
Appendix

A.1 MMH: Max-margin Harmonium

For the special max-margin Harmonium (MMH), the learning problem is the same as defined in
Section 3.1, and only several changes are needed to estimateparameters based on the general learn-
ing procedure. In this section, we present the necessary changes for learning MMH. For any other
special cases of multi-view Markov networks, the learning can be similarly done.

With the definitions of local conditionals in Section 4, we can directly write the joint model
distributionp(x, z,h) based on the constructive definition and the marginal data likelihoodp(x, z)
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Then, we use the contrastive divergence method and introduce two variational distribution
q0 and q1. In this case, we can make a superficially simpler mean field assumption that
q(x, z,h) =

∏
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k q(hk). Indeed, the general structured mean field assumption as

made in Section 3.2 will lead to the same results, that is, a fully factorized form ofq(x), q(z) and
q(h). Specifically, we have the following fully factorized update rules for posterior inference ofq
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Similarly, (xi, zj) are clamped at their observed values forq0, and onlyq(hk) is updated. The
distributionq1 is achieved by performing the above updates starting fromq0. Several iterations
can yield a goodq1. After we have inferredq0 andq1, parameter estimation can be done by an
alternating procedure as in Section 3.2. The first step of estimatingV with Θ fixed is to learn a
multi-class SVM, which is
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Note that in this case, the latent representation (i.e., expectation ofH) is simply written as
Ep(h|x,z)[H] = v, wherevk = x>W·k + z>U·k, ∀1 ≤ k ≤ K, when input datax andz are
fully observed. If missing values exist inx or z, the corresponding components are replaced with
their expected values. Therefore, the prediction tasks (e.g., classification and retrieval) can be easily
done in testing, as detailed in Section 3.2.

For the second step of estimatingΘ, the sub-gradient is computed as
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whereh′k = x>W·k + z>U·k and yd = argmaxy[∆`d(y) + V>Eq0 [f(Hd, y)] is the loss-
augmented prediction. Based on the definition ofq0, the expectationsEq0 [xi] andEq0 [zj] are actu-
ally the count frequency ofxi andzj, respectively.
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