A Proofs for “Tight Sample Complexity of Large-Margin Learning ”
(S. Sabato, N. Srebro and N. Tishby)

A.1 Proof of Lemma 3.3

Proof. The inequalityk, < k. is trivial from the definition ofk,. For the other inequality, note
first that we can always I&x .. p . [X X'] be diagonal by rotating the axes w.l.0.g. . Therefore=

min{k | ¢, .| A\ <4k} Sincek, < kw,we havey2k, > S0 K, +1)\ >, Aln

ay+1
addition, by the minimality of:,, ka i > @92 (koy — 1). Thuszizkaw+1 Ai > a2y (ke —
1)— A, . Combining the inequalities we getk, > a?y?(koy—1)— Ak, . Inaddition, ifk, < kq,
theny?ky > 30, A > A, Thus, eithet, = ka 0r 292k, > 092 (kay — 1). O

A.2 Details omitted from the proof of Theorem 4.2

The proof of Theorem 4.2 is complete except for the constmaif X and P in the first paragraph,
which is disclosed here in full, using the following lemma:

Lemma A.l. LetS = (X1,...,X,,) be a sequence of elementsRA, and letX be am x d

matrix whose rows are the elements%fif S is y-shattered, then for every> 0 there is a column
vectorr € R? such that for every € {£y}™ there is aw, € B{1! such thatXw, = y, where
X=(X ).

Proof. if S is y-shattered then there exists a veotar R?, such that for ally € {+1}™ there exists
w, € B¢ suchthatforali € [m],y;((X;,w,) —7r;) > . Fore > 0 definew, = (w,, e) € By,

and7 = r/\/c, and letX = (X 7). For everyy € {+1}™ there is a vectot, € R™ such that
Vi € [m], 3t,liyli] > 1, and > Xw, = 1t,. As in the proof of necessity in Theorem 5.2, it
follows that there exist8&, € By, such that%)?@y = y. Scalingy by ~, we get the claim of the
theorem. O

Now, Let X be am x d matrix whose rows are a set of points inR¢ which isy-shattered. By
Lemma A.1, for any > 0 there exists matriXX' of dimensionsn x (d + 1) such that the first
columns ofX are the respective columns &f, and for ally € {pm~y}™, there is aw, € e B!

~ 1+e
such thatXw, = y. SinceX is (B2, k)-limited, there exists an orthogonal projection matfof
sized x d and rankd — k such that/i € [m], | X/P||? < B2. Let P be the embedding aP in a

(d+ 1) x (d + 1) zero matrix, so thaP is of the same rank and projects onto the same subspace.
The rest of the proof follows as in the body of the paper.

A.3 Proof of Theorem 4.4

Proof of Theorem 4.4Let ¥ = diag(\y,...,A\q) be the covariance matrix dDx, whereV: €
[d—1],\; > \;_1. DefineX,, = {z € R? |El . DX)HJ:H < a}.

Let {z;}*, be an i.i.d. sample of sizex drawn fromDx. We will selecta such that the prob-
ability that the whole sample is containedAn, is large. P[Vi € [m],z; € X,] = (1 — Pla; ¢

I,
X,])™. Let X ~ Dx. Then forallt > 0, P[X ¢ X, = P[>_ b X[ > o] <
Elexp(t Yoy, 11 X[i]?)] exp(—ta).

Let Apax = Ak, +1. DefineY € R? such thatY[i] = W Thenz oy 41 X[i]? =
P b1 A-Y'[i]?, and by the definition of.,, Y0 - AA < Amx. Thus, by Lemma A.2

max

d
Elexp(t Z X <max(E[exp(BtY[iP)])Mw/’\max],
i=k,+1
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For everyi, Y[i] is a sub-Gaussian random variable with momBnt pv/Anax. By [12], Lemma

1.1.6,E[expBtY[i]?)] < (1= 6p*Amaxt) "2, fort € (0, (6p*Amaz) ™). Settingt = gz—,
P[X ¢ X,] < 250/ Amax oxp(———— ).
[(X ¢ Xo] < exp( 12,2 Amax)

