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Abstract

This paper is concerned with rank aggregation, which aims to combine multiple
input rankings to get a better ranking. A popular approach to rank aggregation
is based on probabilistic models on permutations, e.g., the Luce model and the
Mallows model. However, these models have their limitations in either poor ex-
pressiveness or high computational complexity. To avoid these limitations, in this
paper, we propose a new model, which is defined with a coset-permutation dis-
tance, and models the generation of a permutation as a stagewise process. We re-
fer to the new model as coset-permutation distance based stagewise (CPS) model.
The CPS model has rich expressiveness and can therefore be used in versatile ap-
plications, because many different permutation distances can be used to induce
the coset-permutation distance. The complexity of the CPS model is low because
of the stagewise decomposition of the permutation probability and the efficient
computation of most coset-permutation distances. We apply the CPS model to su-
pervised rank aggregation, derive the learning and inference algorithms, and em-
pirically study their effectiveness and efficiency. Experiments on public datasets
show that the derived algorithms based on the CPS model can achieve state-of-
the-art ranking accuracy, and are much more efficient than previous algorithms.

1 Introduction

Rank aggregation aims at combining multiple rankings of objects to generate a better ranking. It is
the key problem in many applications. For example, in meta search [1], when users issue a query,
the query is sent to several search engines and the rankings given by them are aggregated to generate
more comprehensive ranking results.

Given the underlying correspondence between ranking and permutation, probabilistic models on
permutations, originated in statistics [19, 5, 4], have been widely applied to solve the problems of
rank aggregation. Among different models, the Mallows model [15, 6] and the Luce model [14, 18]
are the most popular ones.

The Mallows model is a distance-based model, which defines the probability of a permutation ac-
cording to its distance to a location permutation. Due to many applicable permutation distances, the
Mallows model has very rich expressiveness, and therefore can be potentially used in many different
applications. Its weakness lies in the high computational complexity. In many cases, it requires a
time complexity of O(n!) to compute the probability of a single permutation of n objects. This is
clearly intractable when we need to rank a large number of objects in real applications.

The Luce model is a stagewise model, which decomposes the process of generating a permutation of
n objects into n sequential stages. At the k-th stage, an object is selected and assigned to position k



according to a probability based on the scores of the unassigned objects. The product of the selection
probabilities at all the stages defines the probability of the permutation. The Luce model is highly
efficient (with a polynomial time complexity) due to the decomposition. The expressiveness of the
Luce model, however, is limited because it is defined on the scores of individual objects and cannot
leverage versatile distance measures between permutations.

In this paper, we propose a new probabilistic model on permutations, which inherits the advantages
of both the Luce model and the Mallows model and avoids their limitations. We refer to the model
as coset-permutation distance based stagewise (CPS) model. Different from the Mallows model,
the CPS model is a stagewise model. It decomposes the generative process of a permutation 7 into
sequential stages, which makes the efficient computation possible. At the k-th stage, an object is
selected and assigned to position k& with a certain probability. Different from the Luce model, the
CPS model defines the selection probability based on the distance between a location permutation
o and the right coset of 7 (referred to as coset-permutation distance) at each stage. In this sense,
it is also a distance-based model. Because many different permutation distances can be used to
induce the coset-permutation distance, the CPS model also has rich expressiveness. Furthermore,
the coset-permutation distances induced by many popular permutation distances can be computed
with polynomial time complexity, which further ensures the efficiency of the CPS model.

We then apply the CPS model to supervised rank aggregation and derive corresponding algorithms
for learning and inference of the model. Experiments on public datasets show that the CPS model
based algorithms can achieve state-of-the-art ranking accuracy, and are much more efficient than
baseline methods based on previous probabilistic models.

2 Background

2.1 Rank Aggregation

There are mainly two kinds of rank aggregation, i.e., score-based rank aggregation [17, 16] and
order-based rank aggregation [2, 7, 3]. In the former, objects in the input rankings are associated
with scores, while in the latter, only the order information of these objects is available. In this work,
we focus on the order-based rank aggregation, because it is more popular in real applications [7], and
score-based rank aggregation can be easily converted to order-based rank aggregation by ignoring
the additional score information [7].

