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Abstract 

Motivated by an application to unsupervised part-of-speech tagging, we 
present an algorithm for the Euclidean embedding of large sets of 
categorical data based on co-occurrence statistics. We use the CODE model 
of Globerson et al. but constrain the embedding to lie on a high-
dimensional unit sphere. This constraint allows for efficient optimization, 
even in the case of large datasets and high embedding dimensionality. 
Using k-means clustering of the embedded data, our approach efficiently 
produces state-of-the-art results. We analyze the reasons why the sphere 
constraint is beneficial in this application, and conjecture that these reasons 
might apply quite generally to other large-scale tasks.  

 

1 Introduction  

The embedding of objects in a low-dimensional Euclidean space is a form of dimensionality 
reduction that has been used in the past mostly to create 2D representations of data for the 
purpose of visualization and exploratory data analysis [10, 13]. Most methods work on 
objects of a single type, endowed with a measure of similarity. Other methods, such as [ 3], 
embed objects of heterogeneous types, based on their co-occurrence statistics. In this paper 
we demonstrate that the latter can be successfully applied to unsupervised part-of-speech 
(POS) induction, an extensively studied, challenging, problem in natural language 
processing [1, 4, 5, 6, 7]. 

The problem we address is distributional POS tagging, in which words are to be tagged 
based on the statistics of their immediate left and right context in a corpus (ignoring  
morphology and other features). The induction task is fully unsupervised, i.e., it uses no 
annotations. This task has been addressed in the past using a variety of methods. Some 
approaches, such as [1], combine a Markovian assumption with clustering. Many recent 
works use HMMs, perhaps due to their excellent performance on the supervised version of 
the task [7, 2, 5]. Using a latent-descriptor clustering approach, [15] obtain the best results to 
date for distributional-only unsupervised POS tagging of the widely-used WSJ corpus. 

Using a heterogeneous-data embedding approach for this task, we define separate embedding 



functions for the objects "left word" and "right word" based on their co-occurrence statistics, 
i.e., based on bigram frequencies. We are interested in modeling the statistical interactions 
between left words and right words, as relevant to POS tagging, rather than their joint 
distribution. Indeed, modeling the joint distribution directly results in models that do not 
handle rare words well. We use the CODE (Co-Occurrence Data Embedding) model of [3], 
where statistical interaction is modeled as the negative exponential of the Euclidean distance 
between the embedded points. This embedding model incorporates the marginal 
probabilities, or unigram frequencies, in a way that results in appropriate handling of both 
frequent and rare words.  

The size of the dataset (number of points to embed) and the embedding dimensionality are 
several-fold larger than in the applications studied in [3], making the optimization methods 
used by these authors impractical. Instead, we use a simple and intuitive stochastic-gradient 
procedure. Importantly, in order to handle both the large dataset and the relatively high 
dimensionality of the embedding needed for this application, we constrain the embedding to 
lie on the unit sphere. We therefore refer to this method as Spherical CODE, or S-CODE. 
The spherical constraint causes the regularization term—the partition function—to be nearly 
constant and also makes the stochastic gradient ascent smoother ; this allows a several-fold 
computational improvement, and yields excellent performance. After convergence of the 
embedding model, we use a k-means algorithm to cluster all the words of the corpus, based 
on their embeddings. The induced POS labels are evaluated using the standard setting for 
this task, yielding state-of-the-art tagging performance. 

 

2 Methods  
2 .1  M o de l  

We represent a bigram, i.e., an ordered pair of adjacent words in the corpus, as joint random 
variables (X,Y), each taking values in W, the set of word types occurring in the corpus.  
Since X and Y, the first and second words in a bigram, play different roles, we build a 
heterogeneous model, i.e., use two embedding functions,      and     . Both map W into S, 
the unit sphere in the r-dimensional Euclidean space. 

We use    for the word-type frequencies:       is the number of word tokens of type x divided 
by the total number of tokens in the corpus.  We refer to    as the empirical marginal 
distribution, or unigram frequency. We use         for the empirical joint distribution of X 
and Y, i.e., the distribution of bigrams (X,Y).  Because our ultimate goal is the clustering of 
word types for POS tagging, we want the embedding to be insensitive to the marginals: two 
word types with similar context distributions should be mapped to neighboring points in S 
even if their unigram frequencies are very different. We therefore use the marginal-marginal 
model of [3], defined by: 
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The log-likelihood, , of the corpus of bigrams is the expected value, under the empirical 
bigram distribution, of the log of the model bigram probability: 
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The model is parameterized by 2×|W| points on the unit sphere S in r dimensions:           

and          . These points are initialized randomly, i.e., independently and uniformly on 

S. 

