal distribution of P on X .

In this paper, we assume that X ⊂ Rd is a non-empty, open and bounded set such that its boundary
∂X has Lebesgue measure 0, Y := [−M,M ] for some M > 0 and P is a probability measure on
X×Y such that PX is the uniform distribution onX . In Section 2 we also discuss that this condition
can easily be generalized by assuming that PX on X is absolutely continuous with respect to the
Lebesgue measure on X such that the corresponding density of PX is bounded away from 0 and∞.
Recall that because of the first assumption, it suffices to restrict considerations to decision functions
f : X → [−M,M ]. To be more precise, if, we denote the clipped value of some t ∈ R by Ût, that isÛt :=


−M if t < −M
t if t ∈ [−M,M ]
M if t > M ,
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then it is easy to check that

RL,P( Ûf ) ≤ RL,P (f) ,
for all f : X → R.

The non-parametric least squares problem can be solved in many ways. Several of them are e.g. de-
scribed in [1]. In this paper, we use SVMs to find a solution for the non-parametric least squares
problem by solving the regularized problem

fD,λ = arg min
f∈H

λ ‖f‖2H +RL,D (f) . (2)

Here, λ > 0 is a fixed real number, H is a reproducing kernel Hilbert space (RKHS) over X , and
RL,D (f) is the empirical risk of f , that is

RL,D (f) =
1
n

n∑
i=1

L (yi, f (xi)) .

In this work we restrict our considerations to Gaussian RBF kernels kγ on X , which are defined by

kγ (x, x′) = exp

(
−
‖x− x′‖22

γ2

)
, x, x′ ∈ X ,

for some width γ ∈ (0, 1]. Our goal is to deduce asymptotically optimal learning rates for the SVMs
(2) using the RKHS Hγ of kγ . To this end, we first establish a general oracle inequality. Based on
this oracle inequality, we then derive learning rates if the regression function is contained in some
Besov space. It will turn out, that these learning rates are asymptotically optimal. Finally, we show
that these rates can be achieved by a simple data-dependent parameter selection method based on a
hold-out set.

The rest of this paper is organized as follows: The next section presents the main theorems and as a
consequence of these theorems some corollaries inducing asymptotically optimal learning rates for
regression functions contained in Sobolev or Besov spaces. Section 3 states some, for the proof of
the main statement necessary, lemmata and a version of [2, Theorem 7.23] applied to our special
case as well as the proof of the main theorem. Some further proofs and additional technical results
can be found in the appendix.

2 Results

In this section we present our main results including the optimal rates for LS-SVMs using Gaussian
kernels. To this end, we first need to introduce some function spaces, which are later assumed to
contain the regression function.

Let us begin by recalling from, e.g. [3, p. 44], [4, p. 398], and [5, p. 360], the modulus of smooth-
ness:
Definition 1. Let Ω ⊂ Rd with non-empty interior, ν be an arbitrary measure on Ω, and f : Ω→ Rd
be a function with f ∈ Lp (ν) for some p ∈ (0,∞). For r ∈ N, the r-th modulus of smoothness of
f is defined by

ωr,Lp(ν) (f, t) = sup
‖h‖2≤t

‖4rh (f, · )‖Lp(ν) , t ≥ 0 ,

where ‖ · ‖2 denotes the Euclidean norm and the r-th difference4rh (f, ·) is defined by

4rh (f, x) =

{∑r
j=0

(
r
j

)
(−1)r−j f (x+ jh) if x ∈ Ωr,h

0 if x /∈ Ωr,h

for h = (h1, . . . , hd) ∈ Rd with hi ≥ 0 and Ωr,h := {x ∈ Ω : x+ sh ∈ Ω ∀ s ∈ [0, r]}.

It is well-known that the modulus of smoothness with respect to Lp (ν) is a nondecreasing function
of t and for the Lebesgue measure on Ω it satisfies

ωr,Lp(Ω) (f, t) ≤
(

1 +
t

s

)r
ωr,Lp(Ω) (f, s) , (3)
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for all f ∈ Lp (Ω) and all s > 0, see e.g. [6, (2.1)]. Moreover, the modulus of smoothness can be
used to define the scale of Besov spaces. Namely, for 1 ≤ p, q ≤ ∞, α > 0, r := bαc + 1, and an
arbitrary measure ν, the Besov space Bαp,q (ν) is

Bαp,q (ν) :=
{
f ∈ Lp (ν) : |f |Bαp,q(ν) <∞

}
,

where, for 1 ≤ q <∞, the seminorm |· |Bαp,q(ν) is defined by

|f |Bαp,q(ν) :=
(∫ ∞

0

(
t−αωr,Lp(ν) (f, t)

)q dt
t

) 1
q

,

and, for q =∞, it is defined by

|f |Bαp,∞(ν) := sup
t>0

(
t−αωr,Lp(ν) (f, t)

)
.

In both cases the norm of Bαp,q (ν) can be defined by ‖f‖Bαp,q(ν) := ‖f‖Lp(ν) + |f |Bαp,q(ν), see
e.g. [3, pp. 54/55] and [4, p. 398]. Finally, for q =∞, we often write Bαp,∞ (ν) = Lip∗ (α,Lp (ν))
and call Lip∗ (α,Lp (ν)) the generalized Lipschitz space of order α. In addition, it is well-known,
see e.g. [7, p. 25 and p. 44], that the Sobolev spaces Wα

p (Rd) fall into the scale of Besov spaces,
namely

Wα
p (Rd) ⊂ Bαp,q(Rd) (4)

for α ∈ N, p ∈ (1,∞), and max{p, 2} ≤ q ≤ ∞ and especially Wα
2 (Rd) = Bα2,2(Rd).

For our results we need to extend functions f : Ω → R to functions f̂ : Rd → R such that the
smoothness properties of f described by some Sobolev or Besov space are preserved by f̂ . Recall
that Stein’s Extension Theorem guarantees the existence of such an extension, whenever Ω is a
bounded Lipschitz domain. To be more precise, in this case there exists a linear operator E mapping
functions f : Ω→ R to functions Ef : Rd → R with the properties:

(a) E (f)|Ω = f , that is, E is an extension operator.

