
Moreau-Yosida Regularization for Grouped
Tree Structure Learning

Jun Liu
Computer Science and Engineering

Arizona State University
J.Liu@asu.edu

Jieping Ye
Computer Science and Engineering

Arizona State University
Jieping.Ye@asu.edu

Abstract

We consider the tree structured group Lasso where the structure over the features
can be represented as a tree with leaf nodes as features and internal nodes as clus-
ters of the features. The structured regularization with a pre-defined tree structure
is based on a group-Lasso penalty, where one group is defined for each node in
the tree. Such a regularization can help uncover the structured sparsity, which is
desirable for applications with some meaningful tree structures on the features.
However, the tree structured group Lasso is challenging to solve due to the com-
plex regularization. In this paper, we develop an efficient algorithm for the tree
structured group Lasso. One of the key steps in the proposed algorithm is to solve
the Moreau-Yosida regularization associated with the grouped tree structure. The
main technical contributions of this paper include (1) we show that the associated
Moreau-Yosida regularization admits an analytical solution, and (2) we develop
an efficient algorithm for determining the effective interval for the regularization
parameter. Our experimental results on the AR and JAFFE face data sets demon-
strate the efficiency and effectiveness of the proposed algorithm.

1 Introduction

Many machine learning algorithms can be formulated as a penalized optimization problem:
min
x

l(x) + λφ(x), (1)

where l(x) is the empirical loss function (e.g., the least squares loss and the logistic loss), λ > 0
is the regularization parameter, and φ(x) is the penalty term. Recently, sparse learning via `1 regu-
larization [20] and its various extensions has received increasing attention in many areas including
machine learning, signal processing, and statistics. In particular, the group Lasso [1, 16, 22] utilizes
the group information of the features, and yields a solution with grouped sparsity. The traditional
group Lasso assumes that the groups are non-overlapping. However, in many applications the fea-
tures may form more complex overlapping groups. Zhao et al. [23] extended the group Lasso to
the case of overlapping groups, imposing hierarchical relationships for the features. Jacob et al. [6]
considered group Lasso with overlaps, and studied theoretical properties of the estimator. Jenatton et
al. [7] considered the consistency property of the structured overlapping group Lasso, and designed
an active set algorithm.

In many applications, the features can naturally be represented using certain tree structures. For
example, the image pixels of the face image shown in Figure 1 can be represented as a tree, where
each parent node contains a series of child nodes that enjoy spatial locality; genes/proteins may
form certain hierarchical tree structures. Kim and Xing [9] studied the tree structured group Lasso
for multi-task learning, where multiple related tasks follow a tree structure. One challenge in the
practical application of the tree structured group Lasso is that the resulting optimization problem is
much more difficult to solve than Lasso and group Lasso, due to the complex regularization.

1



(a) (b) (c) (d)

Figure 1: Illustration of the tree structure of a two-dimensional face image. The 64 × 64 image (a) can be
divided into 16 sub-images in (b) according to the spatial locality, where the sub-images can be viewed as the
child nodes of (a). Similarly, each 16× 16 sub-image in (b) can be divided into 16 sub-images in (c), and such
a process is repeated for the sub-images in (c) to get (d).

G
0

1

G
1

1 G
1

2 G
1

3

G
2

1 G
2

2 G
2

3 G
2

4

Figure 2: A sample index tree for illustration. Root: G0
1 = {1, 2, 3, 4, 5, 6, 7, 8}. Depth 1: G1

1 = {1, 2},
G1

2 = {3, 4, 5, 6}, G1
3 = {7, 8}. Depth 2: G2

1 = {1}, G2
2 = {2}, G2

3 = {3, 4}, G2
4 = {5, 6}.

In this paper, we develop an efficient algorithm for the tree structured group Lasso, i.e., the op-
timization problem (1) with φ(·) being the grouped tree structure regularization (see Equation 2).
One of the key steps in the proposed algorithm is to solve the Moreau-Yosida regularization [17, 21]
associated with the grouped tree structure. The main technical contributions of this paper include:
(1) we show that the associated Moreau-Yosida regularization admits an analytical solution, and the
resulting algorithm for the tree structured group Lasso has a time complexity comparable to Lasso
and group Lasso, and (2) we develop an efficient algorithm for determining the effective interval for
the parameter λ, which is important in the practical application of the algorithm. We have performed
experimental studies using the AR and JAFFE face data sets, where the features form a hierarchical
tree structure based on the spatial locality as shown in Figure 1. Our experimental results demon-
strate the efficiency and effectiveness of the proposed algorithm. Note that while the present paper
was under review, we became aware of a recent work by Jenatton et al. [8] which applied block
coordinate ascent in the dual and showed that the algorithm converges in one pass.

