
A Supplementary material: Proofs

Before proving Theorems 1 and 2, we provide some preliminaryresults presented sections A.1
and A.2

A.1 Tail inequalities for vector-valued martingales

We need the following result about vector-valued martingales, extracted from [12].
Lemma 1. Let(Fk; k ≥ 0) be a filtration,(mk; k ≥ 0) be anR

d-valued stochastic process adapted
to (Fk), (ηk; k ≥ 1) be a real-valued martingale difference process adapted to(Fk). Assume that
ηk is conditionally sub-Gaussian in the sense that there exists someR > 0 such that for anyγ ≥ 0,
k ≥ 1,

E[exp(γηk) | Fk−1] ≤ exp

(

γ2R2

2

)

a.s. (9)

Consider the martingaleξt =
∑t

k=1
mk−1ηk and the processMt =

∑t
k=1

mk−1m
′
k−1. Assume

that with probability one the smallest eigenvalue ofMd is lower bounded by some positive constant
λ0 and that‖mk‖2 ≤ cm holds a.s. for anyk ≥ 0.

The following hold true: Let

κ =
√

3 + 2 log(1 + 2c2
m/λ0). (10)

For anyx ∈ R
d, 0 < δ ≤ 1/e, t ≥ max(d, 2), with probability at least1 − δ,

|x′ξt| ≤ κR
√

2 log t
√

log(1/δ) ‖x‖Mt
. (11)

Further, for any0 < δ < min(1, d/e), t ≥ max(d, 2), with probability at least1 − δ,

‖ξt‖M−1
t

≤ κR
√

2 d log t
√

log(d/δ). (12)

The proof of (11) is based on an exponential inequality of [16] and is adopted from that of
Lemma B.4 of [17]. Given (11), inequality (12) follows by some algebra from (11).

Proof. In order to prove (11), we shall use Corollary 2.2 of [16] which states the following: Pick
some random variablesA andB ≥ 0 such that

E

[

exp

{

γA − γ2

2
B2

}]

≤ 1 for all γ ∈ R . (13)

Then, for allc ≥
√

2, and ally > 0,

P

(

|A| ≥ c

√

(B2 + y)

(

1 +
1

2
log

(

B2

y
+ 1

))

)

≤ exp

{

−c2

2

}

. (14)

We apply this inequality to the random variablesA = x′ξt/R andB = ‖x‖Mt
, wherex ∈ R

d is
some fixed vector. We first check if the so-definedA, B satisfy (13). Pick anyγ ∈ R. We first study
γA − (γB)2/2. We have

γA − (γB)2/2 =
γ x′ξt

R
− γ2 x′Mtx

2
=

t
∑

k=1

Dk ,

where
Dk = γ

R x′mk−1ηk − γ2

2
x′ mk−1m

′
k−1 x = γ

R x′mk−1ηk − γ2

2
(x′mk−1)

2 .

Now, observe that thanks to (9),E [ exp(Dk) | Fk−1] ≤ 1. Let Pk = exp(Dk). Noting thatPk is
Fk-adapted,

E
[

exp(γA − γB2/2)
]

= E [P1 · · ·Pt−1Pt]

= E [E [P1 · · ·Pt−1Pt | Ft−1]] = E [P1 · · ·Pt−1 E [Pt | Ft−1]]

≤ E [E [P1 · · ·Pt−1 | Ft−2]] = E [P1 · · ·Pt−2E [Pt−1 | Ft−2]]

...

≤ E [E [P1 | F0]] ≤ 1
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which finishes the verification of (13). Now, choosey = λ0‖x‖2

2
to get from (14) that for all

0 < δ ≤ 1/e, t ≥ 1, with probability1 − δ,

|x′ξt| ≤ R

√

√

√

√

(

‖x‖2

Mt
+ λ0‖x‖2

2

)

(

1 +
1

2
log

(

1 +
‖x‖2

Mt

λ0‖x‖2

2

))
√

2 log

(

1

δ

)

. (15)

Noting that fort ≥ max(d, 2), λ0‖x‖2

2
≤ ‖x‖2

Mt
≤ t‖x‖2

2
c2
m, we have‖x‖2

Mt
+λ0‖x‖2

2
≤ 2‖x‖2

Mt

and1 + 1

2
log

(

1 +
‖x‖2

Mt

λ0‖x‖2
2

)

≤ 1 + 1

2
log
(

1 +
tc2

m

λ0

)

≤ κ2 log(t)/2, thanks to the definition of

κ. Indeed, it is easy to verify that the slope of function1 + 1

2
log(1 + c2

mt/λ0) is below that of
κ2 log(t)/2 for anyt ≥ 1 provided thatκ ≥ 1. Hence, the last inequality holds if it holds true for
t = 2, which, after reordering the terms gives the constraint

κ ≥
√

2 + log(1 + 2c2
m/λ0)

log 2
.

