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Abstract

We consider online learning in finite stochastic Markovian environments where in
each time step a new reward function is chosen by an oblivious adversary. The
goal of the learning agent is to compete with the best stationary policy in terms
of the total reward received. In each time step the agent observes the current state
and the reward associated with the last transition, however, the agent does not
observe the rewards associated with other state-action pairs. The agent is assumed
to know the transition probabilities. The state of the art result for this setting is
a no-regret algorithm. In this paper we propose a new learning algorithm and,
assuming that stationary policies mix uniformly fast, we show that after T time
steps, the expected regret of the new algorithm is O

(
T 2/3(lnT )1/3

)
, giving the

first rigorously proved regret bound for the problem.

1 Introduction

We consider online learning in finite Markov decision processes (MDPs) with a fixed, known dy-
namics. The formal problem definition is as follows: An agent navigates in a finite stochastic envi-
ronment by selecting actions based on the states and rewards experienced previously. At each time
instant the agent observes the reward associated with the last transition and the current state, that is,
at time t+ 1 the agent observes rt(xt,at), where xt is the state visited at time t and at is the action
chosen. The agent does not observe the rewards associated with other transitions, that is, the agent
faces a bandit situation. The goal of the agent is to maximize its total expected reward R̂T in T
steps. As opposed to the standard MDP setting, the reward function at each time step may be differ-
ent. The only assumption about this sequence of reward functions rt is that they are chosen ahead of
time, independently of how the agent acts. However, no statistical assumptions are made about the
choice of this sequence. As usual in such cases, a meaningful performance measure for the agent is
how well it can compete with a certain class of reference policies, in our case the set of all stationary
policies: If R∗T denotes the expected total reward in T steps that can be collected by choosing the
best stationary policy (this policy can be chosen based on the full knowledge of the sequence rt),
the goal of learning can be expressed as minimizing the total expected regret, L̂T = R∗T − R̂T .

In this paper we propose a new algorithm for this setting. Assuming that the stationary distributions
underlying stationary policies exist, are unique and they are uniformly bounded away from zero and
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that these policies mix uniformly fast, our main result shows that the total expected regret of our
algorithm in T time steps is O

(
T 2/3(lnT )1/3

)
.

The first work that considered a similar online learning setting is due to Even-Dar et al. (2005,
2009). In fact, this is the work that provides the starting point for our algorithm and analysis. The
major difference between our work and that of Even-Dar et al. (2005, 2009) is that they assume
that the reward function is fully observed (i.e., in each time step the learning agent observes the
whole reward function rt), whereas we consider the bandit setting. The main result in these works
is a bound on the total expected regret, which scales with the square root of the number of time
steps under mixing assumptions identical to our assumptions. Another work that considered the full
information problem is due to Yu et al. (2009) who proposed new algorithms and proved a bound on
the expected regret of order O

(
T 3/4+ε

)
for arbitrary ε ∈ (0, 1/3). The advantage of the algorithm

of Yu et al. (2009) to that of Even-Dar et al. (2009) is that it is computationally less expensive, which,
however, comes at the price of an increased bound on the regret. Yu et al. (2009) introduced another
algorithm (“Q-FPL”) and they have shown a sublinear (o(T )) almost sure bound on the regret.

All the works reviewed so far considered the full information case. The requirement that the full
reward function must be given to the agent at every time step significantly limits their applicability.
There are only three papers that we know of where the bandit situation was considered.

The first paper which falls into this category is due to Yu et al. (2009) who proposed an algorithm
(“Exploratory FPL”) for this setting and have shown an o(T ) almost sure bound on the regret.

Recently, Neu et al. (2010) gave O
(√

T
)

regret bounds for a special bandit setting when the agent
interacts with a loop-free episodic environment. The algorithm and analysis in this work heavily
exploits the specifics of these environments (i.e., that in the same episode no state can be visited
twice) and so they do not generalize to our setting.

Another closely related work is due to Yu and Mannor (2009a,b) who considered the problem of
online learning in MDPs where the transition probabilities may also change arbitrarily after each
transition. This problem, however, is significantly different from ours and the algorithms studied
are unsuitable for our setting. Further, the analysis in these papers seems to have gaps (see Neu
et al., 2010). Thus, currently, the only result for the case considered in this paper is an asymptotic
“no-regret” result.