   

To maximize the likelihood, we use a gradient-ascent approach. The gradient of the log 

likelihood is as follows (observe that the last term in (4) does not depend on the model, 

hence does not contribute to the gradient): 
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For sufficiently large problems such as POS tagging of a large corpus, computing  the 

partition function, Z, after each gradient step or even once every fixed number of steps can 

be impractical.  Instead, it turns out (see Discussion) that, thanks to the sphere constraint, we 

can approximate this dynamic variable, Z, using a constant,   , which arises from a coarse 

approximation in which all pairs of embedded variables are distributed uniformly and 

independently on the sphere. Thus, we set                     with    and    i.i.d. 

uniformly on S, and get our estimate    as the expected value of the resulting random 

variable,          
 
:   

 

               
 
 .  (7) 

 

Numerical evaluation of (7) yields          for the 25-dimensional sphere. An even coarser 

approximation can be obtained by noting that, for large r, the random variable        
  

         is fairly peaked around 2 (the random variable       is close to a Student's t 

with r degrees of freedom, compressed by a factor of   ). This yields the estimate     

          . 

 

For the present application, we find that performance does not suffer from using a constant    
rather than recomputing Z often during gradient-ascent. It is also fairly robust to the choice 

of   . We observe only minor changes in performance for    ranging over [0.1, 0.5].  

 

We use sampling to compute a stochastic approximation of the gradient.  To implement the 

first sum in (5) and (6) − representing an attraction force between the embeddings of the 

words in a bigram − we sample bigrams from the empirical joint        .  Given a sample 

       , only the       and       parameter vectors are updated.  The partial updates that 

emerge from these two sums are: 
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where   is the step size. In order to speed up the convergence process, we use a learning rate 

that decreases as word types are repeatedly observed.  If      is the number of times word 

type w has been previously encountered, we use: 
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The model is very robust to the choice of the function  (C), as long as it decreases smoothly. 

This modified learning rate also reduces the variability of the tagging accuracy, while 

slightly increasing its mean. 

 

The second sum in (5) and in (6) − representing a repulsion force − involves not the 

empirical joint but the product of the empirical marginals.  Thus, the complete update is: 
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where         is sampled from the joint        , and x2 and y2 are sampled from the marginal 

      independently from each other and independently from x1 and y1. After each step, the 

updated vectors are projected back onto the sphere S. 

 

After convergence, for any word w, we have two embedded vectors,      and     .  These 

vectors are concatenated to form a single geometric description of word type w. The 

collection of all these vectors is then clustered using a weighted k-means clustering 

algorithm: in each iteration, a cluster’s centroid is updated as the weighted mean of its 

currently assigned constituent vectors, with the weight of the vector for word w equal to 

     . The number of clusters chosen depends on whether evaluation is to be done against 

the PTB45 or the PTB17 tagset (see below, Section 2.2).
1
 

 

2 .2  Ev a lua t io n  a nd  da ta  

 

The resulting assignment of cluster labels to word types is used to label the corpus. The 

standard practice for evaluating the performance of the induced labels is to either map them 

to the gold-standard tags, or to use an information-theoretic measure. We use the three 

evaluation criteria that are most common in the recent literature. The first criterion maps 

each cluster to the POS tag that it best matches according to the hand-annotated labels.  The 

match is determined by finding the tag that is most frequently assigned to any token of any 

word type in the cluster.  Because the criterion is free to assign several clusters to the same 

POS tag, this evaluation technique is called many-to-one mapping, or MTO.  Once the map 

is constructed, the accuracy score is obtained as the fraction of all tokens whose inferred tag 

under the map matches the hand-annotated tag. 

 

The second criterion, 1-to-1 mapping, is similar to the first, but the mapping is restricted 

from assigning multiple clusters to a single tag; hence it is called one -to-one mapping, or 1-

to-1. Most authors construct the 1-to-1 mapping greedily, assigning maximal-score label-to-

tag matches first; some authors, e.g. [15], use the optimal map. Once the map is constructed, 

the accuracy is computed just as in MTO. The third criterion, variation of information, or VI, 

is a map-free information-theoretic metric [9, 2]. 

 

We note that we and other authors found the most reliable criterion for comparing 

unsupervised POS taggers to be MTO. However, we include all three criteria for 

completeness. 