Upper bounding2/ log 2 by 3 and1/ log 2 by 2, we get the definition ofκ, which indeed satisfies
κ ≥ 1.

Hence, when (15) holds, it also holds that

|x′ξt| ≤ κR‖x‖Mt

√

log(t)

√

2 log

(

1

δ

)

. (16)

which is exactly (11).

Now, let us turn to proving (12). Denote bySt the symmetric, positive definite matrix such that
S2

t = Mt and, for all1 ≤ i ≤ d, letei be theith unit vector (i.e., for allj 6= i, eij = 0 andeii = 1).
Noting that the identity matrix can be written asI =

∑d
i=1

eie
′
i, we have‖ξt‖2

M−1

t
= ξ′tM

−1
t ξt =

ξ′tS
−1
t IS−1

t ξt =
∑d

i=1
ξ′tS

−1
t eie

′
iS

−1
t ξt. Therefore, for any constantτ > 0,

P

[

‖ξt‖2

M−1

t
≥ dτ2

]

= P

[

d
∑

i=1

ξ′tS
−1
t eie

′
iS

−1
t ξt ≥ dτ2

]

≤
d
∑

i=1

P
[

ξ′tS
−1
t eie

′
iS

−1
t ξt ≥ τ2

]

≤
d
∑

i=1

P
[

|ξ′tS−1
t ei| ≥ τ

]

.

Applying (11) with x = S−1
t ei, and τ = κR

∥

∥S−1
t ei

∥

∥

Mt

√

log(t)
√

2 log
(

d
δ

)

, 0 < δ <

min(1, d/e), t ≥ max(d, 2), and using the fact that
∥

∥S−1
t ei

∥

∥

Mt
= 1, we have

P

[

‖ξt‖2

M−1

t
≥ 2dκ2R2 log(t) log

(

d

δ

)]

≤ δ ,

thus, finishing the proof.

Remark 1. Note that ifηk ∈ [αk − R, αk + R] holds almost surely for someFk−1-measurable
random variableαk then, using Hoeffding’s lemma (see, e.g., Lemma A.1 of [3]),we get that for all
γ ∈ R,

E [ exp {γηk} | Fk−1] ≤ exp {γE [ηk | Fk−1]} exp

{

4R2γ2

8

}

= exp

{

γ2 R2

2

}

,

showing that(ηk) satisfies the sub-Gaussian conditions(9). In particular, this holds if|ηk| ≤ R
holds almost surely.
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A.2 A bound on the prediction error

In this section we prove some bounds on the error of predicting the mean-rewards.

We start with the following result:

Proposition 1. Take anyδ, t such that0 < δ < min(1, d/e), 1 + max(d, 2) ≤ t ≤ T . Let Ãt be
anyA-valued random variable. Let

βa
t (δ) =

2 kµκRmax

cµ
‖ma‖M−1

t

√

2 d log t
√

log(d/δ) , (17)

whereκ is defined by(10). Then, with probability at least1 − δ, it holds that
∣

∣

∣
µ(m′

Ãt
θ∗) − µ(m′

Ãt
θ̃t)
∣

∣

∣
≤ βÃt

t (δ) .

Proof. Pick a timet such thatd + 1 ≤ t ≤ T and an actiona ∈ A. We start with bounding
∣

∣

∣
µ(m′

aθ∗) − µ(m′
aθ̃t)

∣

∣

∣
. Sinceµ is Lipschitz, we have|µ(m′

aθ∗) − µ(m′
aθ̃t)| ≤ kµ|m′

a(θ∗ − θ̃t)|.
By Assumption 1,∇gt is continuous,5 hence, by the Fundamental Theorem of Calculus,

gt(θ∗) − gt(θ̃t) = Gt(θ∗ − θ̃t) ,

where

Gt =

∫ 1

0

∇gt (sθ∗ + (1 − s)θ̃t) ds .