The rest of the paper is organized as follows: The problem is laid out in Section 2, which is followed
by a section about our assumptions (Section 3). The algorithm and the main result are given in
Section 4, while a proof sketch of the latter is presented in Section 5.

2 Problem definition

Formally, a finite Markov Decision Process (MDP) M is defined by a finite state space X , a finite
action set A, a transition probability kernel P : X × A × X → [0, 1], and a reward function
r : X × A → [0, 1]. In time step t ∈ {1, 2, . . .}, knowing the state xt ∈ X , an agent acting in
the MDP M chooses an action at ∈ A(xt) to be executed based on (xt, r(at−1,xt−1),at−1,xt−1,
. . . ,x2, r(a1,x1),a1,x1).1 HereA(x) ⊂ A is the set of admissible actions at state x. As a result of
executing the chosen action the process moves to state xt+1 ∈ X with probability P (xt+1|xt,at)
and the agent receives reward r(xt,at). In the so-called average-reward problem, the goal of the
agent is to maximize the average reward received over time. For a more detailed introduction the
reader is referred to, for example, Puterman (1994).

2.1 Online learning in MDPs

In this paper we consider the online version of MDPs when the reward function is allowed to change
arbitrarily. That is, instead of a single reward function r, a sequence of reward functions {rt} is
given. This sequence is assumed to be fixed ahead of time, and, for simplicity, we assume that
rt(x, a) ∈ [0, 1] for all (x, a) ∈ X × A and t ∈ {1, 2, . . .}. No other assumptions are made about
this sequence.

1We follow the convention that boldface letters denote random variables.
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The learning agent is assumed to know the transition probabilities P , but is not given the sequence
{rt}. The protocol of interaction with the environment is unchanged: At time step t the agent
receives xt and then selects an action at which is sent to the environment. In response, the reward
rt(xt,at) and the next state xt+1 are communicated to the agent. The initial state x1 is generated
from a fixed distribution P0.

The goal of the learning agent is to maximize its expected total reward

R̂T = E

[
T∑
t=1

rt(xt,at)

]
.

An equivalent goal is to minimize the regret, that is, to minimize the difference between the expected
total reward received by the best algorithm within some reference class and the expected total reward
of the learning algorithm. In the case of MDPs a reasonable reference class, used by various previous
works (e.g., Even-Dar et al., 2005, 2009; Yu et al., 2009) is the class of stationary stochastic policies.2
A stationary stochastic policy, π, (or, in short: a policy) is a mapping π : A × X → [0, 1], where
π(a|x) ≡ π(a, x) is the probability of taking action a in state x. We say that a policy π is followed
in an MDP if the action at time t is drawn from π, independently of previous states and actions given
the current state x′t: a

′
t ∼ π(·|x′t). The expected total reward while following a policy π is defined

as

RπT = E

[
T∑
t=1

rt(x
′
t,a
′
t)

]
.

Here {(x′t,a′t)} denotes the trajectory that results from following policy π from x′1 ∼ P0.

The expected regret (or expected relative loss) of the learning agent relative to the class of policies
(in short, the regret) is defined as

L̂T = sup
π
RπT − R̂T ,

where the supremum is taken over all (stochastic stationary) policies. Note that the optimal policy
is chosen in hindsight, depending acausally on the reward function. If the regret of an agent grows
sublinearly with T then we can say that in the long run it acts as well as the best (stochastic station-
ary) policy (i.e., the average expected regret of the agent is asymptotically equal to that of the best
policy).

3 Assumptions

In this section we list the assumptions that we make throughout the paper about the transition proba-
bility kernel (hence, these assumptions will not be mentioned in the subsequent results). In addition,
recall that we assume that the rewards are bound to [0, 1].

