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Appendix: Efficient Variational E-step

As we have shown in the main paper, the optimal ¢p, satisfies

A

qp,(A) = exp (% - 1) T exp (9B, ) - (D
Algorithm 1 (on p. 3) describes the general algorithm for finding the optimal solution, which first
traverses 7 bottom up, level by level and gradually reduces the nested constraints to a single equation
involving only one ;. After solving this equation the algorithm now traverses 7 top down, level
by level and gradually resolves the remaining Lagrange multipliers A;,! € £ by back-substitution
of previously resolved \;. The resolved Lagrange multipliers can now be used to find the desired
variational distribution q. The next corollary is useful for the detailed description of the individual
steps in Algorithm 1 that follows below.

Corollary 1. Leti,i* € {1,...,I}. If

exp (U)B\’il\ — 1) D; = exp <U>;;| — 1) D~

then

Ai = |Bi (|1/5\;’i.i\ + log D;» — 10gDi> .
Initialization. Let V denote the set of nodes in the MPT 7. When computing the solution for the
variational distribution it is convenient to define three scalar values K, C,,, and D, foreachv € V
K. Initially,

Kv = Oa
Cy, = Zkelc,u Tk exp(gms,,),
Dv = O’U7 (2)

where /C,, denote the set of mixture components for which its data partition has a data block associated
with node v. For each v € V, we define the node distribution

poY oA
G0 = Lrex, a8, = oxp (=522~ 1) €, 3)
where the second equality follows from (1) and (2).

Collect-up. Collect-up traverses the tree 7 bottom up, level by level, where each step in this traversal
considers a node v and its children u € ch(v). The crux of a collect-up step is a manipulation of
the parent-node distribution ¢, in such a way that the . B,cB, Ml is replaced by a single Ay = A
of reference, where the index [ emphasises that it is a reference- that has been selected at node v.
In particular, as described below, the collect-up step will transform the representation in (3) into a
representation

A=
4 = exp (i — 1) Cyexp () 4)
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by deriving the equality
Arx
Yipcn, N = Bl gy + Ko, )

assuming a similar representation for each child-node distribution ¢,,, u € ch(v). Note that node
distributions at leaf nodes only involve one A and therefore trivially obey this condition, so traversal
starts one level above. The transformation starts by the equality (recall that u € ch(v)),

A
DB CBy AN = 2w 2BcB, A= Dy |Bu |\BZM + Ky, 6)
which implies that the . B,CB, Al involved in the parent-node distribution g, can be reduced to an

expression involving just the )\l* of reference for each of the |ch(v)| children. In order to transform
Eq. (6) into one that involves only the single A;x of reference, we apply the following procedure.

Let | — r denote the path of nodes (I = wy,ws,...,w, = r) from leaf [ to root r in 7, and
w; = wj, 1 <4,7 < n denote a subpath of [ — 7. With the notation gy, sw, = Zwewinj Quw»

the sum-to-one constraints in the main paper can be written as
Qsr = Qsu + Qusr = 1 foralll € L, (7N

where u € ch(v) and v € V are both on the path [ — r. Since all children share the same path v — r
from their parent to the root, the constraints in (7) imply equality of all g;,,, u € ch(v). In particular,
we can ensure that for each u € ch(v) there exists a path, where the reference-As for all nodes on the
path to u are the same. (E.g., we can always choose the reference-\ associated with the left-most
child at each step in the traversal.) We can therefore construct

Apx
Qi = exp (737 — 1) Do, ®)

where

Du = Sersra Coexp (). ©)

Thus, the condition for Corollary 1 is satisfied for all gy« ., u € ch(v), allowing us to select one of
the A;« as the A;» and represent each \;» as

A
Az = | B | (ﬁ +log Dy~ — log Du> . (10)

where u* denotes the child with the chosen A;x = A;: of reference. Substituting (10) into (6), we
have

D LBICB,AN =Dy <|B |(‘B ‘+logDu*—1ogD>+Ku)
= |B, Iﬁ” 4 |Byllog Du- + X, (—|Ballog Dy + Ko
= |Bv|‘1371’;| + Ky, (11)

which is the desired equality in (5) leading to the representation of g, as in (4) by substituting into
(3). We are now ready for the next collect-up step.

The collect-up step is summarized by the following updates
K, < |By|log Dy + 3", (—|Bu|log Dy, + Ky,), (12)
Dy Cyexp (i) + Dus (13)
which are induced from Eqs. (11) and (9).

Distribute-down. After a collect-up traversal, each node in 7 is associated with a particular reference-
A, and these reference-\s are related as in (10). Distribute-down traverses 7 top down, where each
step uses the reference-\ in the parent node to resolve the reference-\s associated with its child nodes.
Notice that the update is redundant for the particular child with reference-\ chosen as the reference-A
for the parent in the collect-up traversal, where we simply have, \;x = A;x. The root node starts the
recursion and needs special treatment. The constraints in (7) imply that

Ap*
Pz = exp (i = 1) De = 1,



which can be solved to obtain
iz = | By

(1—1logD,). (14)

Finalize. With \; available for all [ € £, we can determine all ¢, by simply inserting the appropriate
>~ A into (1). Alternatively, it is more efficient to update ¢p, s during the distribute-down step, since
A is available at this point, and ) | ); therefore can be computed using Eq (5).

Algorithm 1 Variational E-step

//nitialization

for all nodes v € V in MPT T do
Initialize K,, C,, and D, as in (2)

end for

//Collect-up
for all v € V; traversed bottom up, level by level do
if visaleaf [ € L then
Set pointer: x\, = x\;
else
Select u € ch(v) and set pointer: *\, = xA,
Update K, and D, as in (12) and (13)
end if
end for

//Distribute-down and Finalize
for all v € V; traversed top down, level by level do
if v is the root then
Set value A, = A= asin (14)
else
Set value A, = A= as in (10)
forall k € KC, do
Compute gp, as in (1) using (5).
end for
end if
end for




