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Abstract

It has been speculated that the human motion system combinesnoisy measure-
ments with prior expectations in an optimal, or rational, manner. The basic goal
of our work is to discover experimentally which prior distribution is used. More
specifically, we seek to infer the functional form of the motion prior from the per-
formance of human subjects on motion estimation tasks. We restricted ourselves
to priors which combine three terms for motion slowness, first-order smoothness,
and second-order smoothness. We focused on two functional forms for prior dis-
tributions: L2-norm and L1-norm regularization corresponding to the Gaussian
and Laplace distributions respectively. In our first experimental session we esti-
mate the weights of the three terms for each functional form to maximize the fit to
human performance. We then measured human performance for motion tasks and
found that we obtained better fit for the L1-norm (Laplace) than for the L2-norm
(Gaussian). We note that the L1-norm is also a better fit to thestatistics of motion
in natural environments. In addition, we found large weights for the second-order
smoothness term, indicating the importance of high-order smoothness compared
to slowness and lower-order smoothness. To validate our results further, we used
the best fit models using the L1-norm to predict human performance in a second
session with different experimental setups. Our results showed excellent agree-
ment between human performance and model prediction – ranging from 3% to
8% for five human subjects over ten experimental conditions –and give further
support that the human visual system uses an L1-norm (Laplace) prior.

1 Introduction

Imagine that you are traveling in a moving car and observe a walker through a fence full of punch
holes. Your visual system can readily perceive the walking person against the apparently moving
background using only the motion signals visible through these holes. But this task is far from trivial
due to the inherent local ambiguity of motion stimuli, oftenreferred to as theaperture problem. More
precisely, if you view a line segment through an aperture then you can easily estimate the motion
component normal to the line but it is impossible to estimatethe tangential component. So there are
an infinite number of possible interpretations of the local motion signal.

One way to overcome this local ambiguity is to integrate local motion measurements across space
to infer the ”true” motion field. Physiological studies haveshown that direction-selective neurons
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in primary visual cortex perform local measurements of motion. Then the visual system integrates
these local motion measurements to form global motion perception [4, 5]. Psychophysicists have
identified a variety of phenomena, such as motion capture andmotion cooperativity, which appear
to be consequences of motion spatial integration [1, 2, 3]. From the computational perspective,
a number of Bayesian models have been proposed to explain these effects by hypothesizing prior
assumptions about the motion fields that occur in natural environments. In particular, it has been
shown that a prior which is biased to slow-and-smooth motioncan account for a range of experi-
mental results [6, 7, 8, 9, 10].

But although evidence from physiology and psychophysics supports the existence of an integration
stage, it remains unclear exactly what motion priors are used to resolve the measurement ambigui-
ties. In the walking example described above (see figure 1), the visual system needs to integrate the
local measurements in the two regions within the red boxes inorder to perceive a coherently moving
background. This integration must be performed over large distances, because the regions are widely
separated, but this integration cannot be extended to include the walker region highlighted in the blue
box, because this would interfere with accurate estimationof the walker’s movements. Hence the
motion priors used by the human visual system must have a functional form which enables flexible
and robust integration.

We aim to determine the functional form of the motion priors which underly human perception,
and to validate how well these priors can influence human perception in various motion tasks. Our
approach is to combine parametric modeling of the motion priors with psychophysical experiments
to estimate the model parameters that provide the best fit to human performance across a range
of stimulus conditions. To provide further validation, we then use the estimated model to predict
human performance in several different experimental setups. In this paper, we first introduce the
two functional forms which we consider and review related literature in Section 2. Then in Section
3 we present our computational theory and implementation details. In Section 4 we test the theory
by comparing its predictions with human performance in a range of psychophysical experiments.

Figure 1: Observing a walker with a moving camera. Left panel, two example frames. The visual
system needs to integrate motion measurements from the two regions in the red boxes in order to
perceive the motion of the background. But this integrationshould not be extended to the walker
region highlighted in the blue box. Right panel, the integration task is made harder by observing the
scene through a set of punch holes. The experimental stimuliin our psychophysical experiments are
designed to mimic these observation conditions.

