
Autonomous Learning of Action Models for Planning

Neville Mehta Prasad Tadepalli Alan Fern
School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331, USA.
{mehtane,tadepall,afern}@eecs.oregonstate.edu

Abstract

This paper introduces two new frameworks for learning action models for plan-
ning. In the mistake-bounded planning framework, the learner has access to a
planner for the given model representation, a simulator, and a planning problem
generator, and aims to learn a model with at most a polynomial number of faulty
plans. In the planned exploration framework, the learner does not have access to a
problem generator and must instead design its own problems, plan for them, and
converge with at most a polynomial number of planning attempts. The paper re-
duces learning in these frameworks to concept learning with one-sided error and
provides algorithms for successful learning in both frameworks. A specific family
of hypothesis spaces is shown to be efficiently learnable in both the frameworks.

1 Introduction

Planning research typically assumes that the planning system is provided complete and correct mod-
els of the actions. However, truly autonomous agents must learn these models. Moreover, model
learning, planning, and plan execution must be interleaved, because agents need to plan long before
perfect models are learned. This paper formulates and analyzes the learning of deterministic action
models used in planning for goal achievement. It has been shown that deterministic STRIPS actions
with a constant number of preconditions can be learned from raw experience with at most a polyno-
mial number of plan prediction mistakes [8]. In spite of this positive result, compact action models
in fully observable, deterministic action models are not always efficiently learnable. For example,
action models represented as arbitrary Boolean functions are not efficiently learnable under standard
cryptographic assumptions such as the hardness of factoring [2].

Learning action models for planning is different from learning an arbitrary function from states
and actions to next states, because one can ignore modeling the effects of some actions in certain
contexts. For example, most people who drive do not ever learn a complete model of the dynamics
of their vehicles; while they might accurately know the stopping distance or turning radius, they
could be oblivious to many aspects that an expert auto mechanic is comfortable with. To capture
this intuition, we introduce the concept of an adequate model, that is, a model that is sound and
sufficiently complete for planning for a given class of goals. When navigating a city, any spanning
tree of the transportation network connecting the places of interest would be an adequate model.

We define two distinct frameworks for learning adequate models for planning and then characterize
sufficient conditions for success in these frameworks. In the mistake-bounded planning (MBP)
framework, the goal is to continually solve user-generated planning problems while learning action
models and guarantee at most a polynomial number of faulty plans or mistakes. We assume that
in addition to the problem generator, the learner has access to a sound and complete planner and
a simulator (or the real world). We also introduce a more demanding planned exploration (PLEX)
framework, where the learner needs to generate its own problems to refine its action model. This
requirement translates to an experiment-design problem, where the learner needs to design problems
in a goal language to refine the action models.

1

The MBP and PLEX frameworks can be reduced to over-general query learning, concept learning
with strictly one-sided error, where the learner is only allowed to make false positive mistakes [7].
This is ideally suited for the autonomous learning setting in which there is no oracle who can provide
positive examples of plans or demonstrations, but negative examples are observed when the agent’s
plans fail to achieve their goals. We introduce mistake-bounded and exact learning versions of
this learning framework and show that they are strictly more powerful than the recently introduced
KWIK framework [4]. We view an action model as a set of state-action-state transitions and ensure
that the learner always maintains a hypothesis which includes all transitions in some adequate model.
Thus, a sound plan is always in the learner’s search space, while it may not always be generated. As
the learner gains more experience in generating plans, executing them on the simulator, and receiving
observations, the hypothesis is incrementally refined until an adequate model is discovered. To
ground our analysis, we show that a general family of hypothesis spaces is learnable in polynomial
time in the two frameworks given appropriate goal languages. This family includes a generalization
of propositional STRIPS operators with conditional effects.

2 Over-General Query Learning

We first introduce a variant of a concept-learning framework that serves as formal underpinning
of our model-learning frameworks. This variant is motivated by the principle of “optimism under
uncertainty”, which is at the root of several related algorithms in reinforcement learning [1, 3].

