
A Proofs for “Tight Sample Complexity of Large-Margin Learning ”
(S. Sabato, N. Srebro and N. Tishby)

A.1 Proof of Lemma 3.3

Proof. The inequalitykγ ≤ kαγ is trivial from the definition ofkγ . For the other inequality, note
first that we can always letEX∼DX

[XX ′] be diagonal by rotating the axes w.l.o.g. . Thereforekγ =

min{k | ∑d
i=k+1 λi ≤ γ2k}. Sincekγ ≤ kαγ , we haveγ2kγ ≥ ∑d

i=kγ+1 λi ≥
∑d

i=kαγ+1
λi. In

addition, by the minimality ofkαγ ,
∑d

kαγ
λi > α2γ2(kαγ − 1). Thus

∑d
i=kαγ+1

λi > α2γ2(kαγ −
1)−λkαγ

. Combining the inequalities we getγ2kγ > α2γ2(kαγ−1)−λkαγ
. In addition, ifkγ < kαγ

thenγ2kγ ≥ ∑d
i=kαγ

λi ≥ λkαγ
. Thus, eitherkγ = kαγ or 2γ2kγ > α2γ2(kαγ − 1).

A.2 Details omitted from the proof of Theorem 4.2

The proof of Theorem 4.2 is complete except for the construction of X̃ andP̃ in the first paragraph,
which is disclosed here in full, using the following lemma:

Lemma A.1. Let S = (X1, . . . , Xm) be a sequence of elements inRd, and letX be am × d
matrix whose rows are the elements ofS. If S is γ-shattered, then for everyǫ > 0 there is a column
vectorr ∈ R

d such that for everyy ∈ {±γ}m there is awy ∈ B
d+1
1+ǫ such thatX̃wy = y, where

X̃ = (X r).

Proof. if S is γ-shattered then there exists a vectorr ∈ R
d, such that for ally ∈ {±1}m there exists

wy ∈ B
d
1 such that for alli ∈ [m], yi(〈Xi, wy〉−ri) ≥ γ. Forǫ > 0 definew̃y = (wy,

√
ǫ) ∈ B1+ǫ,

and r̃ = r/
√
ǫ, and letX̃ = (X r̃). For everyy ∈ {±1}m there is a vectorty ∈ R

m such that
∀i ∈ [m], 1

γ ty[i]y[i] ≥ 1, and 1
γ X̃w̃y = 1

γ ty. As in the proof of necessity in Theorem 5.2, it

follows that there existŝwy ∈ B1+ǫ such that1γ X̃ŵy = y. Scalingy by γ, we get the claim of the
theorem.

Now, LetX be am × d matrix whose rows are a set ofm points inRd which isγ-shattered. By
Lemma A.1, for anyǫ > 0 there exists matrix̃X of dimensionsm × (d + 1) such that the firstd
columns ofX̃ are the respective columns ofX, and for ally ∈ {pmγ}m, there is awy ∈ B

d+1
1+ǫ

such thatX̃wy = y. SinceX is (B2, k)-limited, there exists an orthogonal projection matrixP of
sized × d and rankd − k such that∀i ∈ [m], ‖X ′

iP‖2 ≤ B2. Let P̃ be the embedding ofP in a
(d + 1) × (d + 1) zero matrix, so that̃P is of the same rank and projects onto the same subspace.
The rest of the proof follows as in the body of the paper.

A.3 Proof of Theorem 4.4

Proof of Theorem 4.4.Let Σ = diag(λ1, . . . , λd) be the covariance matrix ofDX , where∀i ∈
[d− 1], λi ≥ λi−1. DefineXα = {x ∈ R

d | ∑d
i=kγ(DX)+1 x[i]

2 ≤ α}.

Let {xi}mi=1 be an i.i.d. sample of sizem drawn fromDX . We will selectα such that the prob-
ability that the whole sample is contained inXα is large. P[∀i ∈ [m], xi ∈ Xα] = (1 − P[xi /∈
Xα])

m. Let X ∼ DX . Then for all t > 0, P[X /∈ Xα] = P[
∑d

i=kγ+1 X[i]2 ≥ α] ≤
E[exp(t

∑d
i=kγ+1 X[i]2)] exp(−tα).