Now, for anyθ ∈ Θ, ∇gt(θ) =
∑t−1

k=1
mAk

m′
Ak

µ̇(m′
Ak

θ). Therefore, thanks to Assumption 1, we
haveGt � cµMt � cµMd ≻ 0, where in the last step we used that the firstd actions are such that
Md � λ0I ≻ 0. Thus,Gt is positive definite and, hence, it is also non-singular. Therefore,

∣

∣

∣
µ(m′

aθ∗) − µ(m′
aθ̃t)

∣

∣

∣
≤ kµ

∣

∣

∣
m′

aG−1
t (gt(θ∗) − gt(θ̃t))

∣

∣

∣
.

SinceG−1
t is also positive definite, we get

∣

∣

∣
µ(m′

aθ∗) − µ(m′
aθ̃t)

∣

∣

∣
≤ kµ‖ma‖G−1

t

∥

∥

∥
gt(θ∗) − gt(θ̃t)

∥

∥

∥

G−1

t

. (18)

SinceGt � cµMt implies thatG−1
t � c−1

µ M−1
t , ‖x‖G−1

t
≤ 1√

cµ
‖x‖M−1

t
holds for arbitrary

x ∈ R
d. Hence,

∣

∣

∣
µ(m′

aθ∗) − µ(m′
aθ̃t)

∣

∣

∣
≤ kµ

cµ
‖ma‖M−1

t

∥

∥

∥
gt(θ∗) − gt(θ̃t)

∥

∥

∥

M−1
t

.

Now,
∥

∥

∥
gt(θ∗) − gt(θ̃t)

∥

∥

∥

M−1

t

≤
∥

∥

∥
gt(θ∗) − gt(θ̂t)

∥

∥

∥

M−1

t

+
∥

∥

∥
gt(θ̂t) − gt(θ̃t)

∥

∥

∥

M−1

t

≤ 2
∥

∥

∥
gt(θ∗) − gt(θ̂t)

∥

∥

∥

M−1

t

,

where the first inequality follows from the triangle inequality and second follows since by
assumptionθ∗ ∈ Θ and because of the optimizing property ofθ̃t within Θ.

Thanks to the definition of̂θt, and usingǫk = Rk − µ(m′
Ak

θ∗), ξt
def
= gt(θ̂t) − gt(θ∗) =

∑t−1

k=1
mAk

ǫk. Therefore,
∣

∣

∣
µ(m′

aθ∗) − µ(m′
aθ̃t)

∣

∣

∣
≤ 2 kµ

cµ
‖ma‖M−1

t
‖ξt‖M−1

t
.

Since this holds simultaneously for alla ∈ A, it also holds whena is replaced byany A-valued
random variablẽAt:

∣

∣

∣
µ(m′

Ãt
θ∗) − µ(m′

Ãt
θ̃t)
∣

∣

∣
≤ 2 kµ

cµ

∥

∥mÃt

∥

∥

M−1

t

‖ξt‖M−1
t

. (19)

5For allx ∈ R
d, ∇gt(x) denotes the Jacobian matrix ofgt at pointx.
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Now, let us use Lemma 1 to bound‖ξt‖M−1

t
. Set mk = mAk+1

(k = 0, 1, . . .),
ηk = ǫk (k = 1, 2, . . .), Fk = σ(ms, ηs; s ≤ k). Due to Assumption 3,E [ηk|Fk−1] =
E [ηk|mk−1, ηk−1, . . . , m1, η1, m0] = E [ǫk|mAk

, ǫk−1, . . . , mA2
, ǫ1, mA1

] = 0. Since by the
same assumption,|ǫk| ≤ Rmax, we may chooseR = Rmax by Remark 1. Further, by Assump-
tion 2, ‖mk‖2 = ‖mAk+1

‖2 ≤ maxa∈A ‖ma‖2 ≤ cm, and, by the choice of the firstd actions,
∑d

k=1
mk−1m

′
k−1

=
∑d

k=1
mAk

m′
Ak

� λ0I. Therefore, all the assumptions of the Lemma are
met and we can conclude that for any0 < δ < min(1, d/e), t ≥ 1 + max(d, 2), with probability
at least1 − δ,

‖ξt‖M−1

t
≤ κRmax

√

2 d log t
√

log(d/δ), (20)

whereκ is defined by (10).