A concept is a set of instances. An hypothesis space H is a set of strings or hypotheses, each of
which represents a concept. The size of the concept is the length of the smallest hypothesis that
represents it. Without loss of generality, H can be structured as a (directed acyclic) generalization
graph, where the nodes correspond to sets of equivalent hypotheses representing a concept and there
is a directed edge from node n1 to node n2 if and only if the concept at n1 is strictly more general
than (a strict superset of) that at n2.
Definition 2.1. The height of H is a function of n and is the length of the longest path from a root
node to any node representing concepts of size n in the generalization graph ofH.
Definition 2.2. A hypothesis h is consistent with a set of negative examples Z if h∩Z = ∅. Given a
set of negative examples Z consistent with a target hypothesis h, the version space of action models
is the subset of all hypotheses inH that are consistent with Z and is denoted asM(Z).
Definition 2.3. H is well-structured if, for any negative example set Z which has a consistent target
hypothesis in H, the version space M(Z) contains a most general hypothesis mgh(Z). Further,
H is efficiently well-structured if there exists an algorithm that can compute mgh(Z ∪ {z}) from
mgh(Z) and a new example z in time polynomial in the size of mgh(Z) and z.
Lemma 2.1. Any finite hypothesis spaceH is well-structured if and only if it is closed under union.
Proof. (If) Let Z be a set of negative examples and let H0 =

⋃
h∈M(Z) h represent the unique union

of all concepts represented by hypotheses inM(Z). BecauseH is closed under union and finite, H0

must be inH. If ∃z ∈ H0∩Z, then z ∈ h∩Z for some h ∈M(Z). This is a contradiction, because
all h ∈ M(Z) are consistent with Z. Consequently, H0 is consistent with Z, and is inM(Z). It is
more general than (is a superset of) every other hypothesis inM(Z) because it is their union.

(Only if) Let h1, h2 be any two hypotheses in H and Z be the set of all instances not included in
either h1 and h2. Both h1 and h2 are consistent with examples in Z. As H is well-structured,
mgh(Z) must also be in the version space M(Z), and consequently in H. However, mgh(Z) =
h1∪h2 because it cannot include any element without h1∪h2 and must include all elements within.
Hence, h1 ∪ h2 is inH, which makes it closed under union.
In the over-general query (OGQ) framework, the teacher selects a target concept c ∈ H. The
learner outputs a query in the form of a hypothesis h ∈ H, where h must be at least as general
as c. The teacher responds with yes if h ≡ c and the episode ends; otherwise, the teacher gives a
counterexample x ∈ h− c. The learner then outputs a new query, and the cycle repeats.
Definition 2.4. A hypothesis space is OGQ-learnable if there exists a learning algorithm for the
OGQ framework that identifies the target c with the number of queries and total running time that
is polynomial in the size of c and the size of the largest counterexample.
Theorem 1. H is learnable in the OGQ framework if and only ifH is efficiently well-structured and
its height is a polynomial function.

2

Proof. (If) If H is efficiently well-structured, then the OGQ learner can always output the mgh,
guaranteed to be more general than the target concept, in polynomial time. Because the maximum
number of hypothesis refinements is bounded by the polynomial height of H, it is learnable in the
OGQ framework.

(Only if) IfH is not well-structured, then ∃h1, h2 ∈ H, h1∪h2 /∈ H. The teacher can delay picking
its target concept, but always provide counterexamples from outside both h1 and h2. At some point,
these counterexamples will force the learner to choose between h1 or h2, because their union is not in
the hypothesis space. Once the learner makes its choice, the teacher can choose the other hypothesis
as its target concept c, resulting in the learner’s hypothesis not being more general than c. If H is
not efficiently well-structured, then there exists Z and z such that computing mgh(Z ∪ {z}) from
mgh(Z) and a new example z cannot be done in polynomial time. If the teacher picks mgh(Z∪{z})
as the target concept and only provides counterexamples from Z ∪{z}, then the learner cannot have
polynomial running time. Finally, the teacher can always provide counterexamples that forces the
learner to take the longest path in H’s generalization graph. Thus, if H does not have polynomial
height, then the number of queries will not be polynomial.