2 Grouped Tree Structure Regularization

We begin with the definition of the so-called index tree:
Definition 1. For an index tree T of depth d, we let Ti = {Gi

1, G
i
2, . . . , G

i
ni
} contain all the node(s)

corresponding to depth i, where n0 = 1, G0
1 = {1, 2, . . . , p} and ni ≥ 1, i = 1, 2, . . . , d. The

nodes satisfy the following conditions: 1) the nodes from the same depth level have non-overlapping
indices, i.e., Gi

j ∩Gi
k = ∅,∀i = 1, . . . , d, j 6= k, 1 ≤ j, k ≤ ni; and 2) let Gi−1

j0 be the parent node
of a non-root node Gi

j , then Gi
j ⊆ Gi−1

j0 .

Figure 2 shows a sample index tree. We can observe that 1) the index sets from different nodes may
overlap, e.g., any parent node overlaps with its child nodes; 2) the nodes from the same depth level
do not overlap; and 3) the index set of a child node is a subset of that of its parent node.

The grouped tree structure regularization is defined as:

φ(x) =
d∑

i=0

ni∑

j=1

wi
j‖xGi

j
‖, (2)

where x ∈ Rp, wi
j ≥ 0 (i = 0, 1, . . . , d, j = 1, 2, . . . , ni) is the pre-defined weight for the node Gi

j ,
‖ · ‖ is the Euclidean norm, and xGi

j
is a vector composed of the entries of x with the indices in Gi

j .

2



In the next section, we study the Moreau-Yosida regularization [17, 21] associated with (2), develop
an analytical solution for such a regularization, propose an efficient algorithm for solving (1), and
specify the meaningful interval for the regularization parameter λ.

3 Moreau-Yosida Regularization of φ(·)
The Moreau-Yosida regularization associated with the grouped tree structure regularization φ(·) for
a given v ∈ Rp is given by:

φλ(v) = min
x



f(x) =

1
2
‖x− v‖2 + λ

d∑

i=0

ni∑

j=1

wi
j‖xGi

j
‖


 , (3)

for some λ > 0. Denote the minimizer of (3) as πλ(v). The Moreau-Yosida regularization has many
useful properties: 1) φλ(·) is continuously differentiable despite the fact that φ(·) is non-smooth; 2)
πλ(·) is a non-expansive operator. More properties on the general Moreau-Yosida regularization
can be found in [5, 10]. Note that, f(·) in (3) is indeed a special case of the problem (1) with
l(x) = 1

2‖x − v‖2. Our recent study has shown that, the efficient optimization of the Moreau-
Yosida regularization is key to many optimization algorithms [13, Section 2]. Next, we focus on the
efficient optimization of (3). For convenience of subsequent discussion, we denote λi

j = λwi
j .

3.1 An Analytical Solution

We show that the minimization of (3) admits an analytical solution. We first present the detailed
procedure for finding the minimizer in Algorithm 1.

Algorithm 1 Moreau-Yosida Regularization of the tree structured group Lasso (MYtgLasso)

Input: v ∈ Rp, the index tree T with nodes Gi
j (i = 0, 1, . . . , d, j = 1, 2, . . . , ni) that satisfy

Definition 1, the weights wi
j ≥ 0 (i = 0, 1, . . . , d, j = 1, 2, . . . , ni), λ > 0, and λi

j = λwi
j

Output: u0 ∈ Rp

1: Set
ud+1 = v, (4)

2: for i = d to 0 do
3: for j = 1 to ni do
4: Compute

ui
Gi

j
=





0 ‖ui+1
Gi

j
‖ ≤ λi

j

‖ui+1
Gi

j

‖−λi
j

‖ui+1
Gi

j

‖ ui+1
Gi

j
‖ui+1

Gi
j
‖ > λi

j ,
(5)

5: end for
6: end for

In the implementation of the MYtgLasso algorithm, we only need to maintain a working variable u,
which is initialized with v. We then traverse the index tree T in the reverse breadth-first order to up-
date u. At the traversed node Gi

j , we update uGi
j

according to the operation in (5), which reduces the

Euclidean norm of uGi
j

by at most λi
j . The time complexity of MYtgLasso is O(

∑d
i=0

∑ni

j=1 |Gi
j |).