Before describing the assumptions, a few more definitions are needed: Let π be a stationary policy.
Define Pπ(x′|x) =

∑
a π(a|x)P (x′|x, a).We will also view Pπ as a matrix: (Pπ)x,x′ = Pπ(x′|x),

where, without loss of generality, we assume that X = {1, 2, . . . , |X |}. In general, distributions will
also be treated as row vectors. Hence, for a distribution µ, µPπ is the distribution over X that results
from using policy π for one step from µ (i.e., the “next-state distribution” under π). Remember that
the stationary distribution of a policy π is a distribution µ which satisfies µPπ = µ.

Assumption A1 Every policy π has a well-defined unique stationary distribution µπ .

Assumption A2 The stationary distributions are uniformly bounded away from zero:
infπ,x µ

π(x) ≥ β for some β > 0.

Assumption A3 There exists some fixed positive τ such that for any two arbitrary distributions µ
and µ′ over X ,

sup
π
‖(µ− µ′)Pπ‖1 ≤ e−1/τ‖µ− µ′‖1,

where ‖ · ‖1 is the 1-norm of vectors: ‖v‖1 =
∑
i |vi|.

2This is a reasonable reference class because for a fixed reward function one can always find a member of
it which maximizes the average reward per time step, see Puterman (1994).
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Note that Assumption A3 implies Assumption A1. The quantity τ is called the mixing time under-
lying P by Even-Dar et al. (2009) who also assume A3.

4 Learning in online MDPs under bandit feedback

In this section we shall first introduce some additional, standard MDP definitions, which we will be
used later. That these are well-defined follows from our assumptions on P and from standard results
to be found, for example, in the book by Puterman (1994). After the definitions, we specify our
algorithm. The section is finished by the statement of our main result concerning the performance
of the proposed algorithm.

4.1 Preliminaries

Fix an arbitrary policy π and t ≥ 1. Let {(x′s,a′s)} be the random trajectory generated by π and the
transition probability kernel P . Define, ρπt , the average reward per stage corresponding to π, P and
rt by

ρπt = lim
S→∞

1

S

S∑
s=0

E[rt(x′s,a′s)] .

An alternative expression for ρπt is ρπt =
∑
x µ

π(x)
∑
a π(a|x)rt(x, a), where µπ is the stationary

distribution underlying π. Let qπt be the action-value function of π, P and rt and vπt be the cor-
responding state-value function. These can be uniquely defined as the solutions of the following
Bellman equations:

qπt (x, a) = rt(x, a)− ρπt +
∑
x′

P (x′|x, a)vπt (x′), vπt (x) =
∑
a

π(a|x)qπt (x, a).

Now, consider the trajectory {(xt,at)} underlying a learning agent, where x1 is randomly chosen
from P0, and define

ut = (x1,a1, r1(x1,a1), x2,a2, r2(x2,a2), . . . , xt,at, rt(xt,at) )

and πt(a|x) = P[at = a|ut−1,xt = x]. That is, πt denotes the policy followed by the agent at
time step t (which is computed based on past information and is therefore random). We will use the
following notation:

qt = qπt
t , vt = vπt

t , ρt = ρπt
t .

Note that qt,vt satisfy the Bellman equations underlying πt, P and rt.

For reasons to be made clear later in the paper, we shall need the state distribution at time step t
given that we start from the state-action pair (x, a) at time t −N , conditioned on the policies used
between time steps t−N and t:

µNt,x,a(x
′)

def
= P [xt = x′ |xt−N = x,at−N = a,πt−N+1, . . . ,πt−1] , x, x′ ∈ X , a ∈ A .

It will be useful to view µNt as a matrix of dimensions |X ×A|×|X |. Thus, µNt,x,a(·) will be viewed
as one row of this matrix. To emphasize the conditional nature of this distribution, we will also use
µNt (·|x, a) instead of µNt,x,a(·).