Early methods for rank aggregation are heuristic based. For example, BordaCount [2, 7] and median
rank aggregation [8] are simply based on average rank positions or the number of pairwise wins. In
the recent literature, probabilistic models on permutations, such as the Mallows model and the Luce
model, have been introduced to solve the problem of rank aggregation. Previous studies have shown
that the probabilistic model based algorithms can outperform the heuristic methods in many settings.
For example, the Mallows model has been shown very effective in both supervised rank aggregation
and unsupervised rank aggregation, and the effectiveness of the Luce model has been demonstrated
in the context of unsupervised rank aggregation. In the next subsection, we will describe these two
models in more detail.

2.2 Probabilistic Models on Permutations

In order to better illustrate the probabilistic models on permutations, we first introduce some con-
cepts and notations.

Let {1,2,...,n} be a set of objects to be ranked. A ranking/permutation' 7 is a bijection from
{1,2,...,n} toitself. We use 7(i) to denote the position given to object i and 7~ (i) to denote the
object assigned to position i. We usually write m and 7! as vectors whose i-th component is 7 (7)
and 7 1(i), respectively. We also use the bracket alternative notation to represent a permutation,
ie,m = (r"1(1),771(2),..., 7 1(n)).

The collection of all permutations of n objects forms a non-abelian group under composition, called
the symmetric group of order n, denoted as S,,. Let S,,_j denote the subgroup of S,, consisting of

"We will interchangeably use the two terms in the paper.



all permutations whose first k positions are fixed:
Sp—p ={m e Sp|n(@) =i,Vi=1,...,k}. (1)

The right coset S,,_ym = {om|oc € S,_i} is a subset of permutations whose top-k objects are
exactly the same as in 7. In other words,

Sp_xm={0lo € Spyo (@) =7 (@), Vi=1,...,k}.

We also use S, —x({i1, 42, . .., ix)) to denote the right coset with object 41 in position 1, 5 in position
2, ..., and iy in position k.

The Mallows model is a distance based probabilistic model on permutations. It uses a permutation
distance d on the symmetric group 5,, to define the probability of a permutation:

P(7T|97 J) = exp(_ad(’”a U))a (2)

1
Z(6,0)

where o € S, is the location permutation, 6 € R is a dispersion parameter, and

Z(0,0) = exp(—0d(m,0)). 3)

TESy

There are many well-defined metrics to measure the distance between two permutations, such as
Spearman’s rank correlation d,.(m,0) = > (7(i) — o(i))?, Spearman’s footrule ds(m, o) =
>izy |m(i) — o (i)], and Kendall’s tau dy (7, 0) = 37501 3750 Lizo-1(i)>mo—1(j)}> Where 1,y = 1
if x is true and 0 otherwise. One can (and sometimes should) choose different distances for different
applications. In this regard, the Mallows model has rich expressiveness.

Note that there are n! permutations in S,,. The computation of Z(6, o) involves the sum of n! items.
Although for some specific distances (such as d;), there exist efficient ways for parameter estimation
in the Mallows model, for many other distances (such as d, and dy), there is no known efficient
method to compute Z (6, o) and one has to pay for the high computational complexity of O(n!) [9].
This has greatly limited the application of the Mallows model in real problems. Usually, one has to
employ sampling methods such as MCMC to reduce the complexity [12, 11]. This, however, will
affect the effectiveness of the model.

The Luce model is a stagewise probabilistic model on permutations. It assumes that there is a

(hidden) score w;,7 = 1,...,n, for each individual object i. To generate a permutation 7, firstly

Xp(w —1(1>)
exp(w =100

the object 7~1(1) is a551gned to position 1 with probability S ik secondly the object

- exp(w, — )
71(2) is assigned to position 2 with probability Wm,

until a complete permutation is formed. In this way, we obtain the permutation probability of 7 as

follows,
H exp(r (o) “
Z] zeXp( 71(3))

the assignment is continued

The computation of permutation probability in the Luce model is very efficient, as shown above.
Actually the corresponding complexity is in the polynomial order of the number of objects. This is a
clear advantage over the Mallows model. However, the Luce model is defined as a specific function
of the scores of the objects, and therefore cannot make use of versatile permutation distances. As a
result, its expressiveness is not as rich as the Mallows model, which may limit its applications.

