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Abstract

We develop a deterministic single-pass algorithm for latent Dirichlet alloca-
tion (LDA) in order to process received documents one at a time and then
discard them in an excess text stream. Our algorithm does not need to store
old statistics for all data. The proposed algorithm is much faster than a batch
algorithm and is comparable to the batch algorithm in terms of perplexity in
experiments.

1 Introduction
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Figure 1: Overview of the relation-
ships among inferences.

Huge quantities of text data such as news articles and blog
posts arrives in a continuous stream. Online learning has at-
tracted a great deal of attention as a useful method for han-
dling this growing quantity of streaming data because it pro-
cesses data one at a time, whereas batch algorithms are not
feasible in these settings because they need all the data at
the same time. This paper focus on online learning for La-
tent Dirichlet allocation (LDA) (Blei et al., 2003), which is a
widely used probabilistic model for text data.

Online learning for LDA has been already developed (Baner-
jee and Basu, 2007; Alsumait et al., 2008; Canini et al., 2009;
Yao et al., 2009). Existing studies were based on sampling
methods such as the incremental Gibbs sampler and particle
filter. Sampling methods seem to be inappropriate for stream-
ing data because sampling methods have to represent a pos-
terior by using a lot of samples, which basically needs much
time. Moreover, sampling algorithms often need a resampling
step in which a sampling method is applied to old data. Storing old data or old samples adversely
affects the good properties of online algorithms. Particle filters also need to runm parallel process-
ing. A parallel algorithm needs more memory than a single-process algorithm, which is not useful
for a large quantity of data, especially in the case of a large vocabulary. For example, LDA needs to
store the number of words observed in a topic. If the number of topics isT , the vocabulary size is
V andm, so the required memory size isO(m ∗ T ∗ V ).

We propose two deterministic online algorithms; an incremental algorithms and a single-pass al-
gorithm. Our incremental algorithm is an incremental variant of the reverse EM (REM) algorithm
(Minka, 2001). The incremental algorithm updates parameters by replacing old sufficient statistics
with new one for each datum. Our single-pass algorithm is based on an incremental algorithm, but it
does not need to store old statistics for all data. In our single-pass algorithm, we propose a sequential
update method for the Dirichlet parameters. Asuncion et al. (2009); Wallach et al. (2009) indicated
the importance of estimating the parameters of the Dirichlet distribution, which is the distribution
over the topic distributions of documents. Moreover, we can deal with the growing vocabulary size.
In real life, the total vocabulary size is unknown, i.e., increasing as a document is observed.
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In summary, Fig.1 shows the relationships among inferences. VB-LDA is the variational inference
for LDA, which is a batch inference; CVB-LDA is the collapsed variational inference for LDA (Teh
et al., 2007); iREM-LDA is our incremental algorithm; and sREM-LDA is our single-pass algorithm
for LDA.

Sections.2 briefly explains inference algorithms for LDA. Section 3 describes the proposed algo-
rithm for online learning. Section 4 presents the experimental results.

2 Overview of Latent Dirichlet Allocation

This section overviews LDA where documents are represented as random mixtures over latent topics
and each topic is characterized by a distribution over words. First, we will define the notations, and
then, describe the formulation of LDA.T is the number of topics.M is the number of documents.
V is the vocabulary size.Nj is the number of words in documentj. wj,i denotes thei-th word in
documentj. zj,i denotes the latent topic of wordwj,i. Multi(·) is a multinomial distribution.Dir(·)
is a Dirichlet distribution.θj denotes aT -dimensional probability vector that is the parameters of the
multinomial distribution, and represents the topic distribution of documentj. βt is a multinomial
parameter aV -dimensional probability whereβt,v specifies the probability of generating wordv
given topict. α is theT -dimensional parameter vector of the Dirichlet distribution overθj (j =
1, · · · ,M).

LDA assumes the following generative process. For each of theT topicst, drawβt ∼ Dir(β|λ) ∝∏
v β

λ−1
t,v . For each of theM documentsj, drawθj ∼ Dir(θ|α) whereDir(θ|α) ∝

∏
t

θαt−1
t .