(b) E continuously maps Wm
p (Ω) into Wm

p

(
Rd
)

for all p ∈ [1,∞] and all integer m ≥ 0.
That is, there exist constants am,p ≥ 0, such that, for every f ∈Wm

p (Ω), we have

‖Ef‖Wm
p (Rd) ≤ am,p ‖f‖Wm

p (Ω) . (5)

(c) E continuously mapsBαp,q (Ω) intoBαp,q
(
Rd
)

for all p ∈ (1,∞), q ∈ (0,∞] and all α > 0.
That is, there exist constants aα,p,q ≥ 0, such that, for every f ∈ Bαp,q (Ω), we have

‖Ef‖Bαp,q(Rd) ≤ aα,p,q ‖f‖Bαp,q(Ω) .

For detailed conditions on Ω ensuring the existence of E, we refer to [8, p. 181] and [9, p. 83].
Property (c) follows by some interpolation argument since Bαp,q can be interpreted as interpolation
space of the Sobolev spacesWm0

p andWm1
p for q ∈ [1,∞], p ∈ (1,∞), θ ∈ (0, 1) andm0,m1 ∈ N0

with m0 6= m1 and α = m0(1 − θ) + m1θ, see [10, pp. 65/66] for more details. In the following,
we always assume that we do have such an extension operator E. Moreover, if µ is the Lebesgue
measure on Ω, such that ∂Ω has Lebesgue measure 0, the canonical extension of µ to Rd is given
by µ̃(A) := µ(A ∩ Ω) for all measurable A ⊂ Rd. However, in a slight abuse of notation, we
often write µ instead of µ̃, since this simplifies the presentation. Analogously, we proceed for the
uniform distribution on Ω and its canonical extension to Rd and the same convention will be applied
to measures PX on Ω that are absolutely continuous w.r.t. the Lebesgue measure.

Finally, in order to state our main results, we denote the closed unit ball of the d-dimensional Eu-
clidean space by B`d2 .

Theorem 1. Let X ⊂ B`d2 be a domain such that we have an extension operator E in the above
sense. Furthermore, let M > 0, Y := [−M,M ], and P be a distribution on X × Y such that
PX is the uniform distribution on X . Assume that we have fixed a version f∗L,P of the regression
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function such that f∗L,P (x) = EP (Y |x) ∈ [−M,M ] for all x ∈ X . Assume that, for α ≥ 1 and
r := bαc+ 1, there exists a constant c > 0 such that, for all t ∈ (0, 1], we have

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ ctα . (6)

Then, for all ε > 0 and p ∈ (0, 1) there exists a constant K > 0 such that for all n ≥ 1, τ ≥ 1, and
λ > 0, the SVM using the RKHS Hγ satisfies

λ ‖fD,λ‖2Hγ +RL,P( ÛfD,λ)−R∗L,P ≤ Kλγ−d +Kc2γ2α +K
γ−(1−p)(1+ε)d

λpn
+
Kτ

n

with probability Pn not less than 1− e−τ .

With this oracle inequality we can derive learning rates for the learning method (2).
Corollary 1. Under the assumptions of Theorem 1 and for ε > 0, p ∈ (0, 1), and τ ≥ 1 fixed, we
have, for all n ≥ 1,

λn ‖fD,λn‖
2
Hγn

+RL,P( ÛfD,λn)−R∗L,P ≤ Cn
− 2α

2α+2αp+dp+(1−p)(1+ε)d

with probability Pn not less than 1− e−τ and with

λn = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d ,

γn = c2n
− 1

2α+2αp+dp+(1−p)(1+ε)d .

Here, c1 > 0 and c2 > 0 are user-specified constants and C > 0 is a constant independent of n.

Note that for every ρ > 0 we can find ε, p ∈ (0, 1) sufficiently close to 0 such that the learning rate
in Corollary 1 is at least as fast as

n−
2α

2α+d+ρ .

To achieve these rates, however, we need to set λn and γn as in Corollary 1, which in turn requires
us to know α. Since in practice we usually do not know this value, we now show that a standard
training/validation approach, see e.g. [2, Chapters 6.5, 7.4, 8.2], achieves the same rates adaptively,
i.e. without knowing α. To this end, let Λ := (Λn) and Γ := (Γn) be sequences of finite subsets
Λn,Γn ⊂ (0, 1]. For a data set D := ((x1, y1) , . . . , (xn, yn)), we define

D1 := ((x1, y1) , . . . , (xm, ym))
D2 := ((xm+1, ym+1) , . . . , (xn, yn))

where m :=
⌊
n
2

⌋
+ 1 and n ≥ 4. We will use D1 as a training set by computing the SVM decision

functions

fD1,λ,γ := arg min
f∈Hγ

λ ‖f‖2Hγ +RL,D1 (f) , (λ, γ) ∈ Λn × Γn

and use D2 to determine (λ, γ) by choosing a (λD2 , γD2) ∈ Λn × Γn such that

RL,D2

(
fD1,λD2 ,γD2

)
= min

(λ,γ)∈Λn×Γn
RL,D2 (fD1,λ,γ) .

Theorem 2. Under the assumptions of Theorem 1 we fix sequences Λ := (Λn) and Γ := (Γn)
of finite subsets Λn,Γn ⊂ (0, 1] such that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1]
with εn ≤ n−1 and δn ≤ n−

1
2+d . Furthermore, assume that the cardinalities |Λn| and |Γn| grow

polynomially in n. Then, for all ρ > 0, the TV-SVM producing the decision functions fD1,λD2 ,γD2
learns with the rate

n−
2α

2α+d+ρ (7)

with probability Pn not less than 1− e−τ .

What is left to do is to relate Assumption (6) with the function spaces introduced earlier, such
that we can show that the learning rates deduced earlier are asymptotically optimal under some
circumstances.
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Corollary 2. Let X ⊂ B`d2 be a domain such that we have an extension operator E of the form
described in front of Theorem 1. Furthermore, let M > 0, Y := [−M,M ], and P be a distribution
on X × Y such that PX is the uniform distribution on X . If, for some α ∈ N, we have f∗L,P ∈
Wα

2 (PX), then, for all ρ > 0, both the SVM considered in Corollary 1 and the TV-SVM considered
in Theorem 2 learn with the rate

n−
2α

2α+d+ρ

with probability Pn not less than 1 − e−τ . Moreover, if α > d/2, then this rate is asymptotically
optimal in a minmax sense.

Similar to Corollary 2 we can show assumption (6) and asymptotically optimal learning rates if the
regression function is contained in a Besov space.

Corollary 3. Let X ⊂ B`d2 be a domain such that we have an extension operator E of the form
described in front of Theorem 1. Furthermore, let M > 0, Y := [−M,M ], and P be a distribution
on X × Y such that PX is the uniform distribution on X . If, for some α ≥ 1, we have f∗L,P ∈
Bα2,∞(PX), then, for all ρ > 0, both the SVM considered in Corollary 1 and the TV-SVM considered
in Theorem 2 learn with the rate

n−
2α

2α+d+ρ

with probability Pn not less than 1− e−τ .