2 Functional form of motion priors

Many models have proposed that the human visual system uses prior knowledge of probable mo-
tions, but the functional form for this prior remains unclear. For example, several well-established
computational models employ Gaussian priors to encode the bias towards slow and spatially smooth
motion fields. But the choice of Gaussian distributions has largely been based on computational
convenience [6, 8], because they enable us to derive analytic solutions.

However, some evidence suggests that different distribution forms may be used by the human visual
system. Researchers have used motion sequences in real scenes to measure the spatial and temporal
statistics of motion fields [11, 12]. These natural statistics show that the magnitude of the motion
(speed) falls off in a manner similar to a Laplacian distribution ( L1-norm regularization), which has
heavier tails than Gaussian distributions (see the left plot in figure 2). These heavy tails indicates
that while slow motions are very common, fast motions are still occur fairly frequently in natural
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environments. A similar distribution pattern was also found for spatial derivatives of the motion flow,
showing that non-smooth motion fields can also happen in natural environments. This statistical
finding is not surprising since motion discontinuities can arise in the natural environment due to the
relative motion of objects, foreground/background segmentation, and occlusion.

Stocker and Simoncelli [10] conducted a pioneering study toinfer the functional form of the slow-
ness motion prior. More specifically, they used human subject responses in a speed discrimination
task to infer the shape of the slowness prior distribution. Their inferred slowness prior showed sig-
nificantly heavier tails than a Gaussian distribution. Theyshowed that a motion model using this
inferred prior provided an adequate fit to human data for a wide range of stimuli.

Finally, the robustness of the L1-norm has also been demonstrated in many statistical applications
(e.g., regression and feature selection). In the simplest case of linear regression, suppose we want
to find the intercept with the constraint of zero slope. The regression with L1-norm regularization
estimates the intercept based on the sample median, whereasthe L2-norm regression estimates the
intercept based on the sample mean. A single outlier has verylittle effect on the median but can
alter the mean significantly. Accordingly, the L1-norm regularization is less sensitive to outliers
than is the L2-norm. We illustrate this for motion estimation by the example in the right panel
of figure 2. If there is a motion boundary in the true motion field, then a model using L2-norm
regularization (Gaussian priors) tends to impose strong smoothing over the two distinct motion
fields which blurs the motion across discontinuity. But the model with an L1-norm (Laplace prior)
preserves the motion discontinuity and gives smooth motionflow on both sides of it.

Figure 2: Left plot, the Gaussian distribution (L2-norm regularization) and the Laplace distribution
(L1-norm regularization). Right plot, an illustration of over-smoothing caused by using Gaussian
priors.

3 Mathematical Model

The input data is specified by local motion measurements~rq , of form~uq = (u1q, u2q), at a discrete
set of positions~rq, q = 1, ..., N in the image plane. The goal is to find a smooth motion field
~v defined at all positions~r in the image domain, estimated from the local motion measurements.
The motion field~v can be thought of as an interpolation of the data which obeys aslowness and
smoothness prior and which agrees approximately with the local motion measurements. Recall that
the visual system can only observe the local motion in the directions~nq =

~uq

|~uq|
(sometimes called

component motion) because of the aperture problem. Hence approximate agreement with local
measurements reduces to the constraints:

~v(~rq) · ~nq − ~uq · ~nq ≈ 0.

As illustrated in figure 3, we consider three motion prior terms which quantify the preference for
slowness, first-order smoothness and second-order smoothness respectively. LetΩ denote the image
domain – i.e. the set of points~r = (r1, r2) ∈ Ω. We define the prior to be a Gibbs distribution with
energy function of form:

E(~v) =

∫

Ω

(
λ

α
|~v|α +

µ

β
|∇~v|β +

η

γ
|4~v|γ)d~r,
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whereλ, µ, η, α, β, γ are positive parameters and

|~v| =
√

(v1)2 + (v2)2, |∇~v| =

√

(

∂v1

∂r1

)2

+
(

∂v1

∂r2

)2

+
(

∂v2

∂r1

)2

+
(

∂v2

∂r2

)2

,

|4~v| =

√

(

∂2v1

∂r2

1

)2

+
(

∂2v1

∂r2

2

)2

+
(

∂2v2

∂r2

1

)2

+
(

∂2v2

∂r2

2

)2

.