Let λmax = λkγ+1. DefineY ∈ R
d such thatY [i] = X[i]

√
λmax

λi
. Then

∑d
i=kγ+1 X[i]2 =

∑d
i=kγ+1

λi

λmax
Y [i]2, and by the definition ofkγ ,

∑d
i=kγ+1

λi

λmax
≤ kγ

λmax
. Thus, by Lemma A.2

E[exp(t

d∑

i=kγ+1

X[i]2)] ≤ max
i

(E[exp(3tY [i]2)])⌈kγ/λmax⌉.
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For everyi, Y [i] is a sub-Gaussian random variable with momentB = ρ
√
λmax. By [12], Lemma

1.1.6,E[exp(3tY [i]2)] ≤ (1− 6ρ2λmaxt)
− 1

2 , for t ∈ (0, (6ρ2λmax)
−1). Settingt = 1

12ρ2λmax
,

P[X /∈ Xα] ≤ 2kγ/λmax exp(− α

12ρ2λmax
).

Thus there is a constantC such that forα(γ) , C · ρ2(kγ(DX) + λmax ln m
δ ), P[X /∈ Xα(γ)] ≤

1 − δ
2m . Clearly,λmax ≤ kγ(DX), andkγ(Xα(γ)) ≤ α(γ). Therefore, from Theorem 4.2, the

γ-fat-shattering dimension ofW(Xα(γ)) is O(ρ2kγ(DX) ln m
δ ). DefineDγ to be the distribution

such thatPDγ
[(X,Y )] = PDX

[(X,Y ) | X ∈ Xα(γ)]. By standard sample complexity bounds [16],
for any distributionD overRd × {±1}, with probability at least1 − δ

2 over samples,ℓm(A, D) ≤
Õ(

√
F (γ/8,D) ln 1

δ

m ), whereF (γ,D) is theγ-fat-shattering dimension of the class of linear functions

with domain restricted to the support ofD in R
d. ConsiderDγ/8. Since the support ofDγ/8 is

Xα(γ/8), F (γ/8, Dγ/8) ≤ O(ρ2kγ/8(DX) ln m
δ ). With probability1 − δ over samples fromDX ,

the sample is drawn fromDγ/8. In addition, the probability of the unlabeled example to bedrawn

from Xα(γ/8) is larger than1− 1
m . Thereforeℓm(A, D) ≤ Õ(

√
ρ2kγ/8(DX) ln m

δ

m ). Settingδ = ǫ/2

and bounding the expected error, we getm(ǫ, γ,D) ≤ Õ(
ρ2kγ/8(DX)

ǫ2 ). Lemma 3.3 allows replacing
kγ/8 with O(kγ).

Lemma A.2. LetT1, . . . , Td be independent random variables such that all the momentsE[Tn
i ] for

all i are non-negative. Letλ1, . . . , λd be real coefficients such that
∑d

i=1 λi = L, andλi ∈ [0, 1]
for all i ∈ [d]. Then for allt ≥ 0

E[exp(t

d∑

i=1

λiTi)] ≤ max
i∈[d]

(E[exp(3tTi)])
⌈L⌉.

Proof. Let Ti be independent random variables. Then, by Jensen’s inequality,

E[exp(t
d∑

i=1

λiTi)] =
d∏

i=1

E[exp(tλiTi)] ≤
d∏

i=1

E[exp(tTi

d∑

j=1

λj)]
λi∑d

j=1
λj ≤ max

i∈[d]
E[exp(tTi

d∑

j=1

λj)].

Now, consider a partitionZ1, . . . , Zk of [d], and denoteLj =
∑

i∈Zj
λi. Then by the inequality

above,

E[exp(t

d∑

i=1

λiTi)] =

k∏

j=1

E[exp(t
∑

i∈Zj

λiTi)] ≤
k∏

j=1

max
i∈Zj

E[exp(tTiLj)].