Thus there is a constaft such that fora(y) £ C - p?(ky(Dx) + Amax In ), P[X ¢ X, ()] <
— % Clearly, A\max < k,(Dx), andk.( a(v)) < «a(y). Therefore, from Theorem 4.2, the
~-fat-shattering dimension ofV(X,,.)) is O(p*k,(Dx)In%). Define D, to be the distribution
such thafp_[(X,Y)] =Pp,[(X,Y) | X € Xa(,y)] By standard sample complexity bounds [16],

for any distributionD overR¢ x {+1}, with probability at least — g over samples(,, (A, D) <

O(y/ %D)ln%), whereF'(v, D) is they-fat-shattering dimension of the class of linear functions
with domain restricted to the support &f in R<. ConsiderD, /5. Since the support ab.,, 5 is

Xa(y/8)s F(7/8,Dy5) < O(p°ky5(Dx)In %), With probability 1 — § over samples fronDy,
the sample is drawn from,, /5. In addition, the probability of the unlabeled example tadbawn

from X,,(, s is larger thanl — L. Therefore/,,, (A, D) < O( W). Settingd = ¢/2

and bounding the expected error, we gét, v, D) < O(M). Lemma 3.3 allows replacing

k. s with O (k). O
LemmaA.2. LetTy,..., T, be independent random variables such that all the moniefts] for
all 7 are non-negative. LeXy,..., \; be real coefficients such th{tjf:l Xi = L,and\; € [0,1]

forall 7 € [d]. Thenforallt > 0

d
Elexp(t Z AT < me[x;]c(E[exp(?)tTi)]) re
i€
i=1
Proof. Let T; be independent random variables. Then, by Jensen'’s iriggual

d d d

E[exp(tZ/\iTi)} = HE[eXp(t)\iTi)] H [exp(tT; Z/\ Ziaih < max E[exp(tT; Z)\

d
i=1 i=1 i€ld) j=1

Now, consider a partitiots, . .., Z; of [d], and denotel; = >~ , Ai. Then by the inequality

above,
k

£ AT)] < Elexp(tT,L,).
Efexp( ; ) jl:[lgrelgf [exp(tT;L;)]
J .

sz

d
Elexp(t Z
i=1

Let the partition be such that for @He [ |, L; < 1. There exists such a partition such ttigt< %
for no more than ong. Therefore, for this partitiol. = Zle Ai=2iemLi = 1(k—1). Thus
k<2L+1.

Now, consideiE[exp(¢T;L,)] for somei andj. For any random variabl&

Elexp(tX)] = > tnET[Lif(n].
n=0 .

Therefore E[exp(tT;L;)] = >0, z L(nnE[' i

thatE[exp(tT;L;)] < Elexp(tT;)]. Thus

7] . SinceE[T}*] > 0 for all n, andL; < 1, it follows

k k
Elexp(t Z AT H maxE [exp(tT;)] < maxE [exp(t Z Ty
i=1 j=1

Jj=1

whereT;[j] are independent copies 9.
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It is easy to see thaklexp[ S>% | X;]] < Elexp[t 320, Xi]], fora > band Xy,..., X, i.id.
random variables. Sinde> [ L] it follows that

d k [L]
Elexp(t Z AT < majfE[eXp(tZ T;[7])] < maxE[exp(t L1 Z T;[j

d
i=1 j=1 i€ld]

Sincek < 2L + 1 and all the moments dF;[;j] are non-negative, it follows that

[L]

d
1< E t(24 — T;[j
Elexp( Z:: gréa(;( [exp(t( + Z

A.4 Proof of Theorem 5.2

the following lemma, which allows converting the repres¢éion of the Gram-matrix to a differ-
ent feature space while keeping the separation propertiasti For a matrixA/, M+ denotes its
pseudo-inverse. fM’ M) is invertible thenM/ * = (B'B) "' B’.