2.1 A Comparison of Learning Frameworks

In order to compare the OGQ framework to other learning frameworks, we first define the over-
general mistake-bounded (OGMB) learning framework, in which the teacher selects a target concept
c fromH and presents an arbitrary instance x from the instance space to the learner for a prediction.
An inclusion mistake is made when the learner predicts x ∈ c although x /∈ c; an exclusion mistake
is made when the learner predicts x /∈ c although x ∈ c. The teacher presents the true label to the
learner if a mistake is made, and then presents the next instance to the learner, and so on.
Definition 2.5. A hypothesis space is OGMB-learnable if there exists a learning algorithm for the
OGMB framework that never makes any exclusion mistakes and its number of inclusion mistakes
and the running time on each instance are both bounded by polynomial functions of the size of the
target concept and the size of the largest instance seen by the learner.

In the following analysis, we let the name of a framework denote the set of hypothesis spaces learn-
able in that framework.
Theorem 2. OGQ (OGMB.

Proof. We can construct an OGMB learner from the OGQ learner as follows. When the OGQ
learner makes a query h, we use h to make predictions for the OGMB learner. As h is guaranteed
to be over-general, it never makes an exclusion mistake. Any instance x on which it makes an
inclusion mistake must be in h − c and this is returned to the OGQ learner. The cycle repeats with
the OGQ learner providing a new query. Because the OGQ learner makes only a polynomial number
of queries and takes polynomial time for query generation, the simulated OGMB learner makes only
a polynomial number of mistakes and runs in at most polynomial time per instance. The converse
does not hold in general because the queries of the OGQ learner are restricted to be “proper”, that is,
they must belong to the given hypothesis space. While the OGMB learner can maintain the version
space of all consistent hypotheses of a polynomially-sized hypothesis space, the OGQ learner can
only query with a single hypothesis and there may not be any hypothesis that is guaranteed to be
more general than the target concept.

If the learner is allowed to ask queries outside H, such as queries of the form h1 ∪ · · · ∪ hn for all
hi in the version space, then over-general learning is possible. In general, if the learner is allowed
to ask about any polynomially-sized, polynomial-time computable hypothesis, then it is as powerful
as OGMB, because it can encode the computation of the OGMB learner inside a polynomial-sized
circuit and query with that as the hypothesis. We call this the OGQ+ framework and claim the
following theorem (the proof is straightforward).
Theorem 3. OGQ+ = OGMB.

The Knows-What-It-Knows (KWIK) learning framework [4] is similar to the OGMB framework
with one key difference: it does not allow the learner to make any prediction when it does not know
the correct answer. In other words, the learner either makes a correct prediction or simply abstains
from making a prediction and gets the true label from the teacher. The number of abstentions is

3

bounded by a polynomial in the target size and the largest instance size. The set of hypothesis
spaces learnable in the mistake-bound (MB) framework is a strict subset of that learnable in the
probably-approximately-correct (PAC) framework [5], leading to the following result.
Theorem 4. KWIK (OGMB (MB (PAC.

Proof. OGMB (MB: Every hypothesis space that is OGMB-learnable is MB-learnable because the
OGMB learner is additionally constrained to not make an exclusion mistake. However, every MB-
learnable hypothesis space is not OGMB-learnable. Consider the hypothesis space of conjunctions
of n Boolean literals (positive or negative). A single exclusion mistake is sufficient for an MB learner
to learn this hypothesis space. In contrast, after making an inclusion mistake, the OGMB learner
can only exclude that example from the candidate set. As there is exactly one positive example, this
could force the OGMB learner to make an exponential number of mistakes (similar to guessing an
unknown password).