3 A New Probabilistic Model

As discussed in the above section, both the Mallows and the Luce model have certain advantages and
limitations. In this section, we propose a new probabilistic model on permutations, which can inherit
their advantages and avoid their limitations. We call this model the coset-permutation distance based
stagewise (CPS) model.



3.1 The CPS Model

As indicated by the name, the CPS model is defined on the basis of the so-called coset-permutation
distance. A coset-permutation distance is induced from a permutation distance, as shown in the
following definition.

Definition 1. Given a permutation distance d, the coset-permutation distance d froma coset Sy,
to a target permutation o is defined as the average distance between the permutations in the coset
and the target permutation:

J(Sn_kﬂ',a) lS kﬂl Z d(r,0), 5)

TESp T

where |S,,_ 7| is the number of permutations in set Sy,_j.

It is easy to verify that if the permutation distance d is right invariant, then the induced coset-
permutation distance d is also right invariant.

With the concept of coset-permutation distance, given a dispersion parameter § € R and a location
permutation o € S,,, we can define the CPS model as follows. Specifically, the generative process
of a permutation 7 of n objects is decomposed into n sequential stages. As an initialization, all the
objects are placed in a working set. At the k-th stage, the task is to select the k-th object in the
original permutation 7 out of the working set. The probability of this selection is defined with the
coset-permutation distance between the right coset S;, ;7 and the location permutation o

exp(*f)d:(sn—kﬂ, 7))
27}:]{: eXp(—Gd(Sn—k(777 kv .7)5 0)) ’

(6)

where S,,_ k( ,k,7) denotes the right coset including all the permutations that rank objects
7 1),..., 7 1(k — 1), and 7~1(4) in the top k positions respectively.

From Eq. (6), we can see that the closer the coset .S,,_ 7 is to the location permutation o, the larger
the selection probability is. Considering all the n stages, we will obtain the overall probability of
generating 7, which is shown in the following definition.

Definition 2. The CPS model defines the probability of a permutation 7 conditioned on a dispersion
parameter 0 and a location permutation o as:

n

0.0 exp( Hcl(Sn,kﬂ',a)) 7
ﬂ-‘ r:[ Z’ﬂ kexp( ad(s’ﬂ*k(ﬂ-7k7j)70))7 ( )

where Sy, _ (7, k, j) is defined in the sentence after Eq. (6).

It is easy to verify that the probabilities P(r|0,0), 7 € S,, defined in the CPS model naturally

form a distribution over S,. That is, for each 7 € S, we always have P(r|f,0) > 0, and
> P(w|0,0) =1.

TESR

In rank aggregation, one usually needs to combine multiple input rankings. To deal with this sce-

nario, we further extend the CPS model, following the methodology used in [12].

0 n - m=1 OWLd(Sn iy O'm) 8
(7] St Omd(Sn—i(mij),om)’ ©

7711

where 0= {601,...,0y} and o= {071, ..., UM}.

The CPS model defined as above can be computed in a highly efficient manner, as discussed in the
following subsection.

3.2 Computational Complexity

According to the definition of the CPS model, at the k-th stage, one needs to compute (n — k)
coset-permutation distances. At first glance, the complexity of computing each coset-permutation



distance is about O((n — k)!), since the coset contains this number of permutations. This is clearly
intractable. The good news is that the real complexity for computing the coset-permutation distance
induced by several popular permutation distances is much lower than O((n — k)!). Actually, they
can be as low as O(n?), according to the following theorem.