Lemma A.3. Let X be anm x d matrix such thatX X’ is invertible, andY” such thatX X’ = YY"
Letr € R™ be some real vector. If there exists a vectosuch thatYw = r, then there exists
a vectorw such thatXw = rand|w| = = Y'(YY')"lY is the
projection matrix onto the sub-space spanned by the rows of

Proof. Denote K = XX’ = YY'. SetT = Y'X't = YK 'X. Setw = T'w. We have
Xw = XT'w = XX'K~'Yw = Yw = r. In addition, |w|| = w'w = @'TT"w. By definition
of T, TT' = Y'X'*X'Y = Y'K'Y = YK~'Y = Y/(YY')"'Y = Y'Yt = P. SinceP
is a projection matrix, we hav®? = P. In addition,P = P’. ThereforeI'T" = PP’, and so
|w] = @' PP'w = ||Pw||. O

The next lemma will allow us to prove that if a set is shatteatthe origin, it can be separated with

the exact margin.
LemmaA.4. LetR = {r, € R™ | y € {£1}™} such that for ally € {£1}™ and for alli € [m],

rylilyli] = 1. ThenVy € {£1}"™,y € conV(R).
Proof. We will prove the claim by induction on the dimension

Induction base Form = 1, we haveR = {(a), (b)} wherea < —1 andb > 1. Clearly, con\R =
[a, b], and the two one-dimensional vectdrsl) and(—1) are in[a, b].

Induction step: For a vectott = (t[1],...,t[m]) € R™, denote byt its projection(¢[1],. .., t[m —
1]) onR™~1, Similarly, for a set of vectors C R™, let S — {s|seS}CR™! . Define

Yi={y e {£1}" | y[m] = +1}
Yo ={y e {£1}" | y[m] = —1}.

Let R, = {r, | y € Y.}, and similarly forR_. ThenR, and R_ satisfy the assumptions fdt
whenm — 1 is substituted forn.

Let y* € {£1}™. We wish to provey* € conMR). From the induction hypothesis we have
g* € conMRy) andy* € conMR_). Thus

Z QyTy = Z ByTy,

yeYy yeY_

whereay, 8, > 0, 3o oy, oy = 1, and3; oy B, = 1. Lety; = > oy ayr, andy; =
> yey. Qyry. We havethaty € Yy, ry[m] > 1, andvVy € Y_, ry[m] < —1. Thereforey;[m] > 1
andy; [m] < —1. Inaddition,j} = y; = y. Hence thereis € [0, 1] such thay* = vy} +(1—7)y;.
Sincey € conM R, ) andy; € conMR_), we havey* € conR). O
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Proof of Theorem 5.2Let X X’ = UAU’ be the SVD ofX X', whereU is an orthogonal matrix
andA is a diagonal matrix. Let” = UA2. We haveX X’ = Y'Y’. We show that the conditions are
sufficient and necessary for the shatteringof

Sufficient: AssumeX X"’ is invertible. ThenA is invertible, thusY is invertible. For anyy €
{£1}™, Letw = Y ~1y. We haveY w = y. In addition,||w||* = ¢/ (YY) "1y = /(X X) "1y < 1.
Therefore, by Lemma A.3, there exists a separatsuch thatXw = y and||w|| = || Pw|| = ||w||.

Necessary If X X’ is not invertible then the vectors il are linearly dependent, thus by standard
VC-theory [16]S cannot be shattered using linear separators. The first ttamds therefore nec-
essary. We assumg is 1-shattered at the origin and show that the second condigmessarily
holds. LetL = {r | 3w € B{, Xw = r}. SinceS is shattered, For any € {41}™ there exists
ry € L suchthatvi € [m],r,[i]y[{] > 1. By Lemma A.4,Yy € {£1}",y € con(R) where

R ={ry |y e {£1}™}. SinceL is convex and? C L, conR) C L. Thus for ally € {£1}™,

y € L, that is there exists), € R™ such thatXw, = y and||w, | < 1. From Lemma A.3 we thus
havew, such thatyw, = y and||w,| = ||Pw,| < ||lw,| < 1.Y isinvertible, hencev, = Y ~1y.
Thusy/ (XX') "ty =y' (YY) "ty = [lw,[| < 1. 0

A.5 Proof of Theorem 6.2
First, define:

e The unit sphereS™—! = {z € R" | ||z|]2 = 1}.
e An e-Net on the unit sphere: Denote Y, (¢) a minimal-sizes-Net for S~ 1, that is a set
such that for aly € S"~!, 3z € N,,(¢) such thatjz — y[|> < e.
For e-Nets we have the following bound on their size:
Proposition A.5 ([19], Proposition 2.1) For anye > 0,
2
INL(e)] < 2n(1 + E)”—1.