4.2 The algorithm

Our algorithm is similar to that of Even-Dar et al. (2009) in that we use an expert algorithm in each
state. Since in our case the full reward function rt is not observed, the agent uses an estimate of it.
The main difficulty is to come up with an unbiased estimate of rt with a controlled variance. Here
we propose to use the following estimate:

r̂t(x, a) =

{
rt(x,a)

πt(a|x)µN
t (x|xt−N ,at−N )

if (x, a) = (xt,at)

0 otherwise,
(1)
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where t ≥ N + 1. Define q̂t, v̂t and ρ̂ as the solution to the Bellman equations underlying the
average reward MDP defined by (P,πt, r̂t):

q̂t(x, a) = r̂t(x, a)− ρ̂t +
∑
x′

P (x′|x, a)v̂t(x′), v̂t(x) =
∑
a

πt(a|x)q̂t(x, a) ,

ρ̂t =
∑
x,a

µπt(x)πt(a|x)r̂t(x, a) .
(2)

Note that if N is sufficiently large and πt changes sufficiently slowly then

µNt (x|xt−N ,at−N ) > 0, (3)

almost surely, for arbitrary x ∈ X , t ≥ N + 1. This fact will be shown in Lemma 4. Now, assume
that πt is computed based on ut−N , that is, πt is measurable with respect to the σ-field σ(ut−N )
generated by the history ut−N :

πt ∈ σ(ut−N ) . (4)

Then also πt−1, . . . ,πt−N ∈ σ(ut−N ) and µNt can be computed using

µNt,x,a = exP
aPπt−N+1 · · ·Pπt−1 , (5)

where P a is the transition probability matrix when in every state action a is used and ex is the unit
row vector corresponding to x (and we assumed that X = {1, . . . , |X |}). Moreover, a simple but
tedious calculation shows that (3) and (4) ensure the conditional unbiasedness of our estimates, that
is,

E [ r̂t(x, a)|ut−N ] = rt(x, a). (6)

It then follows that
E[ρ̂t|ut−N ] = ρt,

and, hence, by the uniqueness of the solutions of the Bellman equations, we have, for all (x, a) ∈
X ×A,

E[q̂t(x, a)|ut−N ] = qt(x, a) and E[v̂t(x)|ut−N ] = vt(x). (7)

As a consequence, we also have, for all (x, a) ∈ X ×A, t ≥ N + 1,

E[ρ̂t] = E [ρt] , E[q̂t(x, a)] = E [qt(x, a)] , and E[v̂t(x)] = E [vt(x)] . (8)

The bandit algorithm that we propose is shown as Algorithm 1. It follows the approach of Even-Dar
et al. (2009) in that a bandit algorithm is used in each state which together determine the policy to be
used. These bandit algorithms are fed with estimates of action-values for the current policy and the
current reward. In our case these action-value estimates are q̂t defined earlier, which are based on the
reward estimates r̂t. A major difference is that the policy computed based on the most recent action-
value estimates is used only N steps later. This delay allows us to construct unbiased estimates of
the rewards. Its price is that we need to store N policies (or weights, leading to the policies), thus,
the memory needed by our algorithm scales with N |A||X |. The computational complexity of the
algorithm is dominated by the cost of computing r̂t (and, in particular, by the cost of computing
µNt (·|xt−N ,at−N )). The cost of this is O

(
N |A||X |3

)
. In addition to the need of dealing with the

delay, we also need to deal with the fact that in our case qt and q̂t can be both negative, which must
be taken into account in the proper tuning of the algorithm’s parameters.

4.3 Main result

Our main result is the following bound concerning the performance of Algorithm 1.
Theorem 1. Let N = dτ lnT e,

η = T−2/3 · (ln |A|)2/3 ·
(
4τ + 8

β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))−1/3
,

γ = T−1/3 · (2τ + 4)−2/3 ·
(
2 ln |A|
β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))1/3

.
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Algorithm 1 Algorithm for the online bandit MDP.

Set N ≥ 1, w1(x, a) = w2(x, a) = · · · = w2N (x, a) = 1, γ ∈ (0, 1), η ∈ (0, γ].
For t = 1, 2, . . . , T , repeat

1. Set

πt(a|x) = (1− γ) wt(x, a)∑
bwt(x, b)

+
γ

|A|
for all (x, a) ∈ X ×A.

2. Draw an action at randomly, according to the policy πt(·|xt).
3. Receive reward rt(xt,at) and observe xt+1.
4. If t ≥ N + 1

(a) Compute µNt (x|xt−N ,at−N ) for all x ∈ X using (5).
(b) Construct estimates r̂t using (1) and compute q̂t using (2).
(c) Set wt+N (x, a) = wt+N−1(x, a)e

ηq̂t(x,a) for all (x, a) ∈ X ×A.