By using Definition 1, we have
∑ni

j=1 |Gi
j | ≤ p. Therefore, the time complexity of MYtgLasso

is O(pd). If the tree is balanced, i.e., d = O(log p), then the time complexity of MYtgLasso is
O(p log p).

MYtgLasso can help explain why the structured group sparsity can be induced. Let us analyze the
tree given in Figure 2, with the solution denoted as x∗. We let wi

j = 1,∀i, j, λ =
√

2, and v =
[1, 2, 1, 1, 4, 4, 1, 1]T. After traversing the nodes of depth 2, we can get that the elements of x∗ with
indices in G2

1 and G2
3 are zero; and when the traversal continues to the nodes of depth 1, the elements

of x∗ with indices in G1
1 and G1

3 are set to zero, but those with G2
4 are still nonzero. Finally, after

traversing the root node, we obtain x∗ = [0, 0, 0, 0, 1, 1, 0, 0]T.

3



Next, we show that MYtgLasso finds the exact minimizer of (3). The main result is summarized in
the following theorem:
Theorem 1. u0 returned by Algorithm 1 is the unique solution to (3).

Before giving the detailed proof for Theorem 1, we introduce some notations, and present several
technical lemmas.

Define the mapping φi
j : Rp → R as

φi
j(x) = ‖xGi

j
‖. (6)

We can then express φ(x) defined in (2) as:

φ(x) =
d∑

i=0

ni∑

j=1

λi
jφ

i
j(x).

The subdifferential of f(·) defined in (3) at the point x can be written as:

∂f(x) = x− v +
d∑

i=0

ni∑

j=1

λi
j∂φi

j(x), (7)

where

∂φi
j(x) =





{
y ∈ Rp : ‖y‖ ≤ 1,y

Gi
j

= 0
}

if xGi
j

= 0{
y ∈ Rp : yGi

j
=

x
Gi

j

‖x
Gi

j
‖ ,yGi

j

= 0
}

if xGi
j
6= 0,

(8)

and Gi
j denotes the complementary set of Gi

j .

Lemma 1. For any 1 ≤ i ≤ d, 1 ≤ j ≤ ni, we can find a unique path from the node Gi
j to the root

node G0
1. Let the nodes on this path be Gl

rl
, for l = 0, 1, . . . , i with r0 = 1 and ri = j. We have

Gi
j ⊆ Gl

rl
,∀l = 0, 1, . . . , i− 1. (9)

Gi
j ∩Gl

r = ∅,∀r 6= rl, l = 1, 2, . . . , i− 1, r = 1, 2, . . . , ni. (10)

Proof: According to Definition 1, we can find a unique path from the node Gi
j to the root node G0

1.
In addition, based on the structure of the index tree, we have (9) and (10). ¤
Lemma 2. For any i = 1, 2, . . . , d, j = 1, 2, . . . , ni, we have

ui
Gi

j
∈ ui+1

Gi
j
− λi

j

(
∂φi

j(u
i)

)
Gi

j

, (11)

∂φi
j(u

i) ⊆ ∂φi
j(u

0). (12)

Proof: We can verify (11) using (5), (6) and (8).

For (12), it follows from (6) and (8) that, it is sufficient to verify that
u0

Gi
j

= αi
ju

i
Gi

j
, for some αi

j ≥ 0. (13)