Let the partition be such that for allj ∈ [k], Lj ≤ 1. There exists such a partition such thatLj <
1
2

for no more than onej. Therefore, for this partitionL =
∑d

i=1 λi =
∑

j∈[k] Lj ≥ 1
2 (k − 1). Thus

k ≤ 2L+ 1.

Now, considerE[exp(tTiLj)] for somei andj. For any random variableX

E[exp(tX)] =
∞∑

n=0

tnE[Xn]

n!
.

Therefore,E[exp(tTiLj)] =
∑∞

n=0

tnLn
j E[T

n
i ]

(n)! . SinceE[Tn
i ] ≥ 0 for all n, andLj ≤ 1, it follows

thatE[exp(tTiLj)] ≤ E[exp(tTi)]. Thus

E[exp(t

d∑

i=1

λiTi)] ≤
k∏

j=1

max
i∈Zj

E[exp(tTi)] ≤ max
i∈[d]

E[exp(t

k∑

j=1

Ti[j])],

whereTi[j] are independent copies ofTi.

11



It is easy to see thatE[exp[ 1a
∑a

i=1 Xi]] ≤ E[exp[ 1b
∑b

i=1 Xi]], for a ≥ b andX1, . . . , Xa i.i.d.
random variables. Sincek ≥ ⌈L⌉ it follows that

E[exp(t

d∑

i=1

λiTi)] ≤ max
i∈[d]

E[exp(t

k∑

j=1

Ti[j])] ≤ max
i∈[d]

E[exp(t
k

⌈L⌉

⌈L⌉∑

j=1

Ti[j])].

Sincek ≤ 2L+ 1 and all the moments ofTi[j] are non-negative, it follows that

E[exp(t

d∑

i=1

λiTi)] ≤ max
i∈[d]

E[exp(t(2 +
1

⌈L⌉ )
⌈L⌉∑

j=1

Ti[j])].

A.4 Proof of Theorem 5.2

the following lemma, which allows converting the representation of the Gram-matrix to a differ-
ent feature space while keeping the separation properties intact. For a matrixM , M+ denotes its
pseudo-inverse. If(M ′M) is invertible thenM+ = (B′B)−1B′.

Lemma A.3. LetX be anm×d matrix such thatXX ′ is invertible, andY such thatXX ′ = Y Y ′.
Let r ∈ R

m be some real vector. If there exists a vectorw̃ such thatY w̃ = r, then there exists
a vectorw such thatXw = r and‖w‖ = ‖Pw̃‖, whereP = Y ′Y ′+ = Y ′(Y Y ′)−1Y is the
projection matrix onto the sub-space spanned by the rows ofY .

Proof. DenoteK = XX ′ = Y Y ′. SetT = Y ′X ′+ = Y ′K−1X. Setw = T ′w̃. We have
Xw = XT ′w̃ = XX ′K−1Y w̃ = Y w̃ = r. In addition,‖w‖ = w′w = w̃′TT ′w̃. By definition
of T , TT ′ = Y ′X ′+X+Y = Y ′K+Y = Y ′K−1Y = Y ′(Y Y ′)−1Y = Y ′Y ′+ = P. SinceP
is a projection matrix, we haveP 2 = P . In addition,P = P ′. ThereforeTT ′ = PP ′, and so
‖w‖ = w̃′PP ′w̃ = ‖Pw̃‖.

The next lemma will allow us to prove that if a set is shatteredat the origin, it can be separated with
the exact margin.

Lemma A.4. LetR = {ry ∈ R
m | y ∈ {±1}m} such that for ally ∈ {±1}m and for all i ∈ [m],

ry[i]y[i] ≥ 1. Then∀y ∈ {±1}m, y ∈ conv(R).

Proof. We will prove the claim by induction on the dimensionm.

Induction base: Form = 1, we haveR = {(a), (b)} wherea ≤ −1 andb ≥ 1. Clearly, convR =
[a, b], and the two one-dimensional vectors(+1) and(−1) are in[a, b].

