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Corollary 1 Given an MDRR (S, A, T, v, «), policy r is optimal if and only if reward functio®?
satisfies

I-(I"—~T)I-~T™) 'E"| R<0, 1)

whereE"™ is an|S| x |S||A| matrix with the(s, (s',a’)) element being 1 i§ = s’ andn(s’) = o/,
and I is an|S||A| x | S| matrix constructed by stacking th&| x | S| identity matrix| A| times.

Proof

Policy 7 is optimal

< Qi (R) <V'(R)

& R +4T*VT(R) < R ++yT"V™(R)

& R +9T“(I-+T") 'R" < R" +7T"(I —yT™)"'R"

&R~ (I —AT*")I —~AT") 'R™" < R™ — (I —yT™)(I —7yT™) 'R™

&R~ (I —yT*)I —~+T™)'E"R<0 )

The third equivalence holds bW ™ (R) = (I —~T™)~'R". The fifth equivalence holds because
the right-hand side i® and R™ = E"R. Stacking up Equation (2) for all € A, we obtain
Equation (1). [ |

Theorem 1 IRL algorithms listed in Table 1 are equivalent to computihg MAP estimates with
the prior and the likelihood using(X'; R) defined as follows:
o fv(X;R) = VE(R) — V*(R) o fo(X; R) = min, [V”*<R> - VE}

2 ?

o f4(X;R) ==Y, jip(s) (J(s.a; R) — 7p(s,0))* e fu(X; R) = log Puaen( X|T, R)

where *(R) is an optimal policy induced by the reward functid®, J(s,a; R) is a smooth
mapping from reward functiotR to a greedy policy such as the soft-max function, &hdxent
is the distribution on the behaviour data (trajectory or pasatisfying the principle of maximum
entropy.

We prove Theorem 1 by the following lemmas.
Lemmal The reward function sought by Ng and Russell's IRL algorifrom sampled trajec-

tories [2] is equivalent to the MAP estimate with the unifoprior and the likelihood using
fv(X;R) =VP(R) - V*(R).



Table 1: IRL algorithms and their equivalefitt’; R) and prior for the Bayesian formulatiog. €
{1,2} is for representind.; or L, slack penalties.

Previous algorithm f(X;R) Prior
Ng and Russell’s IRL from sampled trajectories [2]  fv Uniform
MMP without the loss function [3] (fv)? Gaussian
MWAL [4] e Uniform
Policy matching [1] fr Uniform
MaxEnt [5] /B Uniform

Proof This IRL algorithm seeks the reward function defined by
Rygr = argmax [VE(R) — V*(R)| .
R

The MAP estimate with the uniform prior and the likelihoodngsf is computed as
Rypp = argmax P(R|X) = argmax log P(R|X)
R R

= argmax [log P(X|R) + log P(R)] = argmax fy (X; R)
R R
= argmax |VF(R) — V*(R)|.
R
The MAP estimate is thus equivalent Rngr. [ |

Lemma 2 The reward function sought by the MMP algorithm [3] withdu¢ ioss function is equiv-
alent to the MAP estimate with a Gaussian prior and the Iik@did using( fi)? whereq € {1, 2}.

Proof Without the loss function, the MMP algorithm seeks the relfanction defined by
. . - a A
R = angin | (V*(R) - VE(R)" 4 5 | R
R

whereq € {1,2} denotesL; or L, slack penalties. The MAP estimate with a Gaussian prior
N(0,0?) and the likelihood usingfy )¢ is computed as

Rypp = argmax P(R|X) = argmax [log P(X|R) + log P(R)]
R R

= argmax
R

B(fy(X;R))" — % > R(s, a>21

1
20302

= argmin {(V*(R) - VE(R))q + Qﬁ% | R ||§} .

= argmax [(fv(X;R))q - IR II%]

If we set\ = 1/(30?), the MAP estimate is equivalent fyvp. [ ]

Lemma 3 When the reward function is linearly parameterized usirgwkeight vectotw > 0 such
that ), w; = 1, the policy sought by the MWAL algorithm [4] is equivalentaio optimal policy
on the reward function which is the MAP estimate with thearnifprior and the likelihood using
fo(X; R) = min;[V]" (B _ V:F] wherer* (R) is an optimal policy induced by the reward function
R.

