
Supplement to Fast Large-scale Mixture Modeling
with Component-specific Data Partitions

Bo Thiesson∗
Microsoft Research

Chong Wang∗†
Princeton University

Appendix: Efficient Variational E-step

As we have shown in the main paper, the optimal qBk
satisfies

qBk
(λ) = exp

(∑
l:Bl⊆Bk

λl

|Bk| − 1
)
πk exp (gBk

) . (1)

Algorithm 1 (on p. 3) describes the general algorithm for finding the optimal solution, which first
traverses T bottom up, level by level and gradually reduces the nested constraints to a single equation
involving only one λl. After solving this equation the algorithm now traverses T top down, level
by level and gradually resolves the remaining Lagrange multipliers λl, l ∈ L by back-substitution
of previously resolved λl. The resolved Lagrange multipliers can now be used to find the desired
variational distribution q. The next corollary is useful for the detailed description of the individual
steps in Algorithm 1 that follows below.
Corollary 1. Let i, i∗ ∈ {1, . . . , I}. If

exp
(
λi

|Bi| − 1
)
Di = exp

(
λi∗
|Bi∗ |

− 1
)
Di∗

then
λi = |Bi|

(
λi∗
|Bi∗ |

+ logDi∗ − logDi

)
.

Initialization. Let V denote the set of nodes in the MPT T . When computing the solution for the
variational distribution it is convenient to define three scalar values Kv, Cv, and Dv for each v ∈ V
Kv . Initially,

Kv = 0,

Cv =
∑
k∈Kv

πk exp(gBk
),

Dv = Cv, (2)

whereKv denote the set of mixture components for which its data partition has a data block associated
with node v. For each v ∈ V , we define the node distribution

qv =
∑
k∈Kv

qBk
= exp

(∑
l:Bl⊆Bv

λl

|Bv| − 1
)
Cv, (3)

where the second equality follows from (1) and (2).

Collect-up. Collect-up traverses the tree T bottom up, level by level, where each step in this traversal
considers a node v and its children u ∈ ch(v). The crux of a collect-up step is a manipulation of
the parent-node distribution qv in such a way that the

∑
l:Bl⊆Bv

λl is replaced by a single λl = λl∗v
of reference, where the index l∗v emphasises that it is a reference-λ that has been selected at node v.
In particular, as described below, the collect-up step will transform the representation in (3) into a
representation

qv = exp
(
λl∗v
|Bl∗v |

− 1
)
Cv exp

(
Kv

|Bv|

)
(4)

*Equal contributors. †Work done during internship at Microsoft Research.

1

by deriving the equality ∑
l:Bl⊆Bv

λl = |Bv|
λl∗v
|Bl∗v |

+Kv, (5)

assuming a similar representation for each child-node distribution qu, u ∈ ch(v). Note that node
distributions at leaf nodes only involve one λ and therefore trivially obey this condition, so traversal
starts one level above. The transformation starts by the equality (recall that u ∈ ch(v)),∑

l:Bl⊆Bv
λl =

∑
u

∑
l:Bl⊆Bu

λl =
∑
u |Bu|

λl∗u
|Bl∗u |

+Ku, (6)

which implies that the
∑
l:Bl⊆Bv

λl involved in the parent-node distribution qv can be reduced to an
expression involving just the λl∗u of reference for each of the |ch(v)| children. In order to transform
Eq. (6) into one that involves only the single λl∗v of reference, we apply the following procedure.

Let l 7→ r denote the path of nodes (l = w1, w2, . . . , wn = r) from leaf l to root r in T , and
wi 7→ wj , 1 ≤ i, j ≤ n denote a subpath of l 7→ r. With the notation qwi 7→wj

=
∑
w∈wi 7→wj

qw,
the sum-to-one constraints in the main paper can be written as

ql 7→r = ql 7→u + qv 7→r = 1 for all l ∈ L, (7)

where u ∈ ch(v) and v ∈ V are both on the path l 7→ r. Since all children share the same path v 7→ r
from their parent to the root, the constraints in (7) imply equality of all ql 7→u, u ∈ ch(v). In particular,
we can ensure that for each u ∈ ch(v) there exists a path, where the reference-λs for all nodes on the
path to u are the same. (E.g., we can always choose the reference-λ associated with the left-most
child at each step in the traversal.) We can therefore construct

ql∗u 7→u = exp
(
λl∗u
|Bl∗u |

− 1
)
Du, (8)

where
Du =

∑
w∈l∗u 7→u

Cw exp
(
Kw

|Bw|

)
. (9)

Thus, the condition for Corollary 1 is satisfied for all ql∗u 7→u, u ∈ ch(v), allowing us to select one of
the λl∗u as the λl∗v and represent each λl∗u as

λl∗u = |Bl∗u |
(
λl∗v
|Bl∗v |

+ logDu∗ − logDu

)
. (10)

where u∗ denotes the child with the chosen λl∗u = λl∗v of reference. Substituting (10) into (6), we
have ∑

l:Bl⊆Bv
λl=

∑
u

(
|Bu|

(
λl∗v
|Bl∗v |

+logDu∗−logDu

)
+Ku

)
= |Bv|

λl∗v
|Bl∗v |

+ |Bv| logDu∗ +
∑
u (−|Bu| logDu +Ku)

, |Bv|
λl∗v
|Bl∗v |

+Kv, (11)

which is the desired equality in (5) leading to the representation of qv as in (4) by substituting into
(3). We are now ready for the next collect-up step.

The collect-up step is summarized by the following updates

Kv ← |Bv| logDu∗ +
∑
u(−|Bu| logDu +Ku), (12)

Dv ← Cv exp
(
Kv

|Bv|

)
+Du∗ , (13)

which are induced from Eqs. (11) and (9).

Distribute-down. After a collect-up traversal, each node in T is associated with a particular reference-
λ, and these reference-λs are related as in (10). Distribute-down traverses T top down, where each
step uses the reference-λ in the parent node to resolve the reference-λs associated with its child nodes.
Notice that the update is redundant for the particular child with reference-λ chosen as the reference-λ
for the parent in the collect-up traversal, where we simply have, λl∗u = λl∗v . The root node starts the
recursion and needs special treatment. The constraints in (7) imply that

pl∗r 7→r = exp
(
λl∗r
|Bl∗r |

− 1
)
Dr = 1,

2

which can be solved to obtain
λl∗r = |Bl∗r |(1− logDr). (14)

Finalize. With λl available for all l ∈ L, we can determine all qBk
by simply inserting the appropriate∑

λl into (1). Alternatively, it is more efficient to update qBk
s during the distribute-down step, since

λl∗v is available at this point, and
∑
λl therefore can be computed using Eq (5).

Algorithm 1 Variational E-step

//Initialization
for all nodes v ∈ V in MPT T do

Initialize Kv , Cv , and Dv as in (2)
end for
//Collect-up
for all v ∈ V; traversed bottom up, level by level do

if v is a leaf l ∈ L then
Set pointer: ∗λv = ∗λl

else
Select u ∈ ch(v) and set pointer: ∗λv = ∗λu
Update Kv and Dv as in (12) and (13)

end if
end for
//Distribute-down and Finalize
for all v ∈ V; traversed top down, level by level do

if v is the root then
Set value λv = λl∗v as in (14)

else
Set value λv = λl∗v as in (10)
for all k ∈ Kv do

Compute qBk
as in (1) using (5).

end for
end if

end for

3