Induction step: For a vectort = (t[1], . . . , t[m]) ∈ R
m, denote bȳt its projection(t[1], . . . , t[m−

1]) onR
m−1. Similarly, for a set of vectorsS ⊆ R

m, let S̄ = {s̄ | s ∈ S} ⊆ R
m−1. Define

Y+ = {y ∈ {±1}m | y[m] = +1}
Y− = {y ∈ {±1}m | y[m] = −1}.

Let R+ = {ry | y ∈ Y+}, and similarly forR−. ThenR̄+ andR̄− satisfy the assumptions forR
whenm− 1 is substituted form.

Let y∗ ∈ {±1}m. We wish to provey∗ ∈ conv(R). From the induction hypothesis we have
ȳ∗ ∈ conv(R̄+) andȳ∗ ∈ conv(R̄−). Thus

ȳ∗ =
∑

y∈Y+

αy r̄y =
∑

y∈Y
−

βy r̄y,

whereαy, βy ≥ 0,
∑

y∈Y+
αy = 1, and

∑
y∈Y

−

βy = 1. Let y∗a =
∑

y∈Y+
αyry and y∗b =∑

y∈Y
−

αyry. We have that∀y ∈ Y+, ry[m] ≥ 1, and∀y ∈ Y−, ry[m] ≤ −1. Therefore,y∗a[m] ≥ 1

andy∗b [m] ≤ −1. In addition,ȳ∗a = ȳ∗b = ȳ. Hence there isγ ∈ [0, 1] such thaty∗ = γy∗a+(1−γ)y∗b .
Sincey∗a ∈ conv(R+) andy∗b ∈ conv(R−), we havey∗ ∈ conv(R).
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Proof of Theorem 5.2.Let XX ′ = UΛU ′ be the SVD ofXX ′, whereU is an orthogonal matrix
andΛ is a diagonal matrix. LetY = UΛ

1
2 . We haveXX ′ = Y Y ′. We show that the conditions are

sufficient and necessary for the shattering ofS.

Sufficient: AssumeXX ′ is invertible. ThenΛ is invertible, thusY is invertible. For anyy ∈
{±1}m, Let w̃ = Y −1y. We haveY w̃ = y. In addition,‖w̃‖2 = y′(Y Y ′)−1y = y′(XX ′)−1y ≤ 1.
Therefore, by Lemma A.3, there exists a separatorw such thatXw = y and‖w‖ = ‖Pw̃‖ = ‖w̃‖.

Necessary: If XX ′ is not invertible then the vectors inS are linearly dependent, thus by standard
VC-theory [16]S cannot be shattered using linear separators. The first condition is therefore nec-
essary. We assumeS is 1-shattered at the origin and show that the second condition necessarily
holds. LetL = {r | ∃w ∈ B

d
1, Xw = r}. SinceS is shattered, For anyy ∈ {±1}m there exists

ry ∈ L such that∀i ∈ [m], ry[i]y[i] ≥ 1. By Lemma A.4,∀y ∈ {±1}m, y ∈ conv(R) where
R = {ry | y ∈ {±1}m}. SinceL is convex andR ⊆ L, conv(R) ⊆ L. Thus for ally ∈ {±1}m,
y ∈ L, that is there existswy ∈ R

m such thatXwy = y and‖wy‖ ≤ 1. From Lemma A.3 we thus
havew̃y such thatY w̃y = y and‖w̃y‖ = ‖Pwy‖ ≤ ‖wy‖ ≤ 1. Y is invertible, hencẽwy = Y −1y.
Thusy′(XX ′)−1y = y′(Y Y ′)−1y = ‖w̃y‖ ≤ 1.

A.5 Proof of Theorem 6.2

First, define:

• The unit sphere:Sn−1 = {x ∈ R
n | ‖x‖2 = 1}.