Since for the entropy numbers ei( id : Bα2,∞(PX) → L2(PX)) ∼ i−
α
d holds (cf. [7, p. 151])

and since Bα2,∞(PX) = Bα2,∞(X) is continuously embedded into the space `∞(X) of all bounded

functions on X , we obtain by [11, Theorem 2.2] that n−
2α

2α+d is the optimal learning rate in a
minimax sense for α > d (cf. [12, Theorem 13]). Therefore, for α > d, the learning rates obtained
in Corollary 3 are asymptotically optimal.

So far, we always assumed that PX is the uniform distribution on X . This can be generalized by as-
suming that PX is absolutely continuous w.r.t. the Lebesgue measure µ such that the corresponding
density is bounded away from zero and from infinity. Then we have L2(PX) = L2(µ) with equiva-
lent norms and the results for µ hold for PX as well. Moreover, to derive learning rates, we actually
only need that the Lebesgue density of PX is upper bounded. The assumption that the density is
bounded away from zero is only needed to derive the lower bounds in Corollaries 2 and 3.

Furthermore, we assumed γ ∈ (0, 1] in Theorem 1, and hence in Corollary 1 and Theorem 2 as
well. Note that γ does not need to be restricted by one. Instead γ only needs to be bounded from
above by some constant such that estimates on the entropy numbers for Gaussian kernels as used in
the proofs can be applied. For the sake of simplicity we have chosen one as upper bound, another
upper bound would only have influence on the constants.

There have already been made several investigations on learning rates for SVMs using the least
squares loss, see e.g. [13, 14, 15, 16, 17] and the references therein. In particular, optimal rates
have been established in [16], if f∗P ∈ H , and the eigenvalue behavior of the integral operator
associated to H is known. Moreover, if f∗P 6∈ H [17] and [12] establish both learning rates of
the form n−β/(β+p), where β is a parameter describing the approximation properties of H and
p is a parameter describing the eigenvalue decay. Furthermore, in the introduction of [17] it is
mentioned that the assumption on the eigenvalues and eigenfunctions also hold for Gaussian kernels
with fixed width, but this case as well as the more interesting case of Gaussian kernels with variable
widths are not further investigated. In the first case, where Gaussian kernels with fixed width are
considered, the approximation error behaves very badly as shown in [18] and fast rates cannot be
expected as we discuss below. In the second case, where variable widths are considered as in our
paper, it is crucial to carefully control the influence of γ on all arising constants which unfortunately
has not been worked out in [17], either. In [17] and [12], however, additional assumptions on the
interplay between H and L2(PX) are required, and [17] actually considers a different exponent
in the regularization term of (2). On the other hand, [12] shows that the rate n−β/(β+p) is often
asymptotically optimal in a minmax sense. In particular, the latter is the case for H = Wm

2 (X),
f ∈ W s

2 (X), and s ∈ (d/2,m], that is, when using a Sobolev space as the underlying RKHS H ,
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then all target functions contained in a Sobolev of lower smoothness s > d/2 can be learned with the
asymptotically optimal rate n−

2s
2s+d . Here we note that the condition s > d/2 ensures by Sobolev’s

embedding theorem that W s
2 (X) consists of bounded functions, and hence Y = [−M,M ] does not

impose an additional assumption on f∗L,P. If s ∈ (0, d/2], then the results of [12] still yield the
above mentioned rates, but we no longer know whether they are optimal in a minmax sense, since
Y = [−M,M ] does impose an additional assumption. In addition, note that for Sobolev spaces this
result, modulo an extra log factor, has already been proved by [1]. This result suggests that by using
a C∞-kernel such as the Gaussian RBF kernel, one could actually learn the entire scale of Sobolev
spaces with the above mentioned rates. Unfortunately, however, there are good reasons to believe
that this is not the case. Indeed, [18] shows that for many analytic kernels the approximation error
can only have polynomial decay if f∗L,P is analytic, too. In particular, for Gaussian kernels with
fixed width γ and f∗L,P 6∈ C∞ the approximation error does not decay polynomially fast, see [18,
Proposition 1.1.], and if f∗L,P ∈ Wm

2 (X), then, in general, the approximation error function only
has a logarithmic decay. Since it seems rather unlikely that these poor approximation properties can
be balanced by superior bounds on the estimation error, the above-mentioned results indicate that
Gaussian kernels with fixed width may have a poor performance. This conjecture is backed-up by
many empirical experience gained throughout the last decade. Beginning with [19], research has thus
focused on the learning performance of SVMs with varying widths. The result that is probably the
closest to ours is [20]. Although these authors actually consider binary classification using convex
loss functions including the least squares loss, formulated it is relatively straightforward to translate
their finding to our least squares regression scenario. The result is the learning rate n−

m
m+2d+2 , again

under the assumption f∗L,P ∈Wm
2 (X) for some m > 0. Furthermore, [21] treats the case, where X

is isometrically embedded into a t-dimensional, connected and compact C∞-submanifold of Rd. In
this case, it turns out that the resulting learning rate does not depend on the dimension d, but on the
intrinsic dimension t of the data. Namely the authors show the rate n−

s
8s+4t modulo a logarithmic

factor, where s ∈ (0, 1] and f∗L,P ∈ Lip (s). Another direction of research that can be applied to
Gaussian kernels with varying widths are multi-kernel regularization schemes, see [22, 23, 24] for
some results in this direction. For example, [22] establishes learning rates of the form n−

2m−d
4(4m−d) +ρ

whenever f∗L,P ∈ Wm
2 (X) for some m ∈ (d/2, d/2 + 2), where again ρ > 0 can be chosen to be

arbitrarily close to 0. Clearly, all these results provide rates that are far from being optimal, so that
it seems fair to say that our results represent a significant advance. Furthermore, we can conclude
that, in terms of asymptotical minmax rates, multi-kernel approaches applied Gaussian RBFs cannot
provide any significant improvement over a simple training/validation approach for determining the
kernel width and the regularization parameter, since the latter already leads to rates that are optimal
modulo an arbitrarily small ρ in the exponent.

3 Proof of the main result

To prove Theorem 1 we deduce an oracle inequality for the least squares loss by specializing [2,
Theorem 7.23] (cf. Theorem 3). To be finally able to show Theorem 1 originating from Theorem 3,
we have to estimate the approximation error.