For each of theNj wordswj,i in documentj, draw topiczj,i ∼Multi(z|θj) and draw wordwj,i ∼
p(w|zj,i,β) wherep(w = v|z = t,β) = βt,v.

That is to say, the complete-data likelihood of a documentwj is given by

p(wj , zj ,θj |α,β) = p(θj |α)

Nj∏
i

p(wj,i|zj,i,β)p(zj |θj). (1)

2.1 Variational Bayes Inference for LDA

The VB inference for LDA(Blei et al., 2003) introduces a factorized variational posteriorq(z,θ,β)
overz = {zj,i}, θ = {θj} andβ = {βt} given by

q(z,θ,β) =
∏
j,i

q(zj,i|ϕj,i)
∏
j

q(θj |γj)
∏
t

q(βt|µt), (2)

whereϕ andγ are variational parameters,ϕj,i,t specifies the probability that the topic of wordwj,k

is topict, andγj andµt are the parameters of the Dirichlet distributions overθj andβt, respectively,

i.e.,q(θj |γj) ∝
∏
t

θ
γj,t−1
j,t andq(βt|µt) ∝

∏
v

β
µt,v−1
t,v .

The log-likelihood of documents is lower bounded introducingq(z,θ) by

F [q(z,θ,β)] =

∫ ∑
z

q(z,θ,β) log

∏
j p(wj , zj ,θj |α,β)

∏
t p(βt|λ)

q(z,θ,β)
dθjdβ. (3)

The parameters are updated as

ϕj,i,t ∝
expΨ(µt,wj,i)

expΨ(
∑

v µt,v)
expΨ(γj,t)), γj,t = αt +

Nj∑
i=1

ϕj,i,t, µt,v = λ+
∑
j

nj,t,v, (4)

wherenj,t,v =
∑

i ϕj,i,tI(wj,i = v) andI(·) is an indicator function.

We can estimateα with the fixed point iteration (Minka, 2000; Asuncion et al., 2009) by introducing
the gamma priorG(αt|a0, b0), i.e.,αt ∼ G(αt|a0, b0)(t = 1, ..., T ), as

αnew
t =

a0 − 1 +
∑

j{Ψ(αold
t + nj,t)−Ψ(αold

t )}αold
t

b0 +
∑

j(Ψ(Nj + αold
0 )−Ψ(αold

0 ))
, (5)
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Algorithm 1
VB inference for LDA

1: for iterationit = 1, · · · , L do
2: for j = 1, · · · ,M do
3: for i = 1, · · · , Nj do
4: Updateϕj,i,t (t = 1, · · · , T ) by

Eq. (4)
5: end for
6: Updateγj,t (t = 1, · · · , T ) by Eq.

(4)
7: end for
8: Updateµ by Eq. (4)
9: Updateα by Eq. (5)

10: end for

Algorithm 2
CVB inference for LDA

1: for iterationit = 1, · · · , L do
2: for j = 1, · · · ,M do
3: for i = 1, · · · , Nj do
4: Updateϕj,i,t by Eq. (7)
5: Updatenj,t replacingϕold

j,i,t with
ϕnew
j,i,t .

6: Update nt,wj,i replacing ϕold
j,i,t

with ϕnew
j,i,t .

7: end for
8: end for
9: Updateα by Eq. (5)

10: end for

whereα0 =
∑

t αt, anda0 andb0 are the parameters for the gamma distribution.

Algorithm 1 has the VB inference scheme of LDA.

2.2 Collapsed Variational Bayes Inference for LDA

Teh et al. (2007) proposed CVB-LDA inspired by collapsed Gibbs sampling and found that the con-
vergence of CVB-LDA is experimentally faster than that of VB-LDA, and CVB-LDA outperformed
VB-LDA in terms of perplexity. The CVB-LDA only introduced a variational posteriorq(z) where
it marginalized outθ andβ over the priors. The CVB inference optimizes the following lower bound
given by

FCV B [q(z)] =
M∑
j=1

∑
z

q(z) log
p(wj , zj |α, λ)

q(z)
. (6)

The derivation of the update equation forq(z) is slightly complicated and involves approximations
to compute intractable summations. Although Teh et al. (2007) made use of a second-order Taylor
expansion as an approximation, Asuncion et al. (2009) shows the usefulness of an approximation
using only zero-order information. An update using only zero-order information is given by

ϕj,i,t ∝
λ+ n−j,i

t,wj,i

V λ+
∑

v n
−j,i
t,v

(αt + n−j,i
j,t ), nj,t =

Nj∑
i=1

ϕj,i,t, nt,v =
∑
j,i

ϕj,i,tI(wj,i = v), (7)

where “-j,i” denotes subtractingϕj,i,t. Algorithm 2 provides the CVB inference scheme for LDA.