It follows from Lemma 1 that we can find a unique path from Gi
j to G0

1. Denote the nodes on the
path as: Gl

rl
, where l = 0, 1, . . . , i, ri = j, and r0 = 1. We first analyze the relationship between

ui
Gi

j
and ui−1

Gi
j

. If
∥∥∥∥ui

Gi−1
ri−1

∥∥∥∥ ≤ λi−1
ri−1

, we have ui−1

Gi−1
ri−1

= 0, which leads to ui−1
Gi

j
= 0 by using

(9). Otherwise, if
∥∥∥∥ui

Gi−1
ri−1

∥∥∥∥ > λi−1
ri−1

, we have ui−1

Gi−1
ri−1

=

∥∥∥∥∥ui

G
i−1
ri−1

∥∥∥∥∥−λi−1
ri−1

∥∥∥∥∥ui

G
i−1
ri−1

∥∥∥∥∥

ui
Gi−1

ri−1
, which leads to

ui−1
Gi

j
=

∥∥∥∥∥ui

G
i−1
ri−1

∥∥∥∥∥−λi−1
ri−1

∥∥∥∥∥ui

G
i−1
ri−1

∥∥∥∥∥

ui
Gi

j
by using (9). Therefore, we have

ui−1
Gi

j
= βiui

Gi
j
, for some βi ≥ 0. (14)

4



By a similar argument, we have

ul−1
Gl

rl

= βlul
Gl

rl

, βl ≥ 0,∀l = 1, 2, . . . , i− 1. (15)

Together with (9), we have

ul−1
Gi

j
= βlul

Gi
j
, βl ≥ 0, ,∀l = 1, 2, . . . , i− 1. (16)

From (14) and (16), we show (13) holds with αi
j = Πi

l=1βl. This completes the proof. ¤
We are now ready to prove our main result:

Proof of Theorem 1: It is easy to verify that f(·) defined in (3) is strongly convex, thus it admits a
unique minimizer. Our methodology for the proof is to show that

0 ∈ ∂f(u0), (17)

which is the sufficient and necessary condition for u0 to be the minimizer of f(·).
According to Definition 1, the leaf nodes are non-overlapping. We assume that the union of the leaf
nodes equals to {1, 2, . . . , p}; otherwise, we can add to the index tree the additional leaf nodes with
weight 0 to satisfy the aforementioned assumption. Clearly, the original index tree and the new index
tree with the additional leaf nodes of weight 0 yield the same penalty φ(·) in (2), the same Moreau-
Yosida regularization in (3), and the same solution from Algorithm 1. Therefore, to prove (17),
it suffices to show 0 ∈ ∂f(u0)Gi

j
, for all the leaf nodes Gi

j . Next, we focus on establishing the
following relationship:

0 ∈ ∂f(u0)Gd
1
. (18)

It follows from Lemma 1 that, we can find a unique path from the node Gd
1 to the root G0

1. Let the
nodes on this path are Gl

rl
, for l = 0, 1, . . . , d with r0 = 1 and rd = 1. By using (10) of Lemma 1,

we can get that the nodes that contain the index set Gd
1 are exactly on the aforementioned path. In

other words, ∀x, we have
(
∂φl

r(x)
)
Gd

1
= {0},∀r 6= rl, l = 1, 2, . . . , d− 1, r = 1, 2, . . . , ni (19)

by using (6) and (8).

Applying (11) and (12) of Lemma 2 to each node on the aformetioned path, we have

ul+1
Gl

rl

− ul
Gl

rl

∈ λl
rl

(
∂φl

rl
(ul)

)
Gl

rl

⊆ λl
rl

(
∂φl

rl
(u0)

)
Gl

rl

,∀l = 0, 1, . . . , d. (20)

Making using of (9), we obtain from (20) the following relationship:

ul+1
Gd

1
− ul

Gd
1
∈ λl

rl

(
∂φl

rl
(u0)

)
Gd

1
,∀l = 0, 1, . . . , d. (21)

Adding (21) for l = 0, 1, . . . , d, we have

ud+1
Gd

1
− u0

Gd
1
∈

d∑

l=0

λl
rl

(
∂φl

rl
(u0)

)
Gd

1
(22)

It follows from (4), (7), (19) and (22) that (18) holds.