Lemma 1. Let X ⊂ Rd be a domain such that we have an extension operator E of the form de-
scribed in front of Theorem 1, PX be the uniform distribution onX and f ∈ L∞ (X). Furthermore,
let f̃ be defined by

f̃ (x) :=
(
γ
√
π
)− d2 Ef (x) (8)

for all x ∈ Rd and, for r ∈ N and γ > 0, K : Rd → R be defined by

K (·) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

K jγ√
2

(·) (9)

with

Kγ (·) := exp

(
−
‖·‖22
γ2

)
.
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Then, for r ∈ N, γ > 0, and q ∈ [1,∞), we have Ef ∈ Lq(P̃X) and∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤ Cr,q ωqr,Lq(Rd)
(Ef, γ/2) ,

where Cr,q is a constant only depending on r, q and µ(X).

In order to use the conclusion of Lemma 1 in the proof of Theorem 1 it is necessary to know some
properties of K ∗ f̃ . Therefore, we need the next two lemmata.
Lemma 2. Let g ∈ L2

(
Rd
)
, Hγ be the RKHS of the Gaussian RBF kernel kγ over X ⊂ Rd and

K (x) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

exp

(
−

2 ‖x‖22
j2γ2

)

for x ∈ Rd and a fixed r ∈ N. Then we have

K ∗ g ∈ Hγ ,

‖K ∗ g‖Hγ ≤ (2r − 1) ‖g‖L2(Rd) .

Lemma 3. Let g ∈ L∞
(
Rd
)
, Hγ be the RKHS of the Gaussian RBF kernel kγ over X ⊂ Rd and

K be as in Lemma 2. Then

|K ∗ g (x)| ≤
(
γ
√
π
) d

2 (2r − 1) ‖g‖L∞(Rd)

holds for all x ∈ X . Additionally, we assume that X is a domain in Rd such that we have an
extension operator E of the form described in front of Theorem 1, Y := [−M,M ] and, for all x ∈
Rd, f̃ (x) := (γ

√
π)−

d
2 E
(
f∗L,P (x)

)
, where f∗L,P denotes a version of the conditional expectation

such that f∗L,P (x) = EP (Y |x) ∈ [−M,M ] for all x ∈ X . Then we have f̃ ∈ L∞
(
Rd
)

and

|K ∗ f̃ (x) | ≤ a0,∞ (2r − 1)M

for all x ∈ X , which implies

L(y,K ∗ f̃ (x)) ≤ 4ra2M2

for the least squares loss L and all (x, y) ∈ X × Y .

Next, we modify [2, Theorem 7.23], so that the proof of Theorem 1 can be build upon it.
Theorem 3. Let X ⊂ B`d2 , Y := [−M,M ] ⊂ R be a closed subset with M > 0 and P be a
distribution on X × Y . Furthermore, let L : Y × R → [0,∞) be the least squares loss, kγ be
the Gaussian RBF kernel over X with width γ ∈ (0, 1] and Hγ be the associated RKHS. Fix an
f0 ∈ Hγ and a constant B0 ≥ 4M2 such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed τ ≥ 1, λ > 0,
ε > 0 and p ∈ (0, 1), the SVM using Hγ and L satisfies

λ ‖fD,λ‖2Hγ +RL,P
( ÛfD,λ

)
−R∗L,P

≤ 9
(
λ ‖f0‖2Hγ +RL,P (f0)−R∗L,P

)
+ Cε,p

γ−(1−p)(1+ε)d

λpn
+

(
3456M2 + 15B0

)
(ln(3) + 1)τ

n

with probability Pn not less than 1− e−τ , where Cε,p is a constant only depending on ε, p and M .

With the previous results we are finally able to prove the oracle inequality declared by Theorem 1.

Proof of Theorem 1. First of all, we want to apply Theorem 3 for f0 := K ∗ f̃ with

K (x) :=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

exp

(
−

2 ‖x‖22
j2γ2

)
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and

f̃ (x) :=
(
γ
√
π
)− d2 Ef∗L,P (x)

for all x ∈ Rd. The choice f∗L,P (x) ∈ [−M,M ] for all x ∈ X implies f∗L,P ∈ L2 (X) and the latter
together with X ⊂ B`d2 and (5) yields

‖f̃‖L2(Rd) =
(
γ
√
π
)− d2 ‖Ef∗L,P‖L2(Rd)

≤
(
γ
√
π
)− d2 a0,2‖f∗L,P‖L2(X)

≤
(

2
γ
√
π

) d
2

a0,2M , (10)

i.e. f̃ ∈ L2

(
Rd
)
. Because of this and Lemma 2

f0 = K ∗ f̃ ∈ Hγ

is satisfied and with Lemma 3 we have

‖L ◦ f0‖∞ = sup
(x,y)∈X×Y

|L (y, f0 (x))| = sup
(x,y)∈X×Y

∣∣∣L(y,K ∗ f̃ (x)
)∣∣∣ ≤ 4ra2M2 =: B0 .

Furthermore, (1) and Lemma 1 yield

RL,P (f0)−R∗L,P = RL,P
(
K ∗ f̃

)
−R∗L,P

=
∥∥∥K ∗ f̃ − f∗L,P∥∥∥2

L2(PX)

≤ Cr,2 ω2
r,L2(Rd)

(
Ef∗L,P,

γ

2

)
≤ Cr,2 c2γ2α ,

where we used the assumption

ωr,L2(Rd)

(
Ef∗L,P,

γ

2

)
≤ cγα

for γ ∈ (0, 1], α ≥ 1, r = bαc + 1 and a constant c > 0 in the last step. By Lemma 2 and (10) we
know

‖f0‖Hγ = ‖K ∗ f̃‖Hγ ≤ (2r − 1) ‖f̃‖L2(Rd) ≤ (2r − 1)
(

2
γ
√
π

) d
2

a0,2M .