• An ǫ-Net on the unit sphere: Denote byNn(ǫ) a minimal-sizeǫ-Net forSn−1, that is a set
such that for ally ∈ Sn−1, ∃x ∈ Nn(ǫ) such that‖x− y‖2 ≤ ǫ.

For ǫ-Nets we have the following bound on their size:

Proposition A.5 ([19], Proposition 2.1). For anyǫ > 0,

|Nn(ǫ)| ≤ 2n(1 +
2

ǫ
)n−1.

The proof of the theorem follows. It relies on several lemmaswhich are disclosed subsequently.

Proof of Theorem 6.2.Let Nm(ǫ) be anǫ-Net for the unit sphere as defined above. Then for any
matrixA of dimensionsm× d,

λm(AA′) = inf
‖x‖2=1

‖x′AA′x‖2 = inf
‖x‖2=1

‖A′x‖22,

andinf‖x‖2=1 ‖A′x‖2 ≥ minx∈N ‖A′x‖2 − ǫ‖A′‖2,2.

We assume w.l.o.g. thatΣ is not singular (otherwise the dimension of the space can be reduced
appropriately), and letY = XmΣ−1. Let β ≤ (c −Kǫ)2 wherec,K, ǫ are parameters to be fixed
later, and letm = βL. Then

P[λm(Y ΣY ′) ≤ m] ≤ P[ inf
‖x‖2=1

‖
√
ΣY ′x‖2 ≤ (c−Kǫ)

√
L]

≤ P[ min
x∈N (ǫ)

‖
√
ΣY ′x‖2 − ǫ‖

√
ΣY ′‖ ≤ (c−Kǫ)

√
L]

≤ P[ min
x∈N (ǫ)

‖
√
ΣY ′x‖2 ≤ c

√
L] + P[‖

√
ΣY ′‖ ≥ K

√
L].

SinceYij is sub-Gaussian with momentB, E[Y 4
ij ] ≤ 5B4 [12, Lemma 1.4]. Thus, by Lemma A.11,

there areα andη which depend only on B such that

PY [‖
√
ΣY x‖2 ≤ αL] ≤ ηL.

Therefore

P[ min
x∈N (ǫ)

‖
√
ΣY ′x‖2 ≤

√
αL] ≤

∑

x∈Nm(ǫ)

PY [‖
√
ΣY ′x‖2 ≤

√
αL] ≤ |Nm(ǫ)|ηL.
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We thus letc = min(
√
α, 1).

By Lemma A.8, for anyK andρ,

P[‖
√
ΣY ‖ ≥ K

√
L] ≤ 2|Nm(ρ)||Nd(ρ)| exp(−

(1− ρ)4K2L

2B2
).

Combining the inequalities and settingm = βL,

P[λm(Y ΣY ′) ≤ m] ≤ |Nm(ǫ)|ηL + 2|Nm(ρ)||Nd(ρ)| exp(−
(1− ρ)4K2L

2B2
)

≤ 2βL(1 +
2

ǫ
)βL−1ηL + 4βL2(1 +

2

ρ
)(1+β)L−1 exp(− (1− ρ)4K2L

2B2
),

where the last inequality follows from Proposition A.5.

Fix ρ = 1
2 . Let K be a constant large enough such that for allβ < 1, and for allL ≥ L0 (where

L0 > 0 is arbitrary)

4βL2(1 +
2

ρ
)(1+β)L−1 exp(− (1− ρ)4K2L

2B2
) ≤ 1

2
− δ/2.

Let ǫ = c/2K, so thatc−Kǫ > 0, and letβ such that for allL > L0,

2βL(1 +
2

ǫ
)βL−1ηL ≤ 1

2
− δ/2.

Then for the chosenβ, and for anyL > L0,

P[λm(Y ΣY ′) ≥ m] ≥ 1− δ.

The following easy to prove facts are found in several placesin the literature:

Proposition A.6 (See e.g. [22]). For any linear operatorA : Rm → R
d,

‖A‖ ≤ 1

1− ǫ
sup

x∈Nm(ǫ)

‖Ax‖.