Similarly, we have 0 ∈ f(u0)Gi
j

for the other leaf nodes Gi
j . Thus, we have (17). ¤

3.2 The Proposed Optimization Algorithm

With the analytical solution for πλ(·), the minimizer of (3), we can apply many existing methods for
solving (1). First, we show in the following lemma that, the optimal solution to (1) can be computed
as a fixed point. We shall show in Section 3.3 that, the result in this lemma can also help determine
the interval for the values of λ.
Lemma 3. Let x∗ be an optimal solution to (1). Then, x∗ satisfies:

x∗ = πλτ (x∗ − τ l′(x∗)),∀τ > 0. (23)

5



Proof: x∗ is an optimal solution to (1), if and only if
0 ∈ l′(x∗) + λ∂φ(x∗), (24)

which leads to
0 ∈ x∗ − (x∗ − τ l′(x∗)) + λτ∂φ(x∗),∀τ > 0. (25)

Thus, we have x∗ = arg minx
1
2‖x−(x∗−τ l′(x∗))‖2 +λτφ(x). Recall that πλ(·) is the minimizer

of (3). We have (23). ¤
It follows from Lemma 3 that we can apply the fixed point continuation method [4] for solving (1). It
is interesting to note that, with an appropriately chosen τ , the scheme in (23) indeed corresponds to
the gradient method developed for the composite function optimization [2, 19], achieving the global
convergence rate of O(1/k) for k iterations. In addition, the scheme in (23) can be accelerated
to obtain the accelerated gradient descent [2, 19], where the Moreau-Yosidea regularization also
needs to be evaluated in each of its iteration. We employ the accelerated gradient descent developed
in [2] for the optimization in this paper. The algorithm is called “tgLasso”, which stands for the tree
structured group Lasso. Note that, tgLasso includes our previous algorithm [11] as a special case,
when the index tree is of depth 1 and w0

1 = 0.

3.3 The Effective Interval for the Values of λ

When estimating the model parameters via (1), a key issue is to choose the appropriate values for
the regularization parameter λ. A commonly used approach is to select the regularization parameter
from a set of candidate values, whose values, however, need to be pre-specified in advance. There-
fore, it is essential to specify the effective interval for the values of λ. An analysis of MYtgLasso

in Algorithm 1 shows that, with increasing λ, the entries of the solution to (3) are monotonically
decreasing. Intuitively, the solution to (3) shall be exactly zero if λ is sufficiently large and all the
entries of x are penalized in φ(x). Next, we summarize the main results of this subsection.
Theorem 2. The zero point is a solution to (1) if and only if the zero point is a solution to (3)
with v = −l′(0). For the penalty φ(x), let us assume that all entries of x are penalized, i.e.,
∀l ∈ {1, 2, . . . , p}, there exists at least one node Gi

j that contains l and meanwhile wi
j > 0. Then,

for any 0 < ‖ − l′(0)‖ < +∞, there exists a unique λmax < +∞ satisfying: 1) if λ ≥ λmax the
zero point is a solution to (1), and 2) if 0 < λ < λmax, the zero point is not a solution to (1).

Proof: If x∗ = 0 is the solution to (1), we have (24). Setting τ = 1 in (23), we obtain that x∗ = 0
is also the solution to (3) with v = −l′(0). If x∗ = 0 is the solution to (3) with v = −l′(0), we
have 0 ∈ l′(0) + λ∂φ(0), which indicates that x∗ = 0 is the solution to (1).

The function φ(x) is closed convex. According to [18, Chapater 3.1.5], ∂φ(0) is a closed convex
and non-empty bounded set. From (8), it is clear that 0 ∈ ∂φ(0). Therefore, we have ‖x‖ ≤
R, ∀x ∈ ∂φ(0), where R is a finite radius constant. Let

S = {x : x = −αRl′(0)/‖l′(0)‖, α ∈ [0, 1]}
be the line segment from 0 to −Rl′(0)/‖l′(0)‖. It is obvious that S is closed convex and bounded.
Define I = S

⋂
∂φ(0), which is clearly closed convex and bounded. Define

λ̃max = ‖l′(0)‖/ max
x∈I

‖x‖.