We use the Wall Street Journal part of the Penn Treebank [8] (1,173,766 tokens). We ignore 
capitalization, leaving 43,766 word types, to compare performance with other models 
consistently.  Evaluation is done against the full tag set (PTB45), and against a coarse tag set 
(PTB17) [12]. For PTB45 evaluation, we use either 45 or 50 clusters, in order for our results 
to be comparable to all recent works.  For PTB17 evaluation, we use 17 clusters, as do all 
other authors. 

 

3 Results  

Figure 1 shows the model performance when evaluated with several measures. MTO17 and 
MTO50 refer to the number of tokens tagged correctly under the many-to-1 mapping for the 
PTB45 and PTB17 tagsets respectively.  The type-accuracy curves use the same mapping 

                                                 
1
 Source code is available at the author’s website: faculty.biu.ac.il/~marony. 



and tagsets, but record the fraction of word types whose inferred tag matches thei r "modal" 
annotated tag, i.e., the annotated tag co-occurring most frequently with this word type.  We 
also show the scaled log likelihood, to illustrate its convergence.  These results were 

produced using a constant, pre-computed,   .  Using this constant value allows the model to 
run in a matter of minutes rather than the hours or days required by HMMs and MRFs.  

 

 

 

Figure 2 shows the model performance for different dimensionalities r. As r increases, so 
does the performance. Unlike previous applications of CODE [3] (which often emphasize 

 

Figure 2: Comparison of models with different dimensionalities: r = 2, 5, 10, 25. MTO17 is 
the Many-to-1 score based on 17 induced labels mapped to PTB17 tags.  
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Figure 1: Scores against number of iterations (bigram updates). Scores are averaged over 10 
sessions, and shown with 1-std error bars. MTO17 is the Many-to-1 tagging accuracy score 
based on 17 induced labels mapped to 17 tags. MTO50 is the Many-to-1 score based on 50 
induced labels mapped to 45 tags. Type Accuracy 17 (50) is the average accuracy per word 
type, where the gold-standard tag of a word type is the modal annotated tag of that type (see 

text).  All runs used    = 0.154, r=25. 
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visualization of data and thus require a low dimension), this unsupervised POS-tagging 
application benefits from high values of r. Larger values of r cause both the tagging 
accuracy to improve and the variability during convergence to decrease.  

 

Table 1 compares our model, S-CODE, to previous state-of-the-art approaches. Under the 
Many-to-1 criterion, which we find to be the most appropriate of the three for the evaluation 
of unsupervised POS taggers, S-CODE is superior to HMM results, and scores comparably 
to [15], the highest-performing model to date on this task.   

We find that the model is very robust to the choice of    within the range 0.1 to 0.5.  This 
robustness lends promise for the usefulness of this method for other applications in which 
the partition function is impractical to compute. This point is discussed further in the next 
section. 

 

4 Discussion 

The problem of embedding heterogeneous categorical data (X,Y) based on their co-
occurrence statistics may be formulated as the task of finding a pair of maps      and      
such that, for any pair (x,y), the distance between the images of x and y reflects the statistical 
interaction between them. Such embeddings have been used mostly for the purpose of 
visualization and exploratory data analysis. Here we demonstrate that embedding can be 
successfully applied to a well-studied computational-linguistics task, achieving state-of-the-
art performance. 

 

4 . 1  S -CODE v.  CODE  

The approach proposed here, S-CODE, is a variant of the CODE model of [3]. In the task at 
hand, the sets X and Y to be embedded are large (43K), making most conventional 

 Many-to-1 1-to-1 VI 

Model PTB17 PTB45
-45 

PTB45
-50 

PTB17 PTB45
-45 

PTB45
-50 

PTB17 PTB45
-45 

PTB45
-50 

S-CODE 
(Z=0.1456) 

73.8 
(0.5) 

68.8 
(0.16) 

70.4 
(0.5) 

52.2 50.0 50.0 2.93 3.46 3.46 

S-CODE 
(Z=0.3) 

74.5 
(0.2) 

68.6 
(0.16) 

71.5 
(0.6) 

54.9 48.7 48.8 2.80 3.38 3.39 

LDC 75.1 
(0.04) 

68.1 
(0.2) 

71.2 
(0.06) 