Proposition A.7 (See e.g. [19], proof of Proposition 2.2). For any linear operatorA : Rm → R
d,

and anyx ∈ R
m,

‖Ax‖ ≤ 1

1− ǫ
sup

y∈Nd(ǫ)

〈Ax, y〉.

In [19] this fact appears using the absolute value of〈Ax, y〉, but the version above can be proved in
the same manner.

The following is a variation on Prop 2.3 in [19].

Lemma A.8. Let Y be ad × m matrix withm ≤ d, such thatYij are independent sub-Gaussian
variables with momentB. LetΣ = diag(λ1, . . . , λd) be a diagonald× d matrix withλi ∈ [0, 1] for
all i. Then for allt ≥ 0,

P[‖
√
ΣY ‖ ≥ t] ≤ 2|Nm(ǫ)||Nd(ǫ)| exp(−

1

2

(1− ǫ)4t2

B2
).

Proof. From Proposition A.6 it follows that

‖
√
ΣY ‖ ≤ 1

1− ǫ
sup

x∈Nm(ǫ)

‖
√
ΣY x‖.

Therefore

E[exp(t‖
√
ΣY ‖)] ≤ E[exp(

t

1− ǫ
sup

x∈Nm(ǫ)

‖
√
ΣY x‖)] ≤

∑

x∈Nm(ǫ)

E[exp(
t

1− ǫ
‖
√
ΣY x‖)].
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Now, letx ∈ Nm(ǫ). From Proposition A.7,

E[exp(t‖
√
ΣY x‖)] ≤ E[exp(

t

1− ǫ
sup

y∈Nd(ǫ)

〈
√
ΣY x, y〉)]

≤
∑

y∈Nd(ǫ)

E[exp(
t

1− ǫ
〈
√
ΣY x, y〉)].

For anyx ∈ Sm−1, y ∈ Sd−1,

E[exp(t〈
√
ΣY x, y〉)] = E[exp(t

d∑

i=1

m∑

j=1

√
λiYijxjyi)] =

d,m∏

i=1,j=1

E[exp(t
√
λiYijxjyi]

≤
d,m∏

i=1,j=1

exp(
1

2
B2t2x2

jλiy
2
i ) = exp(

1

2
B2t2

m∑

j=1

x2
j

d∑

i=1

λiy
2
i ) ≤ exp(

1

2
B2t2),

where the last inequality follows from the facts‖x‖2 = 1, ‖y‖2 = 1, and∀i ∈ [d]λi ≤ 1. It follows
that

E[exp(t‖
√
ΣY x‖)] ≤ |Nd(ǫ)| exp(

1

2

B2t2

(1− ǫ)2
)

Thus, for allt ∈ R,

E[exp(t‖
√
ΣY ‖)] ≤ |Nm(ǫ)||Nd(ǫ)| exp(

1

2

B2t2

(1− ǫ)4
).

By Chernoff’s method, for allt ≥ 0

P[‖
√
ΣY ‖ ≥ t] ≤ 2|Nm(ǫ)||Nd(ǫ)| exp(−

1

2

(1− ǫ)4t2

B2
).

The following lemma is a variation of [20], Lemma 2.6.
Lemma A.9. LetY be ad ×m matrix withm ≤ d, such that the columns ofY are i.i.d. random
vectors. Assume further that∀i ∈ [d], j ∈ [m] E[Yij ] = 0, E[Y 2

ij ] = 1 andE[Y 4
ij ] ≤ B for some

real numberB. LetΣ = diag(λ1, . . . , λd) be a diagonald× d matrix such that∀i ∈ [d]λi ≥ 0 and
trace(Σ) ≤ L. Then for everyx ∈ Sm−1,

P[‖
√
ΣY x‖22 ≤ L

2
] ≤ 1− 1

196B
.

Proof. Let Ti = (
∑m

j=1 Yijxj)
2, and letTΣ = ‖

√
ΣY x‖22 =

∑d
i=1 λiTi.