Figure 3: An illustration of three prior terms: (i) slowness, (ii) first-order smoothness, and (iii)
second-order smoothness

The (negative log) likelihood function for grating stimuliimposes the measurement constraints and
is of form:

E(~u|~v) =

N
∑

q=1

|~v(~rq) · ~nq − ~uq · ~nq|
p =

N
∑

q=1

|~v(~rq) · ~nq − |~uq||
p.

The combined energy function to be minimized is:

inf
~v

{

F (~v) =
c

p
E(~u|~v) + E(~v)

}

.

This energy is a convex function provided the exponents satisfy α, β, γ, p ≥ 1. Therefore the energy
minimum can be found by imposing the first order optimality conditions, ∂F (~v)

∂~v
= 0 (the Euler-

Lagrange equations). Below we computer these Euler-Lagrange partial differential equations in
~v = (v1, v2). We fix the likelihood term by settingp = 2 (the exponent of the likelihood term). If
α, β, γ 6= 2, the Euler-Lagrange equations are non-linear partial differential equations (PDEs) and
explicit solutions cannot be found (ifα, β, γ = 2 the Euler-Lagrange equations will be linear and so
can be solved by Fourier transforms or Green’s functions, aspreviously done in [6]). To solve these
non-linear PDEs we discretize them by finite differences anduse iterative gradient descent (i.e. we
apply the dynamics∂~v(~r,t)

∂t
= −∂F (~v(~r,t))

∂~v(~r,t) until we reach a fixed state). More precisely, we initialize
~v(~r, 0) at random, and solve the update equation fort > 0:

∂vk

∂t
(~r, t) = −λ|~v|α−2vk + µdiv

(

|∇~v|β−2∇vk

)

− η4
(

|4~v|γ−24vk

)

− c
(

~v(~rq) · ~nq − ~uq · ~nq

)p−1

nkqδ~r,~rq
,

wherek = 1, 2, δ~r,~rq
= 1 if ~r = ~rq and δ~r,~rq

= 0 if ~r 6= ~rq. Since the powersα − 2, β −
2, γ − 2 become negative when the positive exponentsα, β, ... take value1, we include a small
ε = 10−6 inside the square roots to avoid division by zero (when calculating terms like|.|). The
algorithm stops when the difference between two consecutive energy estimates is close to zero (i.e.
the stopping criterion is based on thresholding the energy change).

Our implementation discretized the Euler-Lagrange equations, as specified below. Let~B(l) =

|∇~v(l)|β−2, ~C(l) = |4~v(l)|γ−2, ~A(l) = |~v(l)|α−2, wherel denotes time discretization with4t
the time-step, and(i, j) denotes space discretization withh = 4r1 = 4r2 being the space-step.
Then the above PDE’s can be discretized as

vk
(l+1)
i,j − vk

(l)
i,j

4t
= Fidk

(l)
i,j − λ ~Ai,jvk

(l+1)
i,j
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+
µ

h2
[(− ~B

(l)
i,j−1 −

~B
(l)
i−1,j − 2 ~B

(l)
i,j )vk

(l+1)
i,j

+ ~B
(l)
i,jvk

(l)
i+1,j + ~B

(l)
i−1,jvk

(l)
i−1,j + ~B

(l)
i,jvk

(l)
i,j+1 + ~B

(l)
i,j−1vk

(l)
i,j−1]

−
η

h4
{(~C

(l)
i+1,j + ~C

(l)
i−1,j + 16 ~C

(l)
i,j + ~C

(l)
i,j+1 + ~C

(l)
i,j−1)vk

(l+1)
i,j

− 4[(~C
(l)
i+1,j + ~C

(l)
i,j )vk

(l)
i+1,j + (~C

(l)
i−1,j + ~C

(l)
i,j )vk

(l)
i−1,j

+ (~C
(l)
i,j+1 + ~C

(l)
i,j )vk

(l)
i,j+1 + (~C

(l)
i,j−1 + ~C

(l)
i,j )vk

(l)
i,j−1]