KWIK (OGMB: If a concept class is KWIK-learnable, it is also OGMB-learnable — when the
KWIK learner does not know the true label, the OGMB learner simply predicts that the instance is
positive and gets corrected if it is wrong. However, every OGMB-learnable hypothesis space is not
KWIK-learnable. Consider the hypothesis space of disjunctions of n Boolean literals. The OGMB
learner begins with a disjunction over all possible literals (both positive and negative) and hence
predicts all instances as positive. A single inclusion mistake is sufficient for the OGMB learner
to learn this hypothesis space. On the other hand, the teacher can supply the KWIK learner with
an exponential number of positive examples, because the KWIK learner cannot ever know that the
target does not include all possible instances; this implies that the number of abstentions is not
polynomially bounded.

This theorem demonstrates that KWIK is too conservative a framework for model learning — any
prediction that might be a mistake is disallowed. This makes it impossible to learn even simple
concept classes such as pure disjunctions.

3 Planning Components

A factored planning domain P is a tuple (V,D,A, T), where V = {v1, . . . , vn} is the set of vari-
ables, D is the domain of the variables in V , and A is the set of actions. S = Dn represents the state
space and T ⊂ S×A×S is the transition relation, where (s, a, s′) ∈ T signifies that taking action a
in state s results in state s′. As we only consider learning deterministic action models, the transition
relation is in fact a function, although the learner’s hypothesis space may include nondeterministic
models. The domain parameters, n, |D|, and |A|, characterize the size of P and are implicit in all
claims of complexity in the rest of this paper.
Definition 3.1. An action model is a relation M ⊆ S ×A× S.

A planning problem is a pair (s0, g), where s0 ∈ S and the goal condition g is an expression chosen
from a goal language G and represents a set of states in which it evaluates to true. A state s satisfies
a goal g if and only if g is true in s. Given a planning problem (s0, g), a plan is a sequence of states
and actions s0, a1, . . . , ap, sp, where the state sp satisfies the goal g. The plan is sound with respect
to (M, g) if (si−1, ai, si) ∈M for 1 ≤ i ≤ p.
Definition 3.2. A planner for the hypothesis space and goal language pair (H,G) is an algorithm
that takes M ∈ H and (s0, g ∈ G) as inputs and outputs a plan or signals failure. It is sound with
respect to (H,G) if, given any M and (s0, g), it produces a sound plan with respect to (M, g) or
signals failure. It is complete with respect to (H,G) if, given any M and (s0, g), it produces a sound
plan whenever one exists with respect to (M, g).

We generalize the definition of soundness from its standard usage in the literature in order to apply to
nondeterministic action models, where the nondeterminism is “angelic” — the planner can control
the outcome of actions when multiple outcomes are possible according to its model [6]. One way to
implement such a planner is to do forward search through all possible action and outcome sequences
and return an action sequence if it leads to a goal under some outcome choices. Our analysis is
agnostic to plan quality or plan length and applies equally well to suboptimal planners. This is
motivated by the fact that optimal planning is hard for most domains, but suboptimal planning such
as hierarchical planning can be quite efficient and practical.

4

Definition 3.3. A planning mistake occurs if either the planner signals failure when a sound plan
exists with respect to the transition function T or when the plan output by the planner is not sound
with respect to T .
Definition 3.4. Let P be a planning domain and G be a goal language. An action model M is
adequate for G in P if M ⊆ T and the existence of a sound plan with respect to (T, g ∈ G) implies
the existence of a sound plan with respect to (M, g). H is adequate for G if ∃M ∈ H such that M
is adequate for G.

An adequate model may be partial or incomplete in that it may not include every possible transition
in the transition function T . However, the model is sufficient to produce a sound plan with respect to
(T, g) for every goal g in the desired language. Thus, the more limited the goal language, the more
incomplete the adequate model can be. In the example of a city map, if the goal language excludes
certain locations, then the spanning tree could exclude them as well, although not necessarily so.
Definition 3.5. A simulator of the domain is always situated in the current state s. It takes an action
a as input, transitions to the state s′ resulting from executing a in s, and returns the current state s′.
Given a goal language G, a problem generator generates an arbitrary problem (s0, g ∈ G) and sets
the state of the simulator to s0.