59.3  48.3    

Brown  67.8 70.5  50.1 51.3  3.47 3.45 

HMM-EM 64.7  62.1 43.1  40.5 3.86  4.48 

HMM-VB 63.7  60.5 51.4  46.1 3.44  4.28 

HMM-GS 67.4  66.0 44.6  49.9 3.46  4.04 

HMM-
Sparse(32) 

70.2 65.4  49.5 44.5     

VEM 
 (10

-1
,10

-1
) 

68.2 54.6  52.8 46.0     

Table 1: Comparison to other models, under three different evaluation measures. S-CODE 
uses r = 25 dimensions. It was run 10 times, each with 12·10

6
 update steps. LDC is from 

[15]; Brown shows the best results from [14] and website mentioned therein; HMM-EM, 
HMM-VB and HMM-GS show the best results from [2]; HMM-Sparse(32) and VEM show 
the best results from [5]. The numbers in parentheses are standard deviations. For the VI 
criterion, lower values are better. PTB45-45 maps 45 induced labels to 45 tags, while 
PTB45-50 maps 50 induced labels to 45 tags.  

 



embedding approaches, including CODE (as implemented in [3]), impractical. As explained 
below, S-CODE overcomes the large-dataset challenge by constraining the maps to lie on the 
unit sphere. It uses stochastic gradient ascent to maximize the likelihood of the model.  

The gradient of the log-likelihood w.r.t. a given       includes two components, each with a 
simple intuitive meaning. The first component embodies an attraction force, pulling       
toward      in proportion to the empirical joint        . The second component, the gradient 
of the regularization term,     , embodies a repulsion force; it keeps the solution away 
from the trivial state where all x's and y's are mapped to the same point, and more generally 
attempts to keep Z small. The repulsion force pushes      away from      in proportion to 

the product of the empirical marginals       and      , and is scaled by       
 

  . The 
computational complexity of Z, the partition function, is          . 

In the application studied here, the use of the spherical constraint of S -CODE has two 
important consequences. First, it makes the computation of Z unnecessary. Indeed, when 
using the spherical constraint, we observed that Z, when actually computed and updated 
every 10

6
 steps, does not deviate much from its initial value. For example, for r = 25, Z rises 

smoothly from 0.145 to 0.182. Note that the absolute minimum of Z—obtained for a   that 
maps all of W to a single point on S and a   that maps all of W to the opposite point—is  

   ; the absolute maximum of Z, obtained for   and   that map all of W to the same point, is 

1. We also observed that replacing Z, in the update algorithm, by any constant    in the range 
[.1 .5] does not dramatically alter the behavior of the model. We nevertheless note that larger 

values of    tend to yield a slightly higher performance of the POS tagger built from the 

model. Note that the only effect of changing    in the stochastic gradient algorithm is to 
change the relative strength of the attraction and repulsion terms.  

We compared the performance of S-CODE with CODE. The original CODE implementation 
[3] could not support the size of our data set. To overcome this limitation, we used the 
stochastic-gradient method described above, but without projecting to the sphere. This 
required us to compute the partition function, which is highly computationally intensive. We 
therefore computed the partition function only once every q update steps (where one update 
step is the sampling of one bigram). We found that for q = 10

5
 the partition function and 

likelihood changed smoothly enough and converged, and the embeddings yielded tagging 
performances that did not differ significantly from those obtained with S-CODE. The second 
important consequence of imposing the spherical constraint is that it makes the stochastic 
gradient-ascent procedure markedly smoother. As a result, a relatively large step size can be 
used, achieving convergence and excellent tagging performance in about 10 minutes of 
computation time on a desktop machine. CODE requires a smaller step size as well as the 
recomputation of the partition function, and, as a result, computation time in this application 
was 6 times longer than with S-CODE. 

When gauging the applicability of S-CODE to different large-scale embedding problems, 
one should try to gain some understanding of why the spherical constraint stabilizes the 
partition function, and whether Z will stabilize around the same value for other problems. 
The answer to the first question appears to be that the regularization term is not so strong as 
to prevent clusters from forming—this is demonstrated by the excellent performance of the 
model when used for POS tagging—yet it is strong enough to enforce a fairly uniform 
distribution of these clusters on the sphere—resulting in a fairly stable value of Z. One may 
reasonably conjecture that this behavior will generalize to other problems. To answer the 
second question, we note that the order of magnitude of Z is essentially set by the coarsest of 
the two estimates derived in Section 2, namely       0.135, and that this estimate is 
problem-independent. As a result, S-CODE is, in principle, applicable to datasets of much 
larger size than the present problem. The computational complexity of the algorithm is 
O(Nr), and the memory requirement is O(|W|r) where N is the number of word tokens, and 
|W| is the number of word types. In contrast, and as mentioned above, CODE, even in our 
stochastic-gradient version, is considerably more computationally intensive; it would clearly 
be completely impractical for much larger datasets.  