7

Proof The MWAL algorithm seeks the policyuwa. defined by

TMWAL = argmax min [VL’T - VzE} ,
T 1



with an implicitly computed reward functiodiywa. that inducesmywaL. as an optimal policy.
Hence, we can rewritepmwa. = 7 (RmwaL ) Where

RywaL = argmaxmin |V, ) — {A/IE} .
R i

The MAP estimate of the reward function with the uniform prémd the likelihood usings is
computed as

Rypap = argmax P(R|X) = argmax f(X; R) = argmax min {Viﬂ*(m —-VFl.
R R R i

Hence, the optimal policy induced @uap is equivalent tarywar SinCeRumap = RmwaL - [ ]

Lemma 4 The policy sought by the policy matching algorithm [1] is B@lent to an optimal policy
on the reward function which is the MAP estimate with thearmnif prior and the likelihood using
fi(XiR) = =3, ie(s)(J(s,a; R) — 7r(s,a))?, whereJ(s,a; R) is a smooth mapping from
reward functionR to a greedy policy, such as the soft-max function.

Proof The policy matching algorithm seeks the polieyy = J(Rpm) such that
Rpy = argminz fig(s)(J(s,a; R) — 7p(s,a))?.
R s,a

The MAP estimate of the reward function with the uniform pramd the likelihood using’; is
computed as

Rpyap = argmax P(R|X) = argmax f;(X; R) = argminz fip(s)(J(s,a; R) — wp(s,a))?.
R R R

s,a

Hence,Ruap = Rpy and the optimal policy induced biRyap is equivalent tarpy. ]

Lemma5 The reward function sought by the MaxEnt algorithm [5] is iegient to the MAP es-
timate with the uniform prior and the likelihood usinfg; (X; R) = log Puaxend X|T', R) where
Pwmaxent IS the distribution for the behavior data (trajectory or patsatisfying the principle of max-
imum entropy.

Proof The MaxEnt algorithm seeks the reward function defined by

Ryiaxent = argmax log Puaxent( X |T', R)
R

where

M
Puaxen X|T, R) = H Prmaxent(Xm|T', R)

m=1
H

-1
H T(Szlv aznv Shm+1)'
h=1

Mo H
- H Eexp (;Wh_lR(s};”,azn)>

m=1
The MAP estimate with the uniform prior and the likelihoodngsf is computed as

Rpyap = argmax P(R|X) = argmax fg(X; R) = argmax log Pvaxenl X |T, R).
R R R

The MAP estimate is thus equivalent Ry axent [ |

Theorem 2 V*(R) andQ* (R) are convex.



Proof LetC(w) be the reward optimality region w.rt. V*(R) = V™(R) = (I —yT™)'E"R
foranyR € C(w), V*(R) is linear w.r.t. R. For each and everf®;, Ry, and0 < u <1,

Vi(pRy + (1 - p)Re) = H™ (uRy + (1 — p)R2) = pH™ Ry + (1 — p) H™ R,
=puV(R1) + (1= )V (R) < pV*(R1) + (1 — p)V*(R2)

wherer is an optimal policy fouR; + (1 — p)Ry and H™ = (I —~T7™)"'E™. Thus,V*(R)
is convex. In the same manner, we can also show @gtR) is convex using the definition
Q"(R) = R+ TE"Q"(R). =

Theorem 3 V*(R) andQ™(R) are differentiable almost everywhere.

Proof Let C(w) be the reward optimality region w.rt.7. SinceV*(R) = V™(R) =

(I — yT™)"'E"R is linear for any R € C(n), V*(R) is differentiable and
VrRV*(R) = (I — ~T™)"'E™ when R is strictly inside the region. On the boundary,
VrV™(R) is a subgradient oV (R) since the function is convex from Theorem 2 and thus
VRVT(R)(R - R) < V*(R) — V*(R/) for any R'. In the same manner, we can also show
thatQ* (R) is differentiable withV Q" (R) = (I — yTE™)~! strictly inside reward optimality
regions andvV g Q™ (R) is a subgradient on the boundaries. [ |

References

[1] G. Neu and C. Szepea&ri. Apprenticeship learning using inverse reinforcement learninggaadient
methods. IProceedings of UAI2007.

[2] A.Y.Ngand S. Russell. Algorithms for inverse reinforcementiéag. InProceedings of ICM]2000.

[3] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin plaing. InProceedings of ICML
2006.

[4] U. Syed and R. E. Schapire. A game-theoretic approach to ajgeship learning. IrProceedings of
NIPS 2008.

[5] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum epfranverse reinforcement learning.
In Proceedings of AAAROOS.