Therefore, Theorem 3 and the above choice of f0 yield, for all fixed τ ≥ 1, λ > 0, ε > 0 and
p ∈ (0, 1), that the SVM using Hγ and L satisfies

λ ‖fD,λ‖2Hγ +RL,P
( ÛfD,λ

)
−R∗L,P

≤ 9

(
λ (2r − 1)2

(
2

γ
√
π

)d
a2

0,2M
2 + Cr,2c

2γ2α

)

+ Cε,p
γ−(1−p)(1+ε)d

λpn
+

(
3456 + 15 · 4ra2

)
M2(ln(3) + 1)τ

n

≤ C1λγ
−d + 9Crc2γ2α + Cε,p

γ−(1−p)(1+ε)d

λpn
+
C2τ

n

with probability Pn not less than 1 − e−τ and with constants C1 := 9 (2r − 1)2 2dπ−
d
2 a2

0,2M
2,

C2 := (ln(3) + 1)
(
3456 + 15 · 4ra2

)
M2, a := max {a0,∞, 1}, Cr := Cr,2 only depending on r

and µ(X) and Cε,p as in Theorem 3.
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4 Appendix

To prove Lemma 1, where we estimated the approximation error, we need the convention 00 := 1
as well as the notation dse for s ∈ R, which denotes the smallest integer greater or equal s.

Proof of Lemma 1. First of all, we show Ef ∈ Lq(P̃X). Because of the assumption f ∈ L∞ (X),
we have f ∈ Lq (X) and Ef ∈ Lq

(
Rd
)

for all 1 ≤ q ≤ ∞. In addition,

‖Ef‖Lq(ePX) =
(∫

Rd
|Ef (x)|q dP̃X (x)

) 1
q

=
(∫

X

|f (x)|q dPX (x)
) 1
q

≤ ‖f‖∞ <∞

holds, i.e. f ∈ Lq(PX) and Ef ∈ Lq(P̃X) for all q ∈ [1,∞). It remains to show∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤ Cr,q ωqr,Lq(Rd)
(Ef, γ/2) .

To this end, we use the translation invariance of the Lebesgue measure and Kγ (u) = Kγ (−u)
(u ∈ Rd) to obtain, for x ∈ X ,

K ∗ f̃ (x) =
∫

Rd

r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2

K jγ√
2

(x− t) f̃ (t) dt

=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2
∫

Rd
K γ√

2

(
x− t
j

)
f̃ (t) dt

=
r∑
j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ
√
π

) d
2
∫

Rd
K γ√

2
(h) f̃ (x+ jh) jd dh

=
∫

Rd

(
2

γ
√
π

) d
2

K γ√
2

(h)

 r∑
j=1

(
r

j

)
(−1)1−j

f̃ (x+ jh)

 dh .

With this we can derive, for q ≥ 1,∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

=
∫
X

∣∣∣K ∗ f̃ (x)− f (x)
∣∣∣q dPX (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2

γ
√
π

) d
2

K γ√
2

(h)

 r∑
j=1

(
r

j

)
(−1)1−j

f̃ (x+ jh)

 dh− Ef (x)

∣∣∣∣∣∣
q

d P̃X (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2
γ2π

)d
2

K γ√
2

(h)

( r∑
j=1

(
r

j

)
(−1)2r+1−j

Ef (x+ jh)

)
− Ef (x)

 dh

∣∣∣∣∣∣
q

d P̃X (x)

=
∫

Rd

∣∣∣∣∣∣
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)

 r∑
j=0

(
r

j

)
(−1)2r+1−j

Ef (x+ jh)

 dh

∣∣∣∣∣∣
q

d P̃X (x)

=
∫

Rd

∣∣∣∣∣
∫

Rd
(−1)r+1

(
2
γ2π

) d
2

K γ√
2

(h)4rh (Ef, x) dh

∣∣∣∣∣
q

d P̃X (x) .

Next, Hölder’s inequality yields, for q > 1,∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤
∫

Rd

((∫
Rd

(
2
γ2π

)d
2

K γ√
2

(h) dh

)q−1
q
(∫

Rd

(
2
γ2π

)d
2

K γ√
2

(h) |4rh (Ef, x)|q dh

)1
q
)q
d P̃X (x)
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=
∫

Rd

∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h) |4rh (Ef, x)|q dh d P̃X (x)

=
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
∫

Rd
|4rh (Ef, x)|q d P̃X (x) dh

=
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h) ‖4rh (Ef, ·)‖q
Lq(ePX)

dh

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)ωq
r,Lq(ePX)

(Ef, ‖h‖2) dh . (11)

Moreover, for q = 1, we have∥∥∥K ∗ f̃ − f∥∥∥
L1(PX)

=
∫

Rd

∣∣∣∣∣
∫

Rd
(−1)r+1

(
2
γ2π

) d
2

K γ√
2

(h)4rh (Ef, x) dh

∣∣∣∣∣ d P̃X (x)

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
∫

Rd
|4rh (Ef, x)| d P̃X (x) dh

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)ωr,L1(ePX) (Ef, ‖h‖2) dh .

Consequently, (11) holds for all q ≥ 1. Furthermore, we have

ωq
r,Lq(ePX)

(Ef, t) = sup
‖h‖2≤t

∫
Rd

∣∣∣ r∑
j=0

(
r

j

)
(−1)r−j Ef (x+ jh)

∣∣∣qdP̃X (x)

≤ µ (X)−1 sup
‖h‖2≤t

∫
Rd

∣∣∣ r∑
j=0

(
r

j

)
(−1)r−j Ef (x+ jh)

∣∣∣qdµ (x)

= µ (X)−1
ωq
r,Lq(Rd)

(Ef, t)

≤ µ (X)−1

(
1 +

2t
γ

)rq
ωq
r,Lq(Rd)

(
Ef,

γ

2

)
for t ≥ 0, where we used (3). Together with (11) this implies∥∥∥K ∗ f̃ − f∥∥∥q

Lq(PX)

≤
∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)µ(X)−1

(
1 +

2 ‖h‖2
γ

)rq
ωq
r,Lq(Rd)

(
Ef,

γ

2

)
dh

= µ(X)−1ωq
r,Lq(Rd)

(
Ef,

γ

2

)∫
Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh . (12)

Because
(

2
γ2π

) d
2
K γ√

2
(·) is the density of a probability measure on Rd,(

1 +
2 ‖h‖2
γ

)rq
≤
(

1 +
2 ‖h‖2
γ

)drqe
≤
drqe∑
i=0

(
drqe
i

)(
2
γ
‖h‖2

)i
and Hölder’s inequality yield∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh

≤
drqe∑
i=0

(
drqe
i

)(
2
γ

)i ∫
Rd
‖h‖i2

(
2
γ2π

) d
2

K γ√
2

(h) dh

11



≤
drqe∑
i=0

(
drqe
i

)(
2
γ

)i(∫
Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh

) 1
2

. (13)

Because, for s ≥ 0 and an integer i ≥ 0, the function s 7→ si is convex, we have for every integer
i ≥ 0 the transformation d∑

j=1

h2
j

i

= di

 d∑
j=1

1
d
h2
j

i

≤ di
d∑
j=1

1
d

(
h2
j

)i
= di−1

d∑
j=1

h2i
j .