Theorem 1. The coset-permutation distances induced from Spearman’s rank correlation d.., Spear-
man’s footrule ds, and Kendall’s tau d; can all be computed with a complexity of O(n?). More
specifically, for k = 1,2,...,n — 2, we have®

k n n

A _ 1 _
dr(Sn i 0) = S (olr @) =)+ ST 3 (ol @)~ ) ©)
i=1 L e i ]
k n n
5 1. . 1 1. .
dj(Sn-rm,0) =Y |o(r 1(1))*2\+m Yo > o @) -l (10)
i=1 i=k+1j=k+1
k n
. 1
dt(Sn_k’iT,O') = Z(TL — k)(n — k- 1) + Z Z 1{0(ﬂfl(i))>o'(7r*1(j))}' (11)
i=1 j=i+1

According to the above theorem, each induced coset-permutation distance can be computed with a
time complexity of O(n?). If we compute the CPS model according to Eq. (7), the time complexity
will then be O(n*). This is clearly much more efficient than O((n — k)!). Moreover, with careful
implementations, the time complexity of O(n*) can be further reduced to O(n?), as indicated by
the following theorem.

Theorem 2. For the coset distances induced from d,, d; and d;, the CPS model in Eq. (7) can be
computed with a time complexity of O(n?).

3.3 Relationship with Previous Models

The CPS model as defined above has strong connections with both the Luce model and the Mallows
model, as shown below.

The similarity between the CPS model and the Luce model is that they are both defined in a stage-
wise manner. This stagewise definition enables efficient inference for both models. The difference
between the CPS model and the Luce model lies in that the CPS model has a much richer expres-
siveness than the Luce model. This is mainly because the CPS model is a distance based model
while the Luce model is not. Our experiments in Section 5 show that different distances may be
appropriate for different applications and datasets, which means a model with rich expressiveness
has the potential to be applied for versatile applications.

The similarity between the CPS model and the Mallows model is that they are both based on dis-
tances. Actually when the coset-permutation distance in the CPS model is induced by the Kendall’s
tau d;, the CPS model is even mathematically equivalent to the Mallows model defined with d;.
The major difference between the CPS model and the Mallows model lies in the computational
efficiency. The CPS model can be computed efficiently with a polynomial time complexity, as dis-
cussed in the previous sub section. However, for most permutation distances, the complexity of the
Mallows model is as huge as O(n!).3

According to the above discussions, we can see that the CPS model inherits the advantages of both
the Luce model and the Mallows model, and avoids their limitations.

4 Algorithms for Rank Aggregation

In this section, we show how to apply the extended CPS model to solve the problem of rank aggrega-
tion. Here we take meta search as an example, and consider the supervised case of rank aggregation.
That is, given a set of training queries, we need to learn the parameters @ in the CPS model and
apply the model with the learned parameters to aggregate rankings for new test queries.

2Note that d(S,,_,m,0) = d(m,0) fork =n — 1,n.
3An exception is that for Kendall’s tau distance, the Mallows model can be as efficient as the CPS model
because they are mathematically equivalent.



Algorithm 1 Sequential inference

Input: parameters 6, input rankings o

Inference:

1: Initialize the set of n objects: D = {1,2,...,n}.

2: a7 '(1) = argminjep Y., Omd(Sn—1(< j >),0m).

3:  Remove object 7~ *(1) from set D.

4. fork=2ton .
@.1): 7 (k) = argminjep >, Omd (Sn—r(< 7 (1),..., 7 (k= 1),j >),0m),
(4.2): Remove object 7' (k) from set D.

5: end

Output: the final ranking 7.

4.1 Learning

Let D = {(7(",0®)} be the set of training queries, in which 7() is the ground truth ranking for
query ¢;, and o¥) is the set of M input rankings.

In order to learn the parameters 6 in Eq. (8), we employ maximum likelihood estimation. Specifi-
cally, the log likelihood of the training data for the CPS model can be written as below,

L(6)

log H P(r")0,0") = Z log P(7V160, V)
1 1

n M ~ n M 3 ) o ()
ZZ - Z emd(snfkﬂ'(l%(firlb)) — IOgZe_ Pm=10md(Sn_r (7" k,5),0m") (12)
=k

I k=1 m=1

It is not difficult to prove that L(6) is concave with respect to 8. Therefore, we can use simple
optimization techniques like gradient ascent to find the globally optimal 6.