4 Mistake-Bounded Planning Framework

This section constructs the MBP framework that allows learning and planning to be interleaved for
user-generated problems. It actualizes the teacher of the OGQ framework by combining a problem
generator, a planner, and a simulator, and interfaces with the OGQ learner to learn action models as
hypotheses over the space of possible state transitions for each action. It turns out that the one-sided
mistake property is needed for autonomous learning because the learner can only learn by generating
plans and observing the results; if the learner ever makes an exclusion error, there is no guarantee of
finding a sound plan even when one exists and the learner cannot recover from such mistakes.
Definition 4.1. Let G be a goal language such thatH is adequate for it. H is learnable in the MBP
framework if there exists an algorithm A that interacts with a problem generator over G, a sound
and complete planner with respect to (H,G), and a simulator of the planning domainP , and outputs
a plan or signals failure for each planning problem while guaranteeing at most a polynomial number
of planning mistakes. Further,A must respond in time polynomial in the domain parameters and the
length of the longest plan generated by the planner, assuming that a call to the planner, simulator,
or problem generator takes O(1) time.

The goal language is picked such that the hypothesis space is adequate for it. We cannot bound the
time for the convergence of A, because there is no limit on when the mistakes are made.
Theorem 5. H is learnable in the MBP framework ifH is OGQ-learnable.

Algorithm 1 MBP LEARNING SCHEMA

Input: Goal language G
1: M ← OGQ-LEARNER() // Initial query
2: loop
3: (s, g)← PROBLEMGENERATOR(G)
4: plan ← PLANNER(M, (s, g))
5: if plan 6= false then
6: for (ŝ, a, ŝ′) in plan do
7: s′ ← SIMULATOR(a)
8: if s′ 6= ŝ′ then
9: M ← OGQ-LEARNER((s, a, ŝ′))

10: print mistake
11: break
12: s← s′

13: if no mistake then
14: print plan

Proof. Algorithm 1 is a general schema for
action model learning in the MBP framework.
The model M begins with the initial query from
OGQ-LEARNER. PROBLEMGENERATOR pro-
vides a planning problem and initializes the cur-
rent state of SIMULATOR. Given M and the
planning problem, PLANNER always outputs a
plan if one exists because H is adequate for G
(it contains a “target” adequate model) and M is
at least as general as every adequate model. If
PLANNER signals failure, then there is no plan
for it. Otherwise, the plan is executed through
SIMULATOR until an observed transition con-
flicts with the predicted transition. If such a tran-
sition is found, it is supplied to OGQ-LEARNER
and M is updated with the next query; other-
wise, the plan is output. If H is OGQ-learnable,
then OGQ-LEARNER will only be called a poly-
nomial number of times, every call taking polynomial time. As the number of planning mistakes is

5

polynomial and every response of Algorithm 1 is polynomial in the runtime of OGQ-LEARNER and
the length of the longest plan,H is learnable in the MBP framework.

The above result generalizes the work on learning STRIPS operator models from raw experience
(without a teacher) in [8] to arbitrary hypotheses spaces by identifying sufficiency conditions. (A
family of hypothesis spaces considered later in this paper subsumes propositional STRIPS by cap-
turing conditional effects.) It also clarifies the notion of an adequate model, which can be much
simpler than the true transition model, and the influence of the goal language on the complexity of
learning action models.