 

4 . 2  Co mpa r i so n  to  o ther POS induct io n  mo de l s  

Even though embedding models have been studied extensively, they are not widely used for 



POS tagging (see however [18]). For the unsupervised POS tagging task, HMMs have until 
recently dominated the field. Here we show that an embedding model substantially 
outperforms HMMs, and achieves the same level of performance as the best distributional-
only model to date [15]. Models that use features, e.g. morphological, achieve higher tagging 
precision [11, 14]. Incorporating features into S-CODE can easily be done, either directly or 
in a two-step approach as in [14]; this is left for future work. 

One of the widely-acknowledged challenges in applying HMMs to the unsupervised POS  
tagging problem is that these models do not afford a convenient vehicle to modeling an 
important sparseness property of natural languages, namely the fact that any given word type 
admits of only a small number of POS tags—often only one (see in particular [7, 2, 4]). In 
contrast, the approach presented here maps each word type to a single point in   . Hence, it 
assigns a single tag to each word type, like a number of other recent approaches [15, 16, 17]. 
These approaches are incapable of disambiguating, i.e., of assigning different tags to the 
same word depending on context, as in "I long to see a long movie." HMMs are, in principle, 
capable of doing so, but at the cost of over-parameterization. In view of the superior 
performance of S-CODE and of other type-level approaches, it appears that under-
parameterization might be the better choice for this task.  

Another difference between our model and HMMs previously applied to this problem is that 
our model is symmetric, thereby modeling right and left context distributions. In contrast, 
HMMs are asymmetric in that they typically model a left-to-right transition and would find a 
different solution if a right-to-left transition were modeled. We argue that using both 
distributions in a symmetric way better captures the important linguistic information. In the 
past, left and right distributions were extracted by factoring the bigram matrix and using the 
left and right eigenvectors. Such a linear method does not handle rare words well.  Instead, 
we choose to learn the ratio                    . This approach allows words with similar 
contexts but different unigram frequencies to be embedded near each other. 

Like HMMs, CODE provides a model of the distribution of the data at hand. S -CODE 
departs slightly from this framework. Since it does not  use the exact partition function in the 
stochastic gradient ascent procedure—and was actually found to perform best when 
replacing Z, in the update rule, by a constant that is substantially larger than the true value of 
Z—it only approximately converges to a local maximum of a likelihood function. In future 
work, and as a more radical deviation from the CODE model, one may then give up 
altogether modeling the distribution of X and Y, instead relying on a heuristically motivated 
objective function of sphere-constrained embeddings      and     , to be maximized. 
Preliminary studies using a number of alternative functional forms for the regularization 
term yielded promising results. 

Although S-CODE and LDC [15] achieve essentially the same level of performance on 
taggings that induce 17, 45, or 50 labels (Table 1), S-CODE proves superior for the 
induction of very fine-grained taggings. Thus, we compared the performances of S-CODE 
and LDC on the task of inducing 300 labels. Under the MTO criterion, LDC achieved 80.9% 
(PTB45) and 87.9% (PTB17). S-CODE significantly outperformed it, with 83.5% (PTB45) 
and 89.8% (PTB17). 

The appeal of S-CODE lies not only in its strong performance on the unsupervised POS 
tagging problem, but also in its simplicity, its robustness, and its mathematical grounding.  
The mathematics underlying CODE, as developed in [3], are intuitive and relatively simple . 
Modeling the joint probability of word type co-occurrence through distances between 
Euclidean embeddings, without relying on discrete categories or states, is a novel and 
promising approach for POS tagging.  The spherical constraint introduced here permits the 
approximation of the partition function by a constant, which is the key to the efficiency of 
the algorithm for large datasets.  The stochastic-gradient procedure produces two competing 
forces with intuitive meaning, familiar from the literature on learning in generative models. 
 While the accuracy and computational efficiency of S-CODE is matched by the recent LDC 
algorithm [15], S-CODE is more robust, showing very little change in performance over a 
wide range of implementation choices.  We expect that this improved robustness will allow 
S-CODE to be easily and successfully applied to other large-scale tasks, both linguistic and 
non-linguistic.   
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