Then the regret can be bounded as

L̂T ≤ 3T 2/3 ·
(
(4τ + 8) ln |A|

β

(
(2τ + 4)τ |A| lnT + (3τ + 1)2

))1/3

+O
(
T 1/3

)
.

It is interesting to note that, similarly to the regret bound of Even-Dar et al. (2009), the main term
of the regret bound does not directly depend on the size of the state space, but it depends on it only
through β and the mixing time τ , defined in Assumptions A2 and A3, respectively; however, we also
need to note that β > 1/|X |. While the theorem provides the first rigorously proved finite sample
regret bound for the online bandit MDP problem, we suspect that the given convergence rate is not
sharp in the sense that it may be possible, in agreement with the standard bandit lower bound of
Auer et al. (2002), to give an algorithm with an O

(√
T
)

regret (up to some logarithmic factors).

The proof of the theorem is similar to the proof of a similar bound done for the full-information case
by Even-Dar et al. (2009). Clearly, it suffices to bound RπT − R̂T for an arbitrary fix policy π. We
use the following decomposition of this difference (also used by Even-Dar et al., 2009):

RπT − R̂T =

(
RπT −

T∑
t=1

ρπt

)
+

(
T∑
t=1

ρπt −
T∑
t=1

ρt

)
+

(
T∑
t=1

ρt − R̂T

)
. (9)

The first term is bounded using the following standard MDP result.
Lemma 1 (Even-Dar et al., 2009). For any policy π and any T ≥ 1 it holds that(
RπT −

∑T
t=1 ρ

π
t

)
≤ 2(τ + 1).

Hence, it remains to bound the expectation of the other terms, which is done in the following two
propositions.
Proposition 1. Let N ≥ dτ lnT e. For any policy π and for all T large enough, we have

T∑
t=1

E [ρπt − ρt]

≤ (4τ + 10)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
.

Proposition 2. Let N ≥ dτ lnT e. For any T large enough,

T∑
t=1

E [ρt]− R̂T ≤ T
2η

β

(
1

γ
+ 4τ + 6

)
(3τ + 1)2 + 2Te−N/τ + 2N. (10)
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Note that the choice of N ensures that the second term in (10) becomes O(1).
The proofs are broken into a number of statements presented in the next section. Due to space
constraints we present proof sketches only; the full proofs are presented in the extended version of
the paper.

5 Analysis

5.1 General tools

First, we show that if the policies that we follow up to time step t change slowly, µNt is “close” to
µπt :
Lemma 2. Let 1 ≤ N < t ≤ T and c > 0 be such that maxx

∑
a |πs+1(a|x)− πs(a|x)| ≤ c

holds for 1 ≤ s ≤ t− 1. Then we have

max
x,a

∑
x′

∣∣µNt,x,a(x′)− µπt(x′)
∣∣ ≤ c (3τ + 1)2 + 2e−N/τ .

In the next two lemmas we compute the rate of change of the policies produced by Exp3 and show
that for a large enough value of N , µNt,x,a can be uniformly bounded form below by β/2.

Lemma 3. Assume that for some N + 1 ≤ t ≤ T , µNt,xt−N ,at−N
(x′) ≥ β/2 holds for all states x′.

Let c = 2η
β

(
1
γ + 4τ + 6

)
. Then,

max
x

∑
a

|πt+N−1(a|x)− πt+N (a|x)| ≤ c. (11)

The previous results yield the following result that show that by choosing the parameters appropri-
ately, the policies will change slowly and µNt will be uniformly bounded away from zero.
Lemma 4. Let c be as in Lemma 3. Assume that c(3τ + 1)2 < β/2, and let

N ≥
⌈
τ ln

(
4

β − 2c(3τ + 1)2

)⌉
. (12)

Then, for all N < t ≤ T , x, x′ ∈ X and a ∈ A, we have µNt,x,a(x
′) ≥ β/2 and

maxx′
∑
a′ |πt+1(a

′|x′)− πt(a
′|x′)| ≤ c.