Note that d
i−1
2i is just the embedding constant of `d2i in `d2. This embedding constant leads to∫

Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh

=
∫

Rd
‖h‖2i2

(
2
γ2π

) d
2

exp

(
−

2 ‖h‖22
γ2

)
dh

≤ di−1

(
2
γ2π

) d
2 d∑
j=1

∫
Rd
h2i
j

d∏
l=1

exp
(
−2h2

l

γ2

)
d (h1, . . . , hd)

= di−1

(
2
γ2π

) d
2 d∑
j=1

(
γ2π

2

) d−1
2
∫

R
h2i
j exp

(
−

2h2
j

γ2

)
dhj

= di−1

(
2
γ2π

) 1
2

2d
∫ ∞

0

t2i exp
(
−2t2

γ2

)
dt

= 2di
(

2
γ2π

) 1
2
∫ ∞

0

t2i exp
(
−2t2

γ2

)
dt . (14)

With the substitution t = (γ
2

2 u)
1
2 , the functional equation Γ(t+ 1) = tΓ(t) of the Gamma function

Γ and Γ
(

1
2

)
=
√
π we have∫ ∞

0

t2i exp
(
−2t2

γ2

)
dt =

1
2
γ√
2

(
γ2

2

)i ∫ ∞
0

u(i+ 1
2 )−1 exp (−u) du

=
1
2
γ√
2

(
γ2

2

)i
Γ
(
i+

1
2

)
=

1
2
γ√
2

(
γ2

2

)i
Γ
(

1
2

) i∏
j=1

(
j − 1

2

)

=
1
2
γ√
2

(
γ2

2

)i√
π

i∏
j=1

(
j − 1

2

)
. (15)

Together, (14) and (15) lead to∫
Rd
‖h‖2i2

(
2
γ2π

) d
2

K γ√
2

(h) dh ≤ di
(
γ2

2

)i i∏
j=1

(
j − 1

2

)
and with (13) we obtain∫

Rd

(
2
γ2π

) d
2

K γ√
2

(h)
(

1 +
2 ‖h‖2
γ

)rq
dh

≤
drqe∑
i=0

(
drqe
i

)(
2
γ

)idi(γ2

2

)i i∏
j=1

(
j − 1

2

) 1
2

12



=
drqe∑
i=0

(
drqe
i

)
(2d)

i
2

i∏
j=1

(
j − 1

2

) 1
2

,

where the empty product is defined to equal one. Finally, (12) implies∥∥∥K ∗ f̃ − f∥∥∥q
Lq(PX)

≤ Cr,q ωqr,Lq(Rd)

(
Ef,

γ

2

)
for Cr,q := µ(X)−1

∑drqe
i=0

(drqe
i

)
(2d)

i
2
∏i
j=1

(
j − 1

2

) 1
2 .

Proof of Lemma 2. We define, for all j ∈ N and x ∈ X ,

gj (x) :=
(

2
jγ
√
π

) d
2

K γ√
2

(
x

j

)
. (16)

By [2, Proposition 4.46]

gj ∗ g ∈ Hjγ (X) ⊂ Hγ (X)

follows for all j ∈ N. Because the convolution is distributive and associative with scalar multiplica-
tion, we finally obtain

K ∗ g =
r∑
j=1

(
r

j

)
(−1)1−j

j−
d
2 (gj ∗ g) ∈ Hγ (X) .

Moreover, for the estimation of the norm we have

‖K ∗ g‖Hγ ≤
r∑
j=1

j
d
2

∥∥∥∥∥
(
r

j

)
(−1)1−j

j−
d
2

(
2

jγ
√
π

) d
2

exp

(
−

2 ‖·‖22
j2γ2

)
∗ g

∥∥∥∥∥
Hjγ

≤
r∑
j=1

j
d
2

(
r

j

)
j−

d
2 ‖g‖L2(Rd)

= (2r − 1) ‖g‖L2(Rd) ,

where we used [2, Proposition 4.46] in the first two steps.

Proof of Lemma 3. For all x ∈ X and g ∈ L∞
(
Rd
)
, Hölder’s inequality implies

|K ∗ g (x)| ≤ sup
x̂∈X
|K ∗ g (x̂)|

≤ sup
x̂∈X

∫
Rd
|K (x̂− t) g (t)| dt

≤ ‖g‖L∞(Rd)

r∑
j=1

(
r

j

)(
γ
√
π
) d

2 sup
x̂∈X

∫
Rd

(
2

j2γ2π

) d
2

exp

(
−

2 ‖x̂− t‖22
(jγ)2

)
dt

=
(
γ
√
π
) d

2 (2r − 1) ‖g‖L∞(Rd) .

Furthermore, f∗L,P (x) = EP (Y |x) ∈ [−M,M ] for all x ∈ X implies f∗L,P ∈ L∞ (X) and with
this E(f∗L,P) ∈ L∞

(
Rd
)

as well as f̃ ∈ L∞
(
Rd
)

with

‖f̃‖L∞(Rd) =
(
γ
√
π
)− d2 ‖ E(f∗L,P)‖L∞(Rd)

≤ a0,∞
(
γ
√
π
)− d2 ‖ f∗L,P‖L∞(X)

≤ a0,∞
(
γ
√
π
)− d2 M ,

where a0,∞ denotes the constant introduced in (5). With this,

|K ∗ f̃ (x) | ≤
(
γ
√
π
) d

2 (2r − 1) ‖f̃‖L∞(Rd) ≤ a0,∞ (2r − 1)M

13



holds for all x ∈ X . Finally, for all (x, y) ∈ X × Y and a := max {a0,∞, 1}, we achieve

L(y,K ∗ f̃ (x)) = (y −K ∗ f̃ (x))2

= y2 − 2y(K ∗ f̃ (x)) + (K ∗ f̃ (x))2

≤M2 + 2a0,∞ (2r − 1)M2 + a2
0,∞ (2r − 1)2

M2

≤ 4ra2M2 .

Before we present an entropy estimate, which is necessary to translate [2, Theorem 7.23] into the
special case examined in this paper, the following definition recalls entropy numbers for the sake of
completeness (cf. [2, Definition A.5.26]).