3 Deterministic Online Algorithm for LDA

The purpose of this study is to process text data such as news articles and blog posts arriving in
a continuous stream by using LDA. We propose a learning algorithm for LDA that can be applied
to these semi-infinite and time-series text streams. For these situations, we want to process text
one at a time and then discard them. We repeat iterations only for each word within a document.
That is, we update parameters from an arriving document and discard the document after doingl
iterations. Therefore, we do not need to store statistics about discarded documents. First, we derived
an incremental algorithm for LDA, and then we extended the incremental algorithm to a single-pass
algorithm.

3.1 Incremental Learning

(Neal and Hinton, 1998) provided a framework of incremental learning for the EM algorithm. In
general unsupervised-learning, we estimate sufficient statisticssi for each datai, compute whole
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sufficient statisticsσ(=
∑

i si) from all data, and update parameters by usingσ. In incremental
learning, for each datai, we estimatesi, computeσ(i) from si , and update parameters fromσ(i). It
is easy to extend an existing batch algorithm to the incremental learning if whole sufficient statistics
or parameters updates are constructed by simply summarizing all data statistics. The incremental
algorithm processes datai by subtracting oldsoldi and adding newsnewi , i.e.,σ(i) = −soldi + snewi .
The incremental algorithm needs to store old statistics{soldi } for all data. While batch algorithms
update parameters sweeping through all data, the incremental algorithm updates parameters for each
data one at a time, which results in more parameter updates than batch algorithms. Therefore, the
incremental algorithm sometimes converge faster than batch algorithms.

3.2 Incremental Learning for LDA

Our motivation for devising the incremental algorithm for LDA was to compare CVB-LDA and
VB-LDA. Statistics{nt,v} and{nj,t} are updated after each word is updated in CVB-LDA. This
update schedule is similar to that of the incremental algorithm. This incremental property seems to
be the reason CVB-LDA converges faster than VB-LDA. Moreover, since CVB-LDA optimizes a
tighterlower-bound from VB-LDA, CVB-LDA can find better optima. Below, let us consider the
incremental algorithm for LDA. We start by optimizing the lower-bound different form VB-LDA by
using the reverse EM (REM) algorithm (Minka, 2001) as follows:

p(wj |α,β) =

∫ Nj∏
i=1

T∑
t=1

V∏
v=1

(θj,tβt,v)
I(wj,i=v)p(θj |α)dθj =

∫ Nj∏
i=1

T∑
t=1

(θj,tβt,wj,i)p(θj |α)dθj ,

(8)

≥
∫ Nj∏

i=1

T∏
t=1

(
θj,tβt,wj,i

ϕj,i,t

)ϕj,i,t

p(θj |α)dθj , (9)

=

Nj∏
i=1

T∏
t=1

(
βt,wj,i

ϕj,i,t

)ϕj,i,t
∫ T∏

t=1

θ
∑

i ϕj,i,t

j,t p(θj |α)dθj . (10)

Equation (9) is derived from Jensen’s inequality as follows.log
∑

x f(x) = log
∑

x q(x)
f(x)
q(x) ≥∑

x q(x) log
f(x)
q(x) = log

∏
x(

f(x)
q(x) )

q(x) where
∑

x q(x) = 1, and so
∑

x f(x) ≥
∏

x(
f(x)
q(x) )

q(x).