5 Planned Exploration Framework

The MBP framework is appropriate when mistakes are permissible on user-given problems as long
as their total number is limited and not for cases where no mistakes are permitted after the training
period. In the planned exploration (PLEX) framework, the agent seeks to learn an action model for
the domain without an external problem generator by generating planning problems for itself. The
key issue here is to generate a reasonably small number of planning problems such that solving them
would identify a deterministic action model. Learning a model in the PLEX framework involves
knowing where it is deficient and then planning to reach states that are informative, which entails
formulating planning problems in a goal language. This framework provides a polynomial sample
convergence guarantee which is stronger than a polynomial mistake bound of the MBP framework.
Without a problem generator that can change the simulator’s state, it is impossible for the simulator
to transition freely between strongly connected components (SCCs) of the transition graph. Hence,
we make the assumption that the transition graph is a disconnected union of SCCs and require only
that the agent learn the model for a single SCC that contains the initial state of the simulator.
Definition 5.1. Let P be a planning domain whose transition graph is a union of SCCs. (H,G)
is learnable in the PLEX framework if there exists an algorithm A that interacts with a sound and
complete planner with respect to (H,G) and the simulator for P and outputs a model M ∈ H that
is adequate for G within the SCC that contains the initial state s0 of the simulator after a polynomial
number of planning attempts. Further,A must run in polynomial time in the domain parameters and
the length of the longest plan output by the planner, assuming that every call to the planner and the
simulator takes O(1) time.

A key step in planned exploration is designing appropriate planning problems. We call these ex-
periments because the goal of solving these problems is to disambiguate nondeterministic action
models. In particular, the agent tries to reach an informative state where the current model is nonde-
terministic.
Definition 5.2. Given a model M , the set of informative states is I(M) = {s : (s, a, s′), (s, a, s′′) ∈
M ∧ s′ 6= s′′}, where a is said to be informative in s.
Definition 5.3. A set of goals G is a cover of a set of states R if

⋃
g∈G{s : s satisfies g} = R.

Given the goal language G and a model M , the problem of experiment design is to find a set of goals
G ⊆ G such that the sets of states that satisfy the goals in G collectively cover all informative states
I(M). If it is possible to plan to achieve one of these goals, then either the plan passes through a
state where the model is nondeterministic or it executes successfully and the agent reaches the final
goal state; in either case, an informative action can be executed and the observed transition is used
to refine the model. If none of the goals in G can be successfully planned for, then no informative
states for that action are reachable. We formalize these intuitions below.
Definition 5.4. The width of (H,G) is defined as max

M∈H
min

G⊆G:G is a cover of I(M)
|G|, where minG |G| =

∞ if there is no G ⊆ G to cover a nonempty I(M).
Definition 5.5. (H,G) permits efficient experiment design if, for any M ∈ H, 1© there exists an
algorithm (EXPERIMENTDESIGN) that takes M and G as input and outputs a polynomial-sized
cover of I(M) in polynomial time and 2© there exists an algorithm (INFOACTIONSTATES) that
takes M and a state s as input and outputs an informative action and two (distinct) predicted next
states according to M in polynomial time.

If (H,G) permits efficient experiment design, then it has polynomial width because no algorithm
can always guarantee to output a polynomial-sized cover otherwise.

6

Theorem 6. (H,G) is learnable in the PLEX framework if it permits efficient experiment design,
andH is adequate for G and is OGQ-learnable.

Algorithm 2 PLEX LEARNING SCHEMA

Input: Initial state s, goal language G
Output: Model M

1: M ← OGQ-LEARNER() // Initial query
2: loop
3: G← EXPERIMENTDESIGN(M,G)
4: if G = ∅ then
5: return M
6: for g ∈ G do
7: plan ← PLANNER(M, (s, g))
8: if plan 6= false then
9: break

10: if plan = false then
11: return M
12: for (ŝ, a, ŝ′) in plan do
13: s′ ← SIMULATOR(a)
14: s← s′

15: if s′ 6= ŝ′ then
16: M ← OGQ-LEARNER((s, a, ŝ′))
17: break
18: if M has not been updated then
19: (a, Ŝ′)← INFOACTIONSTATES(M, s)
20: s′ ← SIMULATOR(a)