By chaining (19) and (20), we get that on the event when (20) holds, we also have
∣

∣

∣
µ(m′

Ãt
θ∗) − µ(m′

Ãt
θ̃t)
∣

∣

∣
≤ 2 kµκRmax

cµ

∥

∥mÃt

∥

∥

M−1

t

√

2 d log t
√

log(d/δ) ,

finishing the proof.

Proposition 1 implies the following bound on the immediate mean regret:

Proposition 2. For all δ such that 0 < δ ≤ min(1, 2Td/e), simultaneously for all
t ∈ {1 + max(d, 2), . . . , T},

µ(m′
a∗

θ∗) − µ(m′
At

θ∗) ≤ 2 βAt

t

(

δ
2T

)

.

holds with probability at least1 − δ.

Proof. Fix t ∈ {1+max(d, 2), . . . , T} and letδ be as in the statement. Consider the decomposition

µ(m′
a∗

θ∗) − µ(m′
At

θ∗) =
(

µ(m′
a∗

θ∗) − µ(ma∗
θ̃t)
)

+
(

µ(ma∗
θ̃t) − µ(mAt

θ̃t)
)

+
(

µ(mAt
θ̃t) − µ(m′

At
θ∗)
)

.

Now, according to Proposition 1, outside of an event of measure bounded byδ/(2T ),

µ(m′
a∗

θ∗) − µ(m′
a∗

θ̃t) ≤ βa∗

t (δ/(2T )) .

Also, outside of an event of measure bounded byδ/(2T ),

µ(m′
At

θ∗) − µ(m′
At

θ̃t) ≤ βAt

t (δ/(2T )) .

Further, by the definition ofAt,

µ(ma∗
θ̃t) − µ(mAt

θ̃t) = µ(ma∗
θ̃t) + βa∗

t (δ/(2T )) − µ(mAt
θ̃t) − βa∗

t (δ/(2T ))

≤ µ(mAt
θ̃t) + βAt

t (δ/(2T )) − µ(mAt
θ̃t) − βa∗

t (δ/(2T ))

= βAt

t (δ/(2T ))− βa∗

t (δ/(2T )).

Chaining the inequalities and using a union bound gives the final result.

According to the previous proposition, the behavior of the immediate regret at time step
t is bounded by2βAt

t (δ/2T ) = 2ρ(t)‖mAt
‖M−1

t
≤ 2ρ(T )‖mAt

‖M−1

t
. Therefore, with

t0 = 1+max(d, 2), outside of an event of probability at mostδ, we can bound the cumulated regret
up to timeT by

RegretT ≤ (t0 − 1)Rmax +

T
∑

t=t0

min
{

µ(m′
a∗

θ∗) − µ(m′
At

θ∗), Rmax

}

(21)

≤ (t0 − 1)Rmax + 2 ρ(T )

T
∑

t=t0

min
{

‖mAt
‖M−1

t
, 1
}

, (22)
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where the last inequality follows from the fact thatRmax ≤ 2ρ(T ) by definition of ρ(T ).
Note that ‖mAt

‖M−1
t

is expected to become small ast gets large. This motivates us to

bound a sum of‖mAt
‖2

M−1

t
. For technical reasons that will become clear later, we bound

∑T
t=d min

{

‖mAt
‖2

M−1

t
, 1
}

.

Proposition 3. Let t0 ≥ d + 1. Then,
∑T

t=t0
min

{

‖mAt
‖2

M−1

t
, 1
}

≤ 2 d log
(

c2
mT
λ0

)

a.s. .

Proof. This proof follows the steps of the proof of Lemma 9 of [8]. By the definition ofMt+1, we
have

det (Mt+1) = det
(

Mt + mAt
m′

At

)

= det (Mt) det
(

I + M
−1/2

t mAt
(M

−1/2

t mAt
)′
)

= det (Mt)
(

1 + ‖mAt
‖2

M−1

t

)

= det (Mt0)

t
∏

k=t0

(

1 + ‖mAk
‖2

M−1

k

)

,

where the last line follows from the fact that1 + ‖mAt
‖2

M−1

t
is an eigenvalue of the matrix

I + M
−1/2

t mAt
(M

−1/2

t mAt
)′ and that all the other eigenvalues are equal to1. Thus, using the fact

thatx ≤ 2 log(1 + x) which holds for any0 ≤ x ≤ 1, we have
T
∑

t=t0

min
{

‖mAt
‖2

M−1

t
, 1
}

≤ 2

T
∑

t=t0

log
(

1 + ‖mAt
‖2

M−1

t

)

= 2 log

T
∏

t=t0

(

1 + ‖mAt
‖2

M−1

t

)

= 2 log

(

det(MT+1)

det(Mt0)

)

.