Therefore, the lower bound for the log-likelihood is given by

F̂ [q(z)] =
∑
j,i,t

ϕj,i,t log
βt,wj,i

ϕj,i,t
+
∑
j

log

(
Γ(
∑

t αt)

Γ(Nj +
∑

t αt)

∏
t

Γ(αt +
∑

i ϕj,i,t)

Γ(αt)

)
. (11)

The maximum ofF̂ [q(z)] with respect toq(zj,i = t) = ϕj,i,t andβ is given by

ϕj,i,t ∝ βt,wj,i exp{Ψ(αt +
∑
i

ϕj,i,t)}, βtv ∝ λ+
∑
j

nj,t,v, (12)

The updates ofα are the same as Eq.(5). Note that we use the maximum a posteriori estiamtion for
β, however, we do not useλ− 1 to avoidλ− 1 +

∑
j nj,t,v taking a negative value.

The lower bound̂F [q(z)] introduces onlyq(z) like CVB-LDA. Equation (12) incrementally updates
the topic distribution of a document for each word as in CVB-LDA because we do not needγj,i in
Eq.(12) due to marginalizing out ofθj . Equation (12) is a fixed point update, whereas CVB-LDA
can be interpreted as a coordinate ascent algorithm.α andβ are updated from the entire document.
That is, when we compare this algorithm with VB-LDA, it looks like a hybrid variant of a batch
updates forα andβ, and incremental updates forγj ,

Here, we consider an incremental update forβ to be analogous to CVBLDA, in whichβ is updated
for each word. Note that in the LDA setup, each independent identically distributed data point is
a document not a word. Therefore, we incrementally estimateβ for each document by swapping
statisticsnj,t,v =

∑Nj

i ϕj,i,tI(wj,i = v) which is the number of wordv generated from topict in
documentj. Algorithm 3 shows our incremental algorithm for LDA. This algorithm incrementally
optimizes the lower bound in Eq.(11).
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Algorithm 3
Incremental algorithm for LDA

1: for iterationit = 1, · · · , L do
2: for j = 1, · · · ,M do
3: for i = 1, · · · , Nj do
4: Updateϕj,i,t by Eq. (12)
5: end for
6: Replacenold

j,t,v with nnew
j,t,v for v ∈

{wj,i}
Nj

i=1 in β of Eq. (12) .
7: end for
8: Updateα by Eq. (5)
9: end for

Algorithm 4
Single-pass algorithm for LDA

1: for j = 1, · · · ,M do
2: for iterationit = 1, · · · , l do
3: for i = 1, ..., Nj do
4: Updateϕj,i,t by Eq. (13).
5: end for
6: Updateβ(j) by Eq.(13).
7: Updateα(j) by Eq.(17).
8: end for
9: Updateλ(j) by Eq.(14).

10: Updateã(j) andb̃(j) by Eq.(17).
11: end for

3.3 Single-Pass Algorithm for LDA

Our single-pass algorithm for LDA was inspired by the Bayesian formulation, which internally
includes a sequential update. The posterior distribution with the contribution from the data point
xN is separated out so thatp(θ|{xi}Ni=1) ∝ p(xN |θ)p(θ|{xi}N−1

i=1 ), whereθ denotes a parameter.
This indicates that we can use a posterior given an observed datum as a prior for the next datum..
We use parameters learned from observed data as prior parameters for the next data. For example,
βt,v in Eq. (12) is represented asβt,v ∝ {λ +

∑M−1
j nj,t,v} + nM,t,v. Here, we can interpret

{λ+
∑M−1

j nj,t,v} as prior parameterλ(M−1)
t,v for theM -th document.

Our single-pass algorithm sequentially sets a prior for each arrived document. By using this sequen-
tial setting of prior parameters, we present a single-pass algorithm for LDA as shown in Algorithm
4. First, we update parameters fromj-th arrived document given prior parameters{λ(j−1)

t,v } for l
iterations

ϕj,i,t ∝β
(j)
t,wj,i

exp{Ψ(α
(j)
t +

∑
i

ϕj,i,t)}, β(j)
t,v ∝ λ

(j−1)
t,v +

Nj∑
i

ϕj,i,tI(wj,i = v), (13)

whereλ(0)
t,v = λ andα(j)

t is explained below. Then, we set prior parameters by using statistics from
the document for the next document as follows, and finally discard the document.