The proof of the theorem follows. It relies on several lemmvagh are disclosed subsequently.

Proof of Theorem 6.2Let V,,,(¢) be ane-Net for the unit sphere as defined above. Then for any
matrix A of dimensionsn x d,

An(AA") = inf |2/AA'z|y = inf |A'z|3,

[lll2=1 llz]l2=1
andinf ), =1 [|[A'z[l2 > mingen |A'z2 — €[ A"]|2,2.

We assume w.l.o.g. that is not singular (otherwise the dimension of the space carebeced
appropriately), and leY = X,, %71 Let 3 < (c — Ke¢)? wherec, K, € are parameters to be fixed
later, and letn = SL. Then

PAn (YEY') <m] <P[ inf |[VEY'z|s < (c — Ke)VI]

[[z]2=1
< Bl min |VEY's]s - e|VEY'| < (c - KoV
S €
<Pl min VIVl < oI+ PlIVEY'| 2 K VL)
TE €

SinceYj; is sub-Gaussian with moment, E[Y;}] < 5B* [12, Lemma 1.4]. Thus, by Lemma A.11,
there arex and»n which depend only on B such that

Py[H\/EYﬂP <alL] <nt.

Therefore

P min [VEY'rly < VoLl < 3 By([VEYalls < VaLl < W@l

TEN G, (€)
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We thus letc = min(y/a, 1).
By Lemma A.8, for anyK andp,
(1-p)*K2L

Pl|VEY || > KVI] < 2[N;n(p)||Na(p)| exp(— 5gr )
Combining the inequalities and setting= 5L,
1—p)*K2L
P (VEY') < m] < N ()" + 2N () Nalp) exp(~ 2T
(1-p)*K’L

2 2
< 928L 1+ BL—1 L 4 L2 1 (1+8)L—1 _
<9811+ 2Pty apra i e L2 2

where the last inequality follows from Proposition A.5.

))

Fix p = % Let K be a constant large enough such that forjak 1, and for allL > L, (where
Lo > 0 is arbitrary)

(1—p)*K?L P
212 )< 2_5/2

Lete = ¢/2K, so thatt — Ke > 0, and lets such that for allL > Ly,

2
4BLA(1 4 =)IHAL—L oxp(—
p

28L(1 + 2)ﬁL*nL 5 — /2.
€
Then for the chosefi, and for anyL > L,

P\ (YZY') >m] >1—4.

The following easy to prove facts are found in several placdise literature:
Proposition A.6 (See e.g. [22]) For any linear operatorA : R™ — R9,
1
JAll < t— sup [|Aal]

T2EN G, (€)

Proposition A.7 (See e.qg. [19], proof of Proposition 2.2or any linear operatord : R™ — R<,
and anyz € R™,

1
Az < 1 sup (Az,y).
— € yeNa(e)

In [19] this fact appears using the absolute valu¢Af, y), but the version above can be proved in
the same manner.

The following is a variation on Prop 2.3 in [19].

Lemma A.8. LetY be ad x m matrix withm < d, such thaty;; are independent sub-Gaussian
variables with momenB. LetY = diag(\1, ..., \q) be a diagonall x d matrix with\,; € [0, 1] for
all 7. Then for allt > 0,

)42
BlIVEY]) > 1] < 2N IWa(e)|exp(—; L0,

Proof. From Proposition A.6 it follows that

1
VY| < —— sup ||[VEYz|.
1—¢ N()

TENm (€

Therefore

Elexp(t]VEY )] < Blexp(— swp [VEYal) < 3 Elexp(y—[VEYal)

€N (€) acENm( )
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Now, letz € N, (€). From Proposition A.7,

Elexp(f] VEY )] < Elexp(;— sup (VEVz,))

yENd( )
Z E| exp (\FYx )]
yeNd(E)
Foranyz € S™~ 1,y € §91,
m d,m
Elexp(t <\/>Yx y))] = E[exp( ZZ\/ iTY)] = H [exp(tv/ N Yij 25y
i=1 j=1 i=1,j=1
d,m m d
< H exp( th2 2)\1y1) = exp( BQt2Z Z)\Zyl ) < exp( BQtz)
i=1,5=1 j=1 i=1

where the last inequality follows from the fadts||? = 1, ||y||* = 1, andVi € [d]\; < 1. It follows

that

1 B?*?
E[exp(tH\/EYxH)] < |Nd(€)|eXP(§m)
Thus, for allt € R,

1 B?t?

Elexp(t|VEY[))] < [Non(€)[[Na(e)] exp(im)

By Chernoff's method, for alt > 0

— )42
PIIVEY | > 1] < 2N (a0 exp(— =),

The following lemma is a variation of [20], Lemma 2.6.