Note that the trace ofMt+1 is upper-bounded byt c2
m. Then, since the trace of the positive definite

matrixMt+1 is equal to the sum of its eigenvalues anddet(Mt+1) is the product of its eigenvalues,
we havedet(Mt+1) ≤ (tc2

m)d. In addition,det(Mt0) ≥ λd
0 sincet0 ≥ d + 1. Thus,

T
∑

t=t0

min
{

‖mAt
‖2

M−1

t
, 1
}

≤ 2 d log

(

c2
mT

λ0

)

.

A.3 Proof of the Main Theorems

A.3.1 Proof of Theorem 1

Proof. We start from (21), wheret0 = 1 + max(d, 2). According to the definition of∆(θ∗)
wheneverAt is a suboptimal action,µ(m′

a∗

θ∗) − µ(m′
At

θ∗) ≥ ∆(θ∗), while in the other case we
haveµ(m′

a∗

θ∗) − µ(m′
At

θ∗) = 0. In both cases, we can write

µ(m′
a∗

θ∗) − µ(m′
At

θ∗) ≤
(µ(m′

a∗

θ∗) − µ(m′
At

θ∗))2

∆(θ∗)
.

According to Proposition 2, with probability1 − δ, simultaneously for allt ∈ {t0, . . . , T},

µ(m′
a∗

θ∗) − µ(m′
At

θ∗) ≤ 2βAt

t (δ/(2T )) = 2ρ(t) ‖mAt
‖M−1

t
.

Therefore, on the event when these inequalities holds, we have
T
∑

t=t0

min
{

µ(m′
a∗

θ∗) − µ(m′
At

θ∗), Rmax

}

≤
T
∑

t=t0

min

{

4
ρ(t)2

∆(θ∗)
‖mAt

‖2

M−1

t
, Rmax

}

≤ 4
ρ(T )2

∆(θ∗)

T
∑

t=t0

min
{

‖mAt
‖2

M−1

t
, 1
}

.
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where the last inequality follows from the fact that∆(θ∗) ≤ Rmax ≤ 4ρ(T )2/Rmax and thatρ(.)
is an increasing function. Combining this with the bound of Proposition 3, we get

T
∑

t=t0

min
{

µ(m′
a∗

θ∗) − µ(m′
At

θ∗), Rmax

}

≤ 8 d
ρ(T )2

∆(θ∗)
log

(

c2
mT

λ0

)

.

Plugging in the definition ofρ(T ), we get that it holds with probability1 − δ that

RegretT ≤ (t0 − 1)Rmax +
T
∑

t=t0

min
{

µ(m′
a∗

θ∗) − µ(m′
At

θ∗), Rmax

}

≤ (t0 − 1)Rmax +
32 d2 κ2R2

maxk
2
µ

c2
µ∆(θ∗)

log(T ) log(2d T/δ) log

(

c2
mT

λ0

)

.

A.3.2 Proof of Theorem 2

Proof. Let t0 = 1 + max(d, 2). According to Proposition 2, (22) holds with probability1 − δ, so
it remains to bound

T
∑

t=t0

min
{

‖mAt
‖M−1

t
, 1
}

.

Using the Cauchy-Schwarz inequality and Proposition 3, we have

T
∑

t=t0

min
{

‖mAt
‖M−1

t
, 1
}

≤
√

T

√

√

√

√

T
∑

t=t0

min
{

‖mAt
‖2

M−1

t
, 1
}

≤
√

T
√

2d log(c2
mT/λ0) .

Combining with (22) and using the definition ofρ(·) gives

RegretT ≤ (t0 − 1)Rmax + 2 ρ(T )
√

2 d T log(c2
mT/λ0)

= (t0 − 1)Rmax + 8 d
kµκRmax

cµ

√

T log(T ) log(c2
mT/λ0) log(2Td/δ)

≤ (d + 1)Rmax + 8 d
kµκRmax

cµ
log(s T )

√

T log(2Td/δ),

wheres = max
(

c2
m

λ0
, 1
)

, thus, finishing the proof.
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