It follows from ‖l′(0)‖ > 0 and the boundedness of I that λ̃max > 0. We first show λ̃max < +∞.
Otherwise, we have I = {0}. Thus, ∀λ > 0, we have −l′(0)/λ /∈ ∂φ(0), which indicates that 0 is
neither the solution to (1) nor (3) with v = −l′(0). Recall the assumption that, ∀l ∈ {1, 2, . . . , p},
there exists at least one node Gi

j that contains l and meanwhile wi
j > 0. It follows from Algorithm 1

that, there exists a λ̃ < +∞ such that when λ > λ̃, 0 is a solution to (3) with v = −l′(0), leading to
a contradiction. Therefore, we have 0 < λ̃max < +∞. Let λmax = λ̃max. The arguments hold since
1) if λ ≥ λmax, then −l′(0)/λ ∈ I ⊆ ∂φ(0); and 2) if 0 < λ < λmax, then −l′(0)/λ /∈ ∂φ(0). ¤
When l′(0) = 0, the problem (1) has a trivial zero solution. We next focus on the nontrivial case
l′(0) 6= 0. We present the algorithm for efficiently solving λmax in Algorithm 2. In Step 1, λ0 is an

initial guess of the solution. Our empirical study shows that λ0 =
√

‖l′(0)‖2∑d
i=0

∑ni
j=1(w

i
j)

2 works quite

well. In Step 2-6, we specify an interval [λ1, λ2] in which λmax resides. Finally, in Step 7-14, we
apply bisection for computing λmax.

6



Algorithm 2 Finding λmax via Bisection
Input: l′(0), the index tree T with nodes Gi

j (i = 0, 1, . . . , d, j = 1, 2, . . . , ni), the weights wi
j ≥ 0

(i = 0, 1, . . . , d, j = 1, 2, . . . , ni), λ0, and δ = 10−10

Output: λmax

1: Set λ = λ0

2: if φλ(−l′(0)) = 0 then
3: Set λ2 = λ, and find the largest λ1 = 2−iλ, i = 1, 2, . . . such that πλ1(−l′(0)) 6= 0
4: else
5: Set λ1 = λ, and find the smallest λ2 = 2iλ, i = 1, 2, . . . such that πλ2(−l′(0)) = 0
6: end if
7: while λ2 − λ1 ≥ δ do
8: Set λ = λ1+λ2

2
9: if πλ(−l′(0)) = 0 then

10: Set λ2 = λ
11: else
12: Set λ1 = λ
13: end if
14: end while
15: λmax = λ

4 Experiments

We have conducted experiments to evaluate the efficiency and effectiveness of the proposed tgLasso
algorithm on the face data sets JAFFE [14] and AR [15]. JAFFE contains 213 images of ten Japanese
actresses with seven facial expressions: neutral, happy, disgust, fear, anger, sadness, and suprise.
We used a subsect of AR that contains 400 images corresponding to 100 subjects, with each subject
containing four facial expression: neutral, smile, anger, and scream. For both data sets, we resize
the image size to 64 × 64, and make use of the tree structure depicted in Figure 1. Our task is
to discriminate each facial expression from the rest ones. Thus, we have seven and four binary
classification tasks for JAFFE and AR, respectively. We employ the least squares loss for l(·), and
set the regularization parameter λ = r × λmax, where λmax is computed using Algorithm 2, and
r = {5×10−1, 2×10−1, 1×10−1, 5×10−2, 2×10−2, 1×10−2, 5×10−3, 2×10−3}. The source
codes, included in the SLEP package [12], are available online1.

Table 1: Computational time (seconds) for one binary classification task (averaged over 7 and 4 runs for JAFFE
and AR, respectively). The total time for all eight regularization parameters is reported.

JAFFE AR
tgLasso 30 73
alternating algorithm [9] 4054 5155

Efficiency of the Proposed tgLasso We compare our proposed tgLasso with the recently proposed
alternating algorithm [9] designed for the tree-guided group Lasso. We report the total computational
time (seconds) for running one binary classification task (averaged over 7 and 4 tasks for JAFFE and
AR, respectively) corresponding to the eight regularization parameters in Table 1. We can obseve
that tgLasso is much more efficient than the alternating algorithm. We note that, the key step of
tgLasso in each iteration is the associated Moreau-Yosida regularization, which can be efficiently
computed due to the existence of an analytical solution; and the key step of the alternating algorithm
in each iteration is the matrix inversion, which does not scale well to high-dimensional data.