Definition 2. Let S : E → F be a bounded, linear operator between the normed spaces (E, ‖·‖E)
and (F, ‖·‖F ) and i ≥ 1 be an integer. Then the i-th (dyadic) entropy number of S is defined by

ei (S) := ei (SBE , ‖·‖F )

:= inf

ε > 0 : ∃t1, . . . , t2i−1 ∈ SBE such that SBE ⊂
2i−1⋃
j=1

BF (tj , ε)


where the convention inf ∅ :=∞ is used.

For the next lemma we have to introduce the empirical distribution DX associated to the data set
DX := (x1, . . . , xn) ∈ Xn and L2 (DX), defined by

L2 (DX) :=

f : X → R : f measureable , ‖f‖L2(DX) :=

(
1
n

n∑
i=1

|f (xi)|2
) 1

2

<∞

 .

Lemma 4. Let PX be a distribution on X ⊂ B`d2 , kγ be the Gaussian RBF kernel over X with
width γ ∈ (0, 1] and Hγ be the associated RKHS. Then, for all ε > 0 and 0 < p < 1, there exists a
constant cε,p ≥ 0 such that

EDX∼PnX
ei (id : Hγ → L2 (DX)) ≤ cε,pγ−

(1−p)(1+ε)d
2p i−

1
2p

for all i ≥ 1 and n ≥ 1.

Proof. Since the support of PX is contained in B`d2 , PX has tail exponent τ̄ =∞ in the sense of [2,
Definition 7.32.]. Therefore [2, Theorem 7.34] shows that, for all ε > 0 and 0 < p < 1, there exists
a constant c̃ε,p ≥ 1 such that

ei (id : Hγ → L2 (PX)) ≤ c̃ε,pγ−
(1−p)(1+ε)d

2p i−
1
2p

for all i ≥ 1 and γ ∈ (0, 1]. With [2, Corollary 7.31] we can conclude

EDX∼PnX
ei (id : Hγ → L2 (DX)) ≤ c̃pc̃ε,pγ−

(1−p)(1+ε)d
2p (min {i, n})

1
2p i−

1
p

≤ cε,pγ−
(1−p)(1+ε)d

2p i−
1
2p

for all i ≥ 1, n ≥ 1, γ ∈ (0, 1], a constant c̃p > 0 only depending on p and a constant cε,p := c̃pc̃ε,p
depending on p and ε.

Due to Lemma 4 we can now modify [2, Theorem 7.23] and prove Theorem 3.

Proof of Theorem 3. First of all, note that, for all t ∈ R and y ∈ [−M,M ], the least squares loss
satisfies L(y,Ût ) ≤ L (y, t), i.e. it can be clipped at M > 0 (see [12, section 1]). Furthermore,
the least squares loss is locally Lipschitz continuous with the local Lipschitz constant |L|a,1 =

14



2 (a+M) for a > 0 in the sense of [2, Definition 2.18]. See [2, Example 7.3] to verify that the least
squares loss satisfies the supremum bound

L (y, t) = (y − t)2 ≤ 4M2

and the variance bound

EP

(
L ◦ Ûf − L ◦ f∗L,P)2

≤ 16M2EP

(
L ◦ Ûf − L ◦ f∗L,P)

for all y ∈ Y, t ∈ [−M,M ] and f ∈ Hγ with constants B := 4M2, V := 16M2

and ϑ := 1. Consequently, the assertion follows from [2, Theorem 7.23] and Lemma 4 with
Cε,p := C

(
max

{
cε,p, 4M2

})2p
, cε,p as in Lemma 4 and a constant C ≥ 1 which corresponds

to the constant K of [2, Theorem 7.23]. Finally, a variable transformation adjusts Pn not to be less
than 1− e−τ .

With the help of the oracle inequality achieved in Theorem 1 the learning rate stated in Corollary 1
of the learning method (2) can be shown in a few steps.

Proof of Corollary 1. In a first step, Theorem 1 can be applied which yields

λn ‖fD,λn‖
2
Hγn

+RL,P
( ÛfD,λn

)
−R∗L,P

≤ C1λnγ
−d
n + 9Crc2γ2α

n + Cε,p
γ
−(1−p)(1+ε)d
n

λpnn
+
C2τ

n

≤ C̃
(
λnγ

−d
n + γ2α

n + γ−(1−p)(1+ε)d
n λ−pn n−1 + n−1

)
with probability Pn not less than 1− e−τ and a constant C̃ := max

{
C1, 9Crc2, Cε,p, C2τ

}
. In the

next step [2, Lemma A.1.6.] yields the sequences

λn = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d

and

γn = c2n
− 1

2α+2αp+dp+(1−p)(1+ε)d

with arbitrary constants c1 > 0 and c2 > 0, as well as

λnγ
−d
n + γ2α

n + γ−(1−p)(1+ε)d
n λ−pn n−1 = c3

(
n−1

) 2α
2α+2αp+dp+(1−p)(1+ε)d

for the above choice of λn and γn with a constant c3 > 0. With this, we finally obtain

λn ‖fD,λn‖
2
Hγn

+RL,P
( ÛfD,λn

)
−R∗L,P ≤ C̃

(
c3
(
n−1

) 2α
2α+2αp+dp+(1−p)(1+ε)d + n−1

)
≤ Cn−

2α
2α+2αp+dp+(1−p)(1+ε)d

with the constant C := C̃ (c3 + 1).

Next, we want to prove Theorem 2, but to this end we need the following lemma.

Lemma 5. We fix finite sequences Λ := (Λn) and Γ := (Γn) of finite subsets Λn,Γn ⊂ (0, 1] such
that Λn is an εn-net of (0, 1] and Γn is an δn-net of (0, 1] with 0 < εn < ĉ n−

2α+d
2α+2αp+dp+(1−p)(1+ε)d ,

a constant ĉ > 0 and δn > 0. Then, for all ε > 0, p ∈ (0, 1), d > 0, α > 0 and all n ≥ 1, we have