This result is proved by first ensuring that µt is uniformly lower bounded for t = N + 1, . . . , 2N ,
which can be easily seen since the policies do not change in this period. For the rest of the time
instants, one can proceed by induction, using Lemmas 2 and 3 in the inductive step.

5.2 Proof of Proposition 1

The statement is trivial for T ≤ N . The following simple result is the first step in proving Proposi-
tion 1 for T > N .
Lemma 5. (cf. Lemma 4.1 in Even-Dar et al., 2009) For any policy π and t ≥ 1,

ρπt − ρt =
∑
x,a

µπ(x)π(a|x) [qt(x, a)− vt(x)] .

For every x, a define QT (x, a) =
∑T
t=N+1 qt(x, a) and VT (x) =

∑T
t=N+1 vt(x). The pre-

ceding lemma shows that in order to prove Proposition 1, it suffices to prove an upper bound on
E [QT (x, a)−VT (x)].
Lemma 6. Let c be as in Lemma 3. Assume that γ ∈ (0, 1), c(3τ + 1)2 < β/2, N ≥⌈
τ ln

(
4

β−2c(3τ+1)2

)⌉
, 0 < η ≤ β

2(1/γ+2τ+3) , and T > N hold. Then, for all (x, a) ∈ X ×A,

E [QT (x, a)−VT (x)]

≤ (4τ + 8)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
.
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Proof sketch. The proof essentially follows the original proof of Auer et al. (2002) concerning the
regret bound of Exp3, although some details are more subtle in our case: our estimates have different
properties than the ones considered in the original proof, and we also have to deal with the N -step
delay.

Let

V̂N
T (x) =

T−N+1∑
t=N+1

∑
a

πt+N−1(a|x)q̂t(x, a) and Q̂N
T (x, b) =

T−N+1∑
t=N+1

q̂t(x, b).

Observe that although qt(x, a) is not necessarily positive (in contrast to the rewards in the Exp3
algorithm), one can prove that πt(a|x)|q̂t(x, a)| ≤ 4

β (τ + 2) and

E [|q̂t(x, a)|] ≤ 2(τ + 2). (13)

Similarly, it can be easily seen that the constraint on η ensures that ηq̂t(x, a) ≤ 1 for all x, a, t.
Then, following the proof of Auer et al. (2002), we can show that

V̂N
T (x) ≥ (1− γ)Q̂N

T (x, b)− ln |A|
η
− 4

β
(τ + 2) η(e− 2)

T−N+1∑
t=N+1

∑
a

|q̂t(x, a)| . (14)

Next, since the policies satisfy maxx
∑
a |πs+1(a|x)− πs(a|x)| ≤ c by Lemma 4, we can prove,

using (8) and (13), that

E
[
V̂N
T (x)

]
≤ E [VT (x)] + 2(τ + 2)N (c T |A|+ 1).

Now, taking the expectation of both sides of (14) and using the bound on E
[
V̂N
T (x)

]
we get

E [VT (x)] ≥ (1− γ)E
[
QN
T (x, b)

]
− ln |A|

η
− 4

β
(τ + 2) η(e− 2)

T−N+1∑
t=N+1

∑
a

E [|q̂t(x, a)|]

− 2(τ + 2)N (c T |A|+ 1),

where we used that E
[
Q̂N
T (x, b)

]
= E

[
QN
T (x, b)

]
by (8). Since qt(x, b) ≤ 2(τ + 2),

E
[
QN
T (x, b)

]
≤ E [QT (x, b)] + 2(τ + 2)N.

Combining the above results and using (13) again, then substituting the definition of c yields the
desired result.

Proof of Proposition 1. Under the conditions of the proposition, combining Lemmas 5-6 yields

T∑
t=1

E [ρπt − ρt]

≤ 2N +
∑
x,a

µπ(x)π(a|x)E [QT (x, a)−VT (x)]

≤ (4τ + 10)N +
ln |A|
η

+ (2τ + 4)T

(
γ +

2η

β
|A|
(
N (1/γ + 4τ + 6) + (e− 2)(2τ + 4)

))
,

proving Proposition 1.
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