4.2 Inference

In the test phase, given a new query and its associated M input rankings, we need to infer a final
ranking with the learned parameters 6.

A straightforward method is to find the permutation with the largest probability conditioned on the
M input rankings, just as the widely-used inference algorithm for the Mallows model [12]. We call
the method global inference since it finds the globally most likely one from all possible permutations.

The problem with global inference lies in that its complexity is as high as O(n!). As a consequence,
it cannot handle applications with a large number of objects to rank. Considering the stagewise
definition of the CPS model, we propose a sequential inference algorithm. The algorithm decom-
poses the inference into n steps. At the k-th step, we select the object j that can minimize the
coset-permutation distance 3", 0,,d(Sy_r((x~*(1),..., 7 (k—1),4), o), and put it at the k-th
position. The procedure is listed in Algorithm 1.

In fact, sequential inference is an approximation of global inference, with a much lower complexity.
Theorem 3 shows that the complexity of sequential inference is just O(Mn?). Our experiments in
the next section indicate that such an approximation does not hurt the ranking accuracy by much,
while significantly speeds up the inference process.

Theorem 3. For the coset distance induced from d,, dy, and dy, the stagewise inference as shown
in Algorithm 1 can be conducted with a time complexity of O(Mn?) .

5 Experimental Results

We have performed experiments to test the efficiency and effectiveness of the proposed CPS model.



5.1 Settings

We take meta search as the target application, and use the LETOR [13] benchmark datasets in the
experiments. LETOR is a public collection created for ranking research.* There are two meta search
datasets in LETOR, MQ2007-agg and MQ2008-agg. In addition to using them, we also composed a
smaller dataset from MQ2008-agg, referred to as MQ2008-small, by selecting queries with no more
than 8 documents from the MQ2008-agg dataset. This small dataset is used to perform detailed
investigations on the CPS model and other baseline models.

There are three levels of relevance labels in all the datasets: highly relevant, relevant, and irrelevant.
We used NDCG [10] as the evaluation measure in our experiments. NDCG is a widely-used IR
measure for multi-level relevance judgments. The larger the NDCG value, the better the aggregation
accuracy.

The 5-fold cross validation strategy was adopted for all the datasets. All the results reported in this
section are the average results over the five folds.

For the CPS model, we tested two inference methods: global inference (denoted as CPS-G) and se-
quential inference (denoted as CPS-S). For comparison, we implemented the Mallows model. When
applied to supervised rank aggregation, the learning process of the Mallows model is also maximum
likelihood estimation. For inference, we chose the permutation with the maximal probability as the
final aggregated ranking. The time complexity of both learning and inference of the Mallows model
with distance d, and dy is O(n!). We also implemented an approximate algorithm as suggested
by [12] using MCMC sampling to speed up the learning process. We refer to this approximate al-
gorithm as MallApp. Note that the time complexity of the inference of MallApp is still O(n!) for
distance d,. and dy. Furthermore, as a reference, we also tested a traditional method, BordaCount
[1], which is based on majority voting. We did not compare with the Luce model because it is not
straightforward to be applied to supervised rank aggregation, as far as we know.

Note that Mallows, MallApp and CPS-G cannot handle the large datasets MQ2007-agg and
MQ2008-agg, and were only tested on the small dataset MQ2008-small.

5.2 Results

First, we report the results of these algorithms on the MQ2008-small dataset.

The aggregation accuracies in terms of NDCG are listed in Table 1(a). Note that the accuracy
of Mallows(dy) is the same as that of CPS-G(d;) because of the mathematical equivalence of the
two models. Therefore, we omit Mallows(dy) in the table. We did not implement the sampling-
based learning algorithm for the Mallows model with distance d;, because in this case the learning
algorithm has already been efficient enough.