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
≤ c

(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
,

where c > 0 is a constant independent of n, Λ, εn, Γ, and δn.
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Proof. Without loss of generality, we may assume that Λ and Γ are of the form Λ = {λ1, . . . , λm}
and Γ = {γ1, . . . , γl}with λi−1 < λi and γj−1 < γj for all i = 2, . . . ,m and j = 2, . . . , l. Further-
more, we fix a minimizer (λ∗, γ∗) of the function (λ, γ) → λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

defined on [0, 1]2. [2, Lemma A.1.6.] shows that λ∗ = c1n
− 2α+d

2α+2αp+dp+(1−p)(1+ε)d with a constant
c1 > 0. This implies εn ≤ ĉ

c1
λ∗. It is easy to see that

λi − λi−1 ≤ 2εn and γj − γj−1 ≤ 2δn (17)

hold for all i = 1, . . . ,m and j = 1, . . . , l. Furthermore, there exist indices i ∈ {1, . . . ,m} and
j ∈ {1, . . . , l} such that λi−1 ≤ λ∗ ≤ λi and γj−1 ≤ γ∗ ≤ γj . Together with (17) this yields
λ∗ ≤ λi ≤ λ∗ + 2εn and γ∗ ≤ γj ≤ γ∗ + 2δn. Using this result and [2, Lemma A.1.6.], we obtain

inf
(λ,γ)∈Λ×Γ

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
≤ λiγ−dj + γ2α

j + n−1λ−pi γ
−(1−p)(1+ε)d
j

≤ (λ∗ + 2εn) (γ∗)−d + (γ∗ + 2δn)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d

≤ (1 + 2
ĉ

c1
)λ∗ (γ∗)−d + (γ∗ + 2δn)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d

≤ c2
(
λ∗ (γ∗)−d + (γ∗)2α + n−1 (λ∗)−p (γ∗)−(1−p)(1+ε)d + δ2α

n

)
= c2 min

λ,γ∈[0,1]

(
λγ−d + γ2α + n−1λ−pγ−(1−p)(1+ε)d

)
+ c2δ

2α
n

≤ c2 c3 n−
2α

2α+2αp+dp+(1−p)(1+ε)d + c2δ
2α
n

≤ c
(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
with constants c2 > 0, c3 > 0 and c := max {c2 c3, c2} independent of n, Λ, εn, Γ, and δn.

Proof of Theorem 2. Let m be defined by m :=
⌊
n
2

⌋
+ 1, i.e. m ≥ n

2 . Then Theorem 1 yields with
probability Pm not less than 1− |Λn × Γn| e−τ

RL,P( ÛfD1,λ,γ)−R∗L,P ≤
c1
2

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpm
+
τ

m

)
≤ c1

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn
+
τ

n

)
(18)

for all (λ, γ) ∈ Λn × Γn simultaneously. Here, c1 > 0 is a constant independent of n, τ , λ, and γ.
Furthermore, [2, Theorem 7.2], n−m ≥ n

2 − 1 ≥ n
4 , and τn := τ + ln(1 + |Λn × Γn|) yield

RL,P( ÛfD1,λD2 ,γD2
)−R∗L,P < 6

(
inf

(λ,γ)∈Λn×Γn
RL,P( ÛfD1,λ,γ)−R∗L,P

)
+ 512M2 τn

n−m

< 6
(

inf
(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗L,P
)

+ 2048M2 τn
n

(19)

with probability Pn−m not less than 1− e−τ . With (18), (19) and Lemma 5 we can conclude

RL,P( ÛfD1,λD2 ,γD2
)−R∗L,P

< 6
(

inf
(λ,γ)∈Λn×Γn

RL,P( ÛfD1,λ,γ)−R∗L,P
)

+ 2048M2 τn
n

≤ 6c1

(
inf

(λ,γ)∈Λn×Γn

(
λγ−d + γ2α +

γ−(1−p)(1+ε)d

λpn

)
+
τ

n

)
+ 2048M2 τn

n

≤ 6c1
(
c
(
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + δ2α

n

)
+
τ

n

)
+ 2048M2 τn

n

≤
(
6c1c+ 6c1τ + 2048M2τn

)
n−

2α
2α+2αp+dp+(1−p)(1+ε)d + 6c1cδ2α

n
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≤
(
12c1c+ 6c1τ + 2048M2τn

)
n−

2α
2α+2αp+dp+(1−p)(1+ε)d

with probability Pn not less than 1 − (1 + |Λn × Γn|) e−τ . With a variable transformation Pn can
be adjusted such that it is not less than 1− e−τ .

In the end, it remains to show that learning method (2) yields learning rates for regression functions
contained in Sobolev or Besov spaces, which are asymptotically optimal for a suitable choice of
parameters.

Proof of Corollary 2. f∗L,P ∈Wα
2 (PX) implies f∗L,P ∈Wα

2 (X) because of∥∥∥∂(β)f∗L,P

∥∥∥2

L2(X)
=
∫
X

∣∣∣∂(β)f∗L,P (x)
∣∣∣2 dµ (x)

=
∫
X

∣∣∣∂(β)f∗L,P (x)
∣∣∣2 µ(X)dPX (x)

= µ(X)
∥∥∥∂(β)f∗L,P

∥∥∥2

L2(PX)

<∞ ,

where µ is the Lebesgue measure, X ⊂ B`d2 and ∂(β)f∗L,P the β-th weak derivative of f∗L,P for an
arbitrary multi-index β ∈ Nd0 with |β| ≤ α, see e.g. [9, p. 22] for details. Next, the extension
operator E of the form described in front of Theorem 1 yields Ef∗L,P ∈ Wα

2

(
Rd
)

and finally (4)
implies Ef∗L,P ∈ Bα2,∞(Rd) = Lip∗(α,L2(Rd)). By the definition of Lip∗(α,L2(Rd)) we obtain

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ ctα , t > 0

for a suitable constant c > 0. With this, all assumptions of Corollary 1 and of Theorem 2 are fulfilled
so that this theorem yields the learning rate

n−
2α

2α+2αp+dp+(1−p)(1+ε)d ,

which can be rewritten as

n−
2α

2α+d+ρ (20)

for a suitable ρ > 0, which depends on p and ε and converges to zero, if both, p and ε, converge to
zero.

Proof of Corollary 3. For α ≥ 1, f∗L,P ∈ Bα2,∞(PX) implies f∗L,P ∈ Bα2,∞(X), since PX is the
uniform distribution on X . With the help of the extension operator E of the form described in front
of Theorem 1 f∗L,P ∈ Bα2,∞(X) yields Ef∗L,P ∈ Bα2,∞(Rd) = Lip∗(α,L2(Rd)). By the definition
of Lip∗(α,L2(Rd)) we obtain

ωr,L2(Rd)

(
Ef∗L,P, t

)
≤ ctα , t > 0

for α ≥ 1 and a suitable constant c > 0. With this, all assumptions of Corollary 1 and of Theorem
2 are fulfilled so that this theorem yields the learning rate

n−
2α

2α+2αp+dp+(1−p)(1+ε)d ,

which can be rewritten as

n−
2α

2α+d+ρ

for a suitable ρ > 0, which depends on p and ε and converges to zero, if both, p and ε, converge to
zero.
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