+ (~C
(l)
i+1,j + ~C

(l)
i,j+1)vk

(l)
i+1,j+1 + (~C

(l)
i+1,j + ~C

(l)
i,j−1)vk

(l)
i+1,j−1

+ (~C
(l)
i−1,j + ~C

(l)
i,j+1)vk

(l)
i−1,j+1 + (~C

(l)
i−1,j + ~C

(l)
i,j−1)vk

(l)
i−1,j−1

+ ~C
(l)
i+1,jvk

(l)
i+2,j + ~C

(l)
i−1,jvk

(l)
i−2,j + ~C

(l)
i,j+1vk

(l)
i,j+2 + ~C

(l)
i,j−1vk

(l)
i,j−2}

whereFidki,j =

{

−c
(

~v(~rq) · ~nq − ~uq · ~nq

)p−1

nkq if ~rq = (i, j)

0 otherwise
. Letting

~E1i,j = ~Bi,j−1 + ~Bi−1,j + 2 ~Bi,j, ~E2i,j = ~Ci+1,j + ~Ci−1,j + 16 ~Ci,j + ~Ci,j+1 + ~Ci,j−1,

~E3i,j = ~Ci+1,j + ~Ci,j , ~E4i,j = ~Ci−1,j + ~Ci,j , ~E5i,j = ~Ci,j+1 + ~Ci,j , ~E6i,j = ~Ci,j−1 + ~Ci,j ,

~E7i,j = ~Ci+1,j + ~Ci,j+1, ~E8i,j = ~Ci+1,j + ~Ci,j−1, ~E9i,j = ~Ci−1,j + ~Ci,j+1,

~E10i,j = ~Ci−1,j + ~Ci,j−1, ~E11 = 1/(1 + 4t(λ ~A + µ
h2

~E1 + η
h4

~E2)),

we can solve forv(l+1) and we obtain

vk
(l+1)
i,j = E11

(l)
i,j

(

vk
(l)
i,j + 4t{Fidk

(l)
i,j +

µ

h2
( ~B
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(l)
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−
η

h4
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(l)

i,jvk
(l)
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(l)

i,jvk
(l)
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(l)
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i−1,j−1
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(l)
i+1,jvk

(l)
i+2,j + ~C

(l)
i−1,jvk

(l)
i−2,j + ~C

(l)
i,j+1vk

(l)
i,j+2 + ~C
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i,j−1vk

(l)
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)

.

4 Experiments

We compared two possible functional forms for the motion prior: (1) the Laplace distribution with
L1-norm regularization, withα = β = γ = 1, (2) the Gaussian distribution with L2-norm regular-
ization, withα = β = γ = 2. Since the main goal of this work is to discover motion priors, we
employed the same likelihood term withp = 2 for both models. We used the performance of human
subjects in the first experimental session to estimate the weights of the three prior terms,λ, µ, η,
for each functional form. We then validated the predictionsof the model by comparing them with
human performance in a second experimental session which uses different stimulus parameters.

4.1 Stimulus

We used a multiple-aperture stimulus [13] which consists of12 by 12 drifting sine-wave gratings
within a square window subtending 8◦. Each element (0.5◦) was composed of an oriented sinusoidal
grating of 5.6 cycles/deg spatial frequency, which was within a stationary Gaussian window. The
contrast of the elements was 0.2. The motion stimulus included 20 time frames which were presented
within 267 ms. The global motion stimulus was generated as follows. First, the orientation of each
local grating element was randomly determined. Second, a global motion (also called 2D motion,
with the speed of 1 deg/sec) direction was chosen. Third, a certain proportion of elements (signal
elements) were assigned with the predetermined 2D motion , while each of the remaining elements
(noise elements) was assigned a random 2D motion. Finally, with its orientation and 2D motion
velocity, the drifting speed for each element was computed so that the local (or component) drifting
velocity was consistent with the assigned 2D motion velocity. As shown in figure 4 the global
motion strength was controlled by varying the proportion ofsignal elements in the stimulus (i.e., the
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coherence ratio). Stimuli with high ratio exhibited more coherent motion, and stimuli with low ratio
exhibited more random motion.