21: M ← OGQ-LEARNER((s, a, ŝ′ ∈ Ŝ′−{s′}))
22: s← s′

23: return M

Proof. Algorithm 2 is a general schema
for action model learning in the PLEX
framework. The model M begins with
the initial query from OGQ-LEARNER.
Given M and G, EXPERIMENTDESIGN
computes a polynomial-sized cover G. If
G is empty, then the model cannot be re-
fined further; otherwise, given M and a
goal g ∈ G, PLANNER may signal fail-
ure if either no state satisfies g or states
satisfying g are not reachable from the
current state of the simulator. If PLAN-
NER signals failure on all of the goals,
then none of the informative states are
reachable and M cannot be refined fur-
ther. If PLANNER does output a plan,
then the plan is executed through SIMU-
LATOR until an observed transition con-
flicts with the predicted transition. If
such a transition is found, it is supplied
to OGQ-LEARNER and M is updated
with the next query. If the plan executes
successfully, then INFOACTIONSTATES
provides an informative action with the
corresponding set of two resultant states
according to M ; OGQ-LEARNER is sup-
plied with the transition of the goal state,
the informative action, and the incor-
rectly predicted next state, and M is updated with the new query. A new cover is computed ev-
ery time M is updated, and the process continues until all experiments are exhausted. If (H,G)
permits efficient experiment design, then every cover can be computed in polynomial time and IN-
FOACTIONSTATES is efficient. If H is OGQ-learnable, then OGQ-LEARNER will only be called a
polynomial number of times and it can output a new query in polynomial time. As the number of
failures per successful plan is bounded by a polynomial in the width w of (H,G), the total number
of calls to PLANNER is polynomial. Further, as the innermost loop of Algorithm 2 is bounded by
the longest length l of a plan, its running time is a polynomial in the domain parameters and l. Thus,
(H,G) is learnable in the PLEX framework.

6 A Hypothesis Family for Action Modeling

This section proves the learnability of a hypothesis-space family for action modeling in the MBP and
PLEX frameworks. Let U = {u1, u2, . . .} be a polynomial-sized set of polynomially computable
basis hypotheses (polynomial in the relevant parameters), where ui represents a deterministic set of
transition tuples. Let Power(U) = {

⋃
u∈H u : H ⊆ U} and Pairs(U) = {u1 ∪ u2 : u1, u2 ∈ U}.

Lemma 6.1. Power(U) is OGQ-learnable.

Proof. Power(U) is efficiently well-structured, because it is closed under union by definition and
the new mgh can be computed by removing any basis hypotheses that are not consistent with the
counterexample; this takes polynomial time as U is of polynomial size. At the root of the generaliza-
tion graph of Power(U) is the hypothesis

⋃
u∈U u and at the leaf is the empty hypothesis. Because

U is of polynomial size and the longest path from the root to the leaf involves removing a single
component at a time, the height of Power(U) is polynomial.

Lemma 6.2. Power(U) is learnable in the MBP framework.

Proof. This follows from Lemma 6.1 and Theorem 5.

7

Lemma 6.3. For any goal language G, (Power(U), G) permits efficient experiment design if
(Pairs(U), G) permits efficient experiment design.

Proof. Any informative state for a hypothesis in Power(U) is an informative state for some hypothe-
sis in Pairs(U), and vice versa. Hence, a cover for (Pairs(U), G) would be a cover for (Power(U),G).
Consequently, if (Pairs(U), G) permits efficient experiment design, then the efficient algorithms EX-
PERIMENTDESIGN and INFOACTIONSTATES are directly applicable to (Power(U), G).

Lemma 6.4. For any goal language G, (Power(U), G) is learnable in the PLEX framework if
(Pairs(U), G) permits efficient experiment design and Power(U) is adequate for G.

Proof. This follows from Lemmas 6.1 and 6.3, and Theorem 6.