λ
(j)
t,v =λ

(j−1)
t,v +

Nj∑
i

ϕj,i,tI(wj,i = v). (14)

Since the updates are repeated within a document, we need to store statistics{ϕj,i,t} for each word
in a document, but not for all words in all documents.

In the CVB and iREM algorithms, the Dirichlet parameter,α, uses batch updates, i.e.,α is up-
dated by using the entire document once in one iteration. We need an online-update algorithm for
α to process a streaming text. However, unlike parameterβt,v, the update ofα in Eq.(5) is not
constructed by simply summarizing sufficient statistics of data and a prior. Therefore, we derive a
single-pass update for the Dirichlet parameterα using the following interpretation.

We consider Eq.(5) to be the expectation ofαt over posteriorG(αt|ãt, b̃) given documentsD and

priorG(αt|a0, b0), i.e,αnew
t = E[αt]G(α|ãt,b̃)

=
ãt − 1

b̃
, where

ãt =a0 +

M∑
j

aj,t, b̃ = b0 +

M∑
j

bj , (15)

aj,t = {Ψ(αold
t + nj,t)−Ψ(αold

t )}αold
t , bj = Ψ(Nj + αold

0 )−Ψ(αold
0 ). (16)
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We regardaj,t andbj as statistics for each document, which indicates that the parameters that we
actually update arẽat andb̃ in Eq.(5). These updates are simple summarizations ofaj,t andbj and

prior parametersa0 andb0. Therefore, we have an update forα
(j)
t after observing documentj given

by

α
(j)
t = E[αt]G(α|ã(j)

t ,b̃(j))
=

ã
(j)
t − 1

b̃(j)
, ã

(j)
t = ã

(j−1)
t + aj,t, b̃

(j) = b̃(j−1) + bj , (17)

aj,t = {Ψ(α
(j−1)
t + nj,t)−Ψ(α

(j−1)
t )}α(j−1)

t , bj = Ψ(Nj + α
(j−1)
0 )−Ψ(α

(j−1)
0 ), (18)

whereã(0)t = a0 andb̃(0) = b0.

ã
(j−1)
t andb̃(j−1) are used as prior paramters for the nextj-th documents.

3.4 Analysis

This section analyze the proposed updates for parametersα andβ in the previous section.

We eventually update parametersα(j) andβ(j) given documentj as

α
(j)
t =

a0 − 1 +
∑j−1

d ad,t + aj,t

b0 +
∑j−1

d bd + bj
= α

(j−1)
t (1− ηαj ) + ηαj

aj,t
bj

, ηαj =
bj

b0 +
∑j

d bd
. (19)

β
(j)
t,v =

λ+
∑j−1

d nd,t,v + nj,t,v

Vjλ+
∑j−1

d nd,t,· + nj,t,·
= β

(j−1)
t,v (1− ηβj ) + ηβj

nj,t,v

nj,t,·
, ηβj =

(Vj − Vj−1)λ+ nj,t,·

Vjλ+
∑j

d nd,t,·
.

(20)

wherent,· =
∑

v nt,v andVj is the vocabulary size of total observed documents(d = 1, · · · , j). Our
single-pass algorithm sequentially sets a prior for each arrived document, and so we can select a prior
(a dimension of Dirichlet distribution) corresponding to observed vocabulary. In fact, this property
is useful for our problem because the vocabulary size is growing in the text stream. These updates
indicate thatηαj andηβj interpolate the parameters estimated from old and new data. These updates
look like a stepwise algorithm (H.Robbins and S.Monro, 1951; Sato and Ishii, 2000), although a
stepsize algorithm interpolates sufficient statistics whereas our updates interpolate parameters. In
our updates, how we set the stepsize for parameter updates is equivalent to how we set the hyper-
parameters for priors. Therefore, we do not need to newly introduce a stepsize parameter.

In our update ofβ, the appearance rate of wordv in topic t in documentj, nj,t,v/nj,t,·, is added

to old parameterβ(j−1)
t,v with weight ηβj , which gradually decreases as the document is observed.