In all the experiments reported in this paper, each participant completed two experiment sessions
with different stimulus parameters. The goal of session 1 was parameter estimation: to estimate the
weights of the three prior terms – slowness, first-order smoothness and second-order smoothness, –
for each model. Session 2 was for model validation: using theweights estimated from session 1 to
predict subject performance for different experimental conditions.

Figure 4: Stimulus illustration. Multiple-aperture stimuli with coherence ratio of 0, 0.4, 0.8 and 1
from left to right. the blue and green arrows indicate the 2D motion directions assigned for signal
and noise elements, respectively.

4.2 Experiment 1

4.2.1 Procedure

There were two separate sessions in Experiment 1. On each trial of the first session, observers
were presented with two motion patterns, one after another.The first one was the reference motion
pattern, which always moved upward (0 degree), and the second one was the test motion pattern,
whose global motion direction was either tilted towards theleft or the right relative to the reference
pattern. Both patterns lasted for 267 ms with 500 ms inter-stimulus interval. The observer’s task
was to determine whether the global motion direction of the test pattern was more towards the left
or right relative to the reference pattern. In order to make sure observers understood the task and
were able to perceive the global motion, before the beginning of the first session, observers passed a
test session in which they achieved 90% accuracy in 40 consecutive trials with 80% coherence and
20 (or 45) degrees of angular difference. To allow observersto familiarize themselves with the task,
before each experimental session observers went through a practice session with 10 blocks of 25
trials.

The first session consisted of 20 blocks of 50 trials. the coherence ratio was constant within each
block. The observer’s discrimination performance was measured for ten coherence ratios (0, 0.1,
0.2, .., 0.9) in the first session. The angular difference between the reference and test motion was
fixed for each observer in the entire session (2 degrees for observers AL, MW and AE; 45 degrees
for OQ and CC). The second session was identical to the first one, except that the coherence ratio
was fixed at 0.7, and the angular difference between the global motion directions of the reference
and the test patterns was varied across blocks (ten angular differences: 1, 5, 10,.., 45 degrees).

4.2.2 Results

We implemented motion models with the Laplace prior distribution (termed ”L1 model”) and the
Gaussian prior (termed ”L2 model”). As the first step, exhaustive search was conducted to find a
set of weights for the prior terms that provided the best fit tothe human psychometric performance
in experimental session 1. Table 1 reports the estimated parameters for each individual subject us-
ing the L1 and L2 models. There was clear individual difference for the estimated weight values.
However, across all five subjects, large weight values were found for the second-order smoothness
terms, indicating the contribution from higher-order smoothness preference is important in perceiv-
ing global motion from multiple-aperture stimulus.

Figure 5 shows the results from each individual participantand best-fitting model performance. The
results clearly show the L1 model provided the better fit to human data when compared to the L2
model. In general,humans appear to be sensitive to the inclusion of noise elements, and perform
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Table 1: Estimated weightsλ, µ, η of slowness, first-order smoothness and second-order smoothness
prior terms, for L1 and L2-norm model

Subjects L1λ L1 µ L1 η L2 λ L2 µ L2 η

AE 0.001 1 15000 0.01 100 16000
AL 0.01 100 16000 0.01 1 16000
CC 0.001 0.1 16000 0.001 0.1 16000
MW 0.001 10 17000 0.01 1 20000
OQ 0.01 100 18000 0.01 100 18000

worse than the L2 model, which tends to strongly encourage smoothness over the entire display
window.