From the table, we have the following observations.

e For the Mallows model, exact learning is a little better than the approximate learning, es-
pecially for distance dy. This is in accordance with our intuition. Sampling can improve
the efficiency of the algorithm, but also miss some information contained in the original
permutation probability space.

e For the CPS model, the sequential inference does not lead to much accuracy drop as com-
pared to global inference. For distances d; and d,., the CPS model outperforms the Mallows
model. For example, when d; is used, the CPS model wins the Mallows model by about
0.04 in terms of NDCG @2, which corresponds to a relative improvement of 10%.

e For the same model, with different distance functions, the performances differ significantly.
This indicates that one should select the most suitable distance for a given application.

e All the probabilistic model based methods are better than BordaCount, the heuristic
method.

In addition to the comparison of aggregation accuracy, we have also logged the running time of each
model. For example, on our test machine (with 2.13Ghz CPU and 4GB memory), it took about 12

*The datasets can be downloaded from http: //research.microsoft.com/~letor.



Table 1: Results

(a) Results on MQ2008-small (b) Results on MQ2008-agg and MQ2007-agg
NDCG @2 @4 @6 @3 on MQ2008-agg
BordaCount  0.335 0.421 0.479 0.420 NDCG @2 @4 @6 @8

CPS-G(d;) 0392 0471 0518 0446 BordaCount 0281 0343 0389 0372
CPS-S(dy) 0389 0471 0517 0444 CPS-S(d;) 0312 0379 0420 0.403
Mallows(d;) 0350 0449 0490 0422  CPS-S(d,) 0314 0376 0419 0.398
MallApp(ds) 0343 0440 0491 0420  CPS-S(d;) 0276 0352 0399 0.383
CPS-G(d,) 0387 0476 0519 0.443 on MQ2007-ags
CPS-S(d,) 0388 0478 0519 0.441 NDCG @) @1 @6 @3
Mallows(d,) 0333 0442 0491 0420  —goqCount 0201 0213 0225 0.238
CPS-G(d;) 0414 0485 0530 0451 CPSS(d) 0332 0341 0352 0362
CPS-S(d) 0419 0489 0534 0454 (psigay) 0298 0312 0323 0336

seconds for CPS-G(d f),5 30 seconds for MallApp(dy), and 12 hours for Mallows(d) to finish the
training process. The inference of the Mallows model based algorithms and the global inference
of the CPS model based algorithms took more time than sequential inference of the CPS model,
although the difference was not significant (this is mainly because n < 8 for MQ2008-small).

From these results, we can see that the proposed CPS model plus sequential inference is the most
efficient one, and its accuracy is also very good as compared to other methods.

Second, we report the results on MQ2008-agg and MQ2007-agg in Table 1(b). Note that the results
of the Mallows model based algorithms and that of the CPS model with global inference are not
available because of the high computational complexity for their learning or inference. The results
show that the CPS model with sequential inference outperforms BordaCount, no matter which dis-
tance is used. Moreover, the CPS model with d; performs the best on MQ2008-agg, and the model
with d,. performs the best on MQ2007-agg. This indicates that we can achieve good ranking per-
formance by choosing the most suitable distances for different datasets (and so applications). This
provides a side evidence that it is beneficial for a probabilistic model on permutations to have rich
expressiveness.

To sum up, the experimental results indicate that the CPS model based learning and sequential
inference algorithms can achieve state-of-the-art ranking accuracy and are more efficient than other
algorithms.

6 Conclusions and Future Work

In this paper, we have proposed a new probabilistic model, named the CPS model, on permutations
for rank aggregation. The model is based on coset-permutation distance and defined in a stagewise
manner. It inherits the advantages of the Luce model (high efficiency) and the Mallows model
(rich expressiveness), and avoids their limitations. We have applied the model to supervised rank
aggregation and investigated how to perform learning and inference. Experiments on public datasets
demonstrate the effectiveness and efficiency of the CPS model.

As future work, we plan to investigate the following issues. (1) We have shown that three induced
coset-permutation distances can be computed efficiently. We will explore whether other distances
also have such properties. (2) We have applied the CPS model to the supervised case of rank aggre-
gation. We will study the unsupervised case. (3) We will investigate other applications of the model,
and discuss how to select the most suitable distance for a given application.

>The training process of CPS-G and CPS-S is exactly the same.
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