The same relation holds forα. Therefore, the influence of new data decreases as the number of
document observations increases as shown in Theorem 1. Moreover, Theorem 1 is an important
role in analyzing the convergence of parameter updates by using the super-martingale convergence
theorem (Bertsekas and Tsitsiklis, 1996; Brochu et al., 2004). This convergence analysis is our
future work.

Theorem 1. If ϵ andν exist satisfying0 < ϵ < Sj < ν for anyj,

ηj =
Sj

τ +
∑j

d Sd

(21)

satisfies

lim
j→∞

ηj = 0,
∞∑
j

ηj = ∞,
∞∑
j

η2j < ∞ (22)

Note thatηαj andηβj are shown asηj given by Eq. (21). The proof is given in the supporting material.
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4 Experiments

We carried out experiments on document modeling in terms of perplexity. We compared the infer-
ences for LDA in two sets of text data. The first was “Associated Press(AP)” where the number of
documents wasM = 10, 000 and the vocabulary size wasV = 67, 291. The second was “The Wall
Street Journal(WSJ)” whereM = 10, 000 andV = 56, 738. The ordering of document is time-
series. The comparison metric for document modeling was the “test set perplexity”. We randomly
split both data sets into a training set and a test set by assigninig20% of the words in each document
to the test set. Stop words were eliminated in datasets.

We performed experiments on six inferences, PF, VB, CVB0, CVB, iREM and sREM. PF denotes
the particle filter for LDA used in Canini et al. (2009). We setαt as50/T in PF. The number of
particles, denoted byP , is64. The number of words for resampling, denoted byR, is20. The effec-
tive sample size (ESS) threshold, which controls the number of resamplings, is set at 10. CVB0 and
CVB are collapsed variational inference for LDA using zero-order and second-order information,
respectively. iREM represents the incremental reverse EM algorithm in Algorithm3. CVB0 and
CVB estimates the Dirichlet parameterα over the topic distribution for all datasets, i.e., a batch
framework. We estimatedα in iREM for all datasets like CVB to clarify the properties of iREM
compared with CVB.L denotes the number of iterations for whole documents in Algorithms1 and
2. sREM indicates a single-pass variants of iREM in Algorithm4. l denotes the number of iterations
within a document in Algorithm4. sREM does not make iterations for whole documents.

Figure 2 demonstrates the results of experiments on the test set perplexity where lower values indi-
cates better performance. We ran experiments five times with different random initializations and
show the averages1. PF and sREM calculate the test set perplexity after sweeping through all traing
set.

VB converges slower than CVB and iREM. Moreover, iREM outperforms CVB in the convergence
rate. Although CVB0 outperforms other algorithms for the cases of low number of topics, the
convergence rate of CVB0 depends on the number of topics. sREM does not outperform iREM in
terms of perplexities, however, the performance of sREM is close to that of iREM
As a results, we recommend sREM in a large number of documents or document streams. sREM
does not need to store old statistics for all documents unlike other algorithms. In addition, the
convergence of sREM depends on the length of a document, rather than the number of documents.
Since we process each document individually, we can control the number of iterations corresponding
to the length of each arrived document. Finally, we discuss the running time. The running time of
sREM isO(Ll ) times shorter than that of VB, CVB0, CVB and iREM. The averaged running times
of PF(T=300,P=64,R=20) are 28.2 hours in AP and 31.2 hours in WSJ. Those of sREM(T=300,l=5)
are 1.2 hours in AP and 1.3 hours in WSJ.

5 Conclusions

We developed a deterministic online-learning algorithm for latent Dirichlet allocation (LDA). The
proposed algorithm can be applied to excess text data in a continuous stream because it processes re-
ceived documents one at a time and then discard them. The proposed algorithm was much faster than
a batch algorithm and was comparable to the batch algorithm in terms of perplexity in experiments.

1We exclude the error bar with standard deviation because it is so small that it is hidden by the plot markers
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Figure 2: Results of experiments. Left line indicates the results in AP corpus. Right line indicates
the results in WSJ corpus. (a) and (b) compared test set perplexity with respect to the number of
topics. (c), (d), (e) and (f) compared test set perplexity with respect to the number of iterations
in topic T = 100 andT = 300, respectively. (g) and (h) show the relationships between test set
perplexity and the number of iterations within a document, i.e.,l.
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