In experimental session 2, the two models predicted performance as a function of angular difference
between the reference motion and the test motion. As shown infigure 7, the L1 model yielded less
error in fitting human performance than did the L2 model. Thisresult illustrates the power of the L1
model in predicting human performance in motion tasks different from the tasks used for estimating
model parameters.
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Figure 5: Comparison between human performance and model predictions in session 1. Left two
plots, accuracy as a function ofcoherence ratio for two representative subjects. Blue solid lines
indicate human performance. Red and green dashed lines indicate L1 and L2 model predictions
with the best fitted parameters. Right plot, model error for all five subjects. The model error was
computed as the mean absolute difference between human performance and model predictions. L1
model consistently fits human performance better than L2 model for all subjects
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Figure 6: Comparison between human performance and model predictions in session 1. Left two
plots, accuracy as a function ofangular difference between the reference and the test motion for two
representative subjects. Blue solid lines indicate human performance. Red and Green dashed lines
indicate L1 and L2 model predictions. Right plot, model error for all five subjects. Less errors from
L1 model indicate that L1 model consistently fits human performance better than L2 model for all
subjects

4.3 Experiment 2

The results of Experiment 1 clearly support the conclusion that the motion model with Laplace prior
(L1-norm regularization) fits human performance better than does the model with Gaussian prior
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(L2 model). In Experiment 2, we compared human motion judgment with predictions of the L1
model on each trial, rather than using the average performance as in Experiment 1. Such a detailed
comparison can provide quantitative measures of how well the L1 model is able to predict human
motion judgment for specific stimuli.

In Experiment 2, the first session was identical to that in Experiment 1, in which angular difference
in the two global motion directions were fixed (45 degrees forall observers) while the coherence
ratio was varied. In the second session, observers were presented with one motion stimulus on each
trial. The global motion direction of the pattern was randomly selected from 24 possible directions
(with a 15-degree difference between two adjacent directions). Observers reported their perceived
global motion directions by rotating a line after the motionstimulus disappeared from the screen.
The experiment included 12 blocks (each with 48 trials) and six coherence ratios (0, 0.1, 0.3,.., 0.9).
A two-pass design was used to let each observer run the identical session twice in order to measure
the reliability of the observer’s judgments.

We used human performance in session 1 to estimate model parameters: weightsλ, µ, η for slow-
ness, first-order smoothness and second-order smoothness prior terms for each individual partici-
pant. Since identical stimuli were used in the two runs of session 2, we can quantify the reliability
of the observer’s judgment by computing the response correlation across trials in these two runs. As
shown in the left plot of figure 7, human observers’ responseswere significantly correlated in the
two runs, even in the condition ofrandom motion (coherence ratio is close to 0). The correlated
responses in these subthreshold conditions suggest that human observers are able to provide con-
sistent interpretation of motion flow, even when the motion is random. The right plot of figure 7
shows the trial-by-trial correlation between human motionjudgments with model-predicted global
motion direction. The model-human correlations were comparable to human self-correlations. Even
in the random motion condition (where the coherence ratio is0), the correlation between the model
and human judgments is greater than 0.5, indicating the predictive power of the model. We also
noticed that the correlation between human and L2 model was around 8 percent worse than the hu-
man self-correlation and the correlation between the L1 model and humans. This finding further
demonstrated that the L1 model provided a better fit to human data than did the L2 model.
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Figure 7: Comparison between human performance and model predictions using trial-by-trial corre-
lation. Left plot, human self correlation between two runs of identical experimental sessions. Right
plot, correlation between human motion judgement and modelpredicted global motion direction.
The significant correlation between human and the model indicates the L1 model is able to predict
human motion judgment for specific stimuli, even in the random display, i.e., coherence ratio close
to 0.

5 Conclusions

We found that a motion prior in the form of the Laplace distribution with L1-norm regularization
provided significantly better agreement with human performance than did Gaussian priors with L2-
norm. We also showed that humans weighted second-order motion smoothness much higher than
first-order smoothness and slowness. Furthermore, model predictions using this Laplace prior were
consistent with human perception of coherent motion, even for random displays. Overall our results
suggest that human motion perception for these types of stimuli can be well modeled using Laplace
priors.
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