We now define a hypothesis space that is a concrete member of the family. Let an action production
r be defined as “act : pre → post”, where act(r) is an action and the precondition pre(r) and
postcondition post(r) are conjunctions of “variable = value” literals.
Definition 6.1. A production r is triggered by a transition (s, a, s′) if s satisfies the precondition
pre(r) and a = act(r). A production r is consistent with (s, a, s′) if either 1© r is not triggered
by (s, a, s′) or 2© s′ satisfies the post(r) and all variables not mentioned in post(r) have the same
values in both s and s′.

A production represents the set of all consistent transitions that trigger it. All the variables in pre(r)
must take their specified values in a state to trigger r; when r is triggered, post(r) defines the values
in the next state. An example of an action production is “Do : v1 = 0, v2 = 1→ v1 = 2, v3 = 1”. It
is triggered only when the Do action is executed in a state in which v1 = 0 and v2 = 1, and defines
the value of v1 to be 2 and v3 to be 1 in the next state, with all other variables staying unchanged.

Let k-SAP be the hypothesis space of models represented by a set of action productions (SAP)
with no more than k variables per production. If U is the set of productions, then |U| =

O
(
|A|
∑k

i=1

(
n
i

)
(|D|+ 1)2i

)
= O(|A|nk|D|2k), because a production can have one of |A| actions,

up to k relevant variables figuring on either side of the production, and each variable set to a value
in its domain. As U is of polynomial size, k-SAP is an instance of the family of basis action models.
Moreover, if Conj is the goal language consisting of all goals that can be expressed as conjunctions
of “variable = value” literals, then (Pairs(k-SAP), Conj) permits efficient experiment design.
Lemma 6.5. (k-SAP, Conj) is learnable in the PLEX framework if k-SAP is adequate for Conj.

7 Conclusion

The main contributions of the paper are the development of the MBP and PLEX frameworks for
learning action models and the characterization of sufficient conditions for efficient learning in these
frameworks. It also provides results on learning a family of hypothesis spaces that is, in some ways,
more general than standard action modeling languages. For example, unlike propositional STRIPS
operators, k-SAP captures the conditional effects of actions.

While STRIPS-like languages served us well in planning research by creating a common useful
platform, they are not designed from the point of view of learnability or planning efficiency. Many
domains such as robotics and real-time strategy games are not amenable to such clean and simple ac-
tion specification languages. This suggests an approach in which the learner considers increasingly
complex models as dictated by its planning needs. For example, the model learner might start with
small values of k in k-SAP and then incrementally increase k until a value is found that is adequate
for the goals encountered. In general, this motivates a more comprehensive framework in which
planning and learning are tightly integrated, which is the premise of this chapter. Another direc-
tion is to investigate better exploration methods that go beyond using optimistic models to include
Bayesian and utility-guided optimal exploration.

8 Acknowledgments

We thank the reviewers for their helpful feedback. This research is supported by the Army Research
Office under grant number W911NF-09-1-0153.

8

References

[1] R. Brafman and M. Tennenholtz. R-MAX — A General Polynomial Time Algorithm for Near-
Optimal Reinforcement Learning. Journal of Machine Learning Research, 3:213–231, 2002.

[2] M. Kearns and L. Valiant. Cryptographic Limitations on Learning Boolean Formulae and Finite
Automata. In Annual ACM Symposium on Theory of Computing, 1989.

[3] L. Li. A Unifying Framework for Computational Reinforcement Learning Theory. PhD thesis,
Rutgers University, 2009.

[4] L. Li, M. Littman, and T. Walsh. Knows What It Knows: A Framework for Self-Aware Learning.
In ICML, 2008.

[5] N. Littlestone. Mistake Bounds and Logarithmic Linear-Threshold Learning Algorithms. PhD
thesis, U.C. Santa Cruz, 1989.

[6] B. Marthi, S. Russell, and J. Wolfe. Angelic Semantics for High-Level Actions. In ICAPS,
2007.

[7] B. K. Natarajan. On Learning Boolean Functions. In Annual ACM Symposium on Theory of
Computing, 1987.

[8] T. Walsh and M. Littman. Efficient Learning of Action Schemas and Web-Service Descriptions.
In AAAI, 2008.

9