First, sinceE[Yij ] = 0 andE[Yij ] = 1 for all i, j,

E[Ti] =
m∑

i=1

x2
jE[Y

2
ij ] = ‖x‖22 = 1.

ThereforeE[TΣ] = L.

Second, sinceYi1, . . . , Yim are independent, we can use a symmetrization argument as done in [20],
proof of Lemma 2.6, to get

E[T 2
i ] = E[(

m∑

j=1

Yijxj)
4] ≤ 16B4B = 48B,

WhereB4 = 3 is the upper Khinchine constant forp = 4 [23]. Thus,

E[T 2
Σ] = E[(

d∑

i=1

λiTi)
2] =

d∑

i,j=1

λiλjE[TiTj ]

≤
d∑

i,j=1

λiλjE[T
2
i ]

1
2E[T 2

j ]
1
2 ≤ 48B(

d∑

i=1

λi)
2 = 48BL2,
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Where we have used the fact thatE[XY ]2 ≤ E[X2]E[Y 2] for any two random variablesX andY .

By the Paley-Zigmund inequality [24], if0 < θ < 1,

P[TΣ ≥ θE[TΣ]] ≥ (1− θ)2
E[TΣ]

2

E[T 2
Σ]

≥ (1− θ)2

48B
.

Therefore, settingθ = 1/2,

P[TΣ ≤ L

2
] ≤ 1− 1

196B
.

We also use the following lemma:

Lemma A.10 (Lemma 2.2 item (2) in [20]). Let T1, . . . , Tn be independent non-negative random
variables. Assume that there existsθ > 0 andµ ∈ (0, 1) such that for anyi P[Ti ≤ θ] ≤ µ. Then
there existα > 0 andη ∈ (0, 1) that depend only onθ andµ such that

P(

n∑

i=1

Ti < αn) ≤ ηn.

The following lemma is used in the proof of the theorem above.

Lemma A.11. Let Y be ad × m matrix with m ≤ d, such thatYi,j are independent centered
random variables with variance1 and fourth moments no more thanB. LetΣ = diag(λ1, . . . , λd)

be a diagonald × d matrix withλi ≤ 1 for all i, and letL =
∑d

i=1 λi. Letx ∈ R
m be a vector

such that‖x‖2 = 1. Then there existα > 0 andη ∈ (0, 1) that depend only onB such that

PY [‖
√
ΣY x‖2 ≤ αL] ≤ η2L.

Proof. Consider a partitionZ1, . . . , Zk of [d], and denoteLj =
∑

i∈Zj
λi. Let the partition be such

that for allj ∈ [k], Lj ≤ 1. There exists such a partition such thatLj >
1
2 for all but at most onej.

Therefore, for this partitionL =
∑d

i=1 λi =
∑

j∈[k] Lj ≥ 1
2 (k − 1). Thusk ≤ 2L+ 1.

Let Σ[j] be the diagonal matrix whose diagonal elements areλi such thati ∈ Zj , and letY [j] be
the sub-matrix ofY which includes only the lines whose indexes are inZj .

Then

‖
√
ΣY x‖2 =

d∑

i=1

λi(

m∑

j=1

Yijxj)
2 =

∑

j∈[k]

∑

i∈Zj

λi(

m∑

j=1

Yijxj)
2 =

∑

j∈[k]

‖Σ[j]Y [j]x‖2.

By Lemma A.9,P[‖Σ[j]Y [j]x‖2 ≤ Lj

2 ] ≤ 1− 1
196B .

Let J = {j ∈ [k] | Lj >
1
2}. For allj ∈ J ,

P[‖Σ[j]Y [j]x‖2 ≤ 1

4
] ≤ 1− 1

196B
.

In addition,|J | ≥ L. Therefore, by Lemma A.10 there areα > 0 andη ∈ (0, 1) that depend only
onB such that

P[‖
√
ΣY x‖2 < αL] ≤ P[‖

√
ΣY x‖2 < α|J |]

≤ P[
∑

j∈J

‖Σ[j]Y [j]x‖2 < α|J |] ≤ η|J| ≤ ηL.
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