Classification Performance We compare the classification performance of tgLasso with Lasso. On
AR, we use 50 subjects for training, and the remaining 50 subjects for testing; and on JAFFE, we
use 8 subjects for training, and the remaining 2 subjects for testing. This subject-independent setting
is challenging, as the subjects to be tested are not included in the training set. The reported results
are averaged over 10 runs for randomly chosen subjects. For each binary classification task, we
compute the balanced error rate [3] to cope with the unbalanced positive and negative samples. We

1http://www.public.asu.edu/˜jye02/Software/SLEP/

7



5e−1 2e−1 1e−1 5e−2 2e−2 1e−2 5e−3 2e−3
18

19

20

21

22

23

24

25

26

regularization parameter r

ba
la

nc
ed

 e
rr

or
 r

at
e 

(%
)

AR

 

 

tgLasso
Lasso

5e−1 2e−1 1e−1 5e−2 2e−2 1e−2 5e−3 2e−3
36

36.5

37

37.5

38

38.5

39

39.5

40

regularization parameter r

ba
la

nc
ed

 e
rr

or
 r

at
e 

(%
)

JAFFE

 

 

tgLasso
Lasso

Figure 3: Classification performance comparison between Lasso and the tree structured group Lasso. The
horizontal axis corresponds to different regularization parameters λ = r × λmax.

Neutral Smile Anger Sceam

Figure 4: Markers obtained by Lasso, and tree structured group Lasso (white pixels correspond to the markers).
First row: face images of four expression from the AR data set; Second row: the markers identified by tree
structured group Lasso; Third row: the markers identified by Lasso.

report the averaged results in Figure 3. Results show that tgLasso outperforms Lasso in both cases.
This verifies the effectiveness of tgLasso in incorporating the tree structure in the formulation, i.e.,
the spatial locality information of the face images. Figure 4 shows the markers identified by tgLasso
and Lasso under the best regularization parameter. We can observe from the figure that tgLasso
results in a block sparsity solution, and most of the selected pixels are around mouths and eyes.

5 Conclusion

In this paper, we consider the efficient optimization for the tree structured group Lasso. Our main
technical result show the Moreau-Yosida regularization associated with the tree structured group
Lasso admits an analytical solution. Based on the Moreau-Yosida regularization, we an design effi-
cient algorithm for solving the grouped tree structure regularized optimization problem for smooth
convex loss functions, and develop an efficient algorithm for determining the effective interval for
the parameter λ. Our experimental results on the AR and JAFFE face data sets demonstrate the
efficiency and effectiveness of the proposed algorithm. We plan to apply the proposed algorithm to
other applications in computer vision and bioinformatics involving the tree structure.

Acknowledgments

This work was supported by NSF IIS-0612069, IIS-0812551, CCF-0811790, IIS-0953662, NGA
HM1582-08-1-0016, NSFC 60905035, 61035003, and the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the US Army.

8



References
[1] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In

International conference on Machine learning, 2004.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[3] I. Guyon, A. B. Hur, S. Gunn, and G. Dror. Result analysis of the nips 2003 feature selection challenge.
In Neural Information Processing Systems, pages 545–552, 2004.

[4] E.T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization: Methodology and con-
vergence. SIAM Journal on Optimization, 19(3):1107–1130, 2008.

[5] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I & II. Springer
Verlag, Berlin, 1993.

[6] L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In International Conference
on Machine Learning, 2009.

[7] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.
Technical report, arXiv:0904.3523v2, 2009.

[8] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary
learning. In International Conference on Machine Learning, 2010.

[9] S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In
International Conference on Machine Learning, 2010.

[10] C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau-Yosida regularization I: Theoretical
properties. SIAM Journal on Optimization, 7(2):367–385, 1997.

[11] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient `2,1-norm minimization. In Uncertainty
in Artificial Intelligence, 2009.

[12] J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Efficient Projections. Arizona State University, 2009.

[13] J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2010.

[14] M. J. Lyons, J. Budynek, and S. Akamatsu. Automatic classification of single facial images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(12):1357–1362, 1999.

[15] A.M. Martinez and R. Benavente. The AR face database. Technical report, 1998.

[16] L. Meier, S. Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal
Statistical Society: Series B, 70:53–71, 2008.

[17] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Societe mathematique de
France, 93:273–299, 1965.

[18] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publish-
ers, 2004.

[19] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion Paper,
2007.

[20] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B, 58(1):267–288, 1996.

[21] K. Yosida. Functional Analysis. Springer Verlag, Berlin, 1964.

[22] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal Of
The Royal Statistical Society Series B, 68(1):49–67, 2006.

[23] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical
variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.

9