Lemma A.9. LetY be ad x m matrix withm < d, such that the columns &f are i.i.d. random
vectors. Assume further the € [d], j € [m] E[Yj;] = 0, E[Y3] = 1 andE[Y;}] < B for some
real numberB. LetX = diag(\4, ..., \;) be a diagonali x d matrix such thati € [d] \; > 0 and
trace(X) < L. Then for every: € S~ 1,

L 1
Y — —.
PIVEYolf < S <1- o

Proof. LetT; = (3", Yijz;)2, and letly = |[VEY |3 = S0, AT
First, sincek[Y;;] = 0 andE[Y;;] = 1 for all 4, j,

=Y E[Y]] = 2]} = 1.
i=1

ThereforeE[Tx] = L.

Second, sinc&;y, . .., Y;,, are independent, we can use a symmetrization argument asrdf20],
proof of Lemma 2.6, to get

m

ZYW:J ] <16B,B = 48B,

WhereB, = 3 is the upper Khlnchme constant fpr= 4 [23]. Thus,
d d
=E[)_NT)’ = > MNELT)]
i=1 i,j=1
d ) d
< 37 NNEIPPE[T?E <48B()N)? = 48BL?,

ij=1 i=1
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Where we have used the fact ti{tX Y]? < E[X?]E[Y?] for any two random variableX andY .
By the Paley-Zigmund inequality [24], if < 6 < 1,

L E[T: 1—6)?
Pl > 0{Ts] > (1- 0P o > L)
2
Therefore, setting = 1/2,
L 1
< = I
Pl < )< 1- 1555

We also use the following lemma:

Lemma A.10 (Lemma 2.2 item (2) in [20]) Let Ty, ..., T, be independent non-negative random
variables. Assume that there exigts- 0 and . € (0,1) such that for any P[T; < 6] < . Then
there existx > 0 andn € (0, 1) that depend only ofi and i such that

P(ZE <an) <n".
=1
The following lemma is used in the proof of the theorem above.

Lemma A.11. LetY be ad x m matrix withm < d, such thatY; ; are independent centered
random variables with varianceé and fourth moments no more tha@h LetX = diag(Ay, ..., \q)

be a diagonald x d matrix with \; < 1 for all 4, and let. = Zle \i. Letz € R™ be a vector
such thatl|z||2 = 1. Then there exist > 0 andn € (0, 1) that depend only o such that

Py[||\/§YxH2 <alL] <n?*

Proof. Consider a partitior, . . ., Z of [d], and denote.; = ., A:. Let the partition be such
that for allj € [k], L; < 1. There exists such a partition such tiigt> 1 for all but at most ong.
Therefore, for this partitio, = 7| \; = Yiem Li = 3(k —1). Thusk < 2L + 1.

Let X[j] be the diagonal matrix whose diagonal elementsarguch that. € Z;, and letY [;] be
the sub-matrix of” which includes only the lines whose indexes ar&jn

Then

d m m
IWVEYz? =3 0O vir)? =Y YO Vi)t = IS6IY )2
i=1 j=1

jE[k] i€Z; j=1 JE[K]
By Lemma A.9.P[||Z[5]Y [j]z||? < 71] <1- 565
LetJ ={je[k]|L; >3} Forallj € J
1
] <)<l ——.
PISLIY e < 4] € 1- s

In addition,|.J| > L. Therefore, by Lemma A.10 there ate> 0 andn € (0, 1) that depend only
on B such that

PlIVEY|? < aL] <P[IVEYz|* < a|J|]

<P IZEY[z)? < algl) < gl < ph.
jed
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