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Abstract

Generalized Binary Search (GBS) is a well known greedy algorithm for identify-
ing an unknown object while minimizing the number of “yes” or “no” questions
posed about that object, and arises in problems such as active learning and active
diagnosis. Here, we provide a coding-theoretic interpretation for GBS and show
that GBS can be viewed as a top-down algorithm that greedily minimizes the ex-
pected number of queries required to identify an object. This interpretation is then
used to extend GBS in two ways. First, we consider the case where the objects are
partitioned into groups, and the objective is to identify only the group to which
the object belongs. Then, we consider the case where the cost of identifying an
object grows exponentially in the number of queries. In each case, we present an
exact formula for the objective function involving Shannon or Rényi entropy, and
develop a greedy algorithm for minimizing it.

1 Introduction

In applications such as active learning [1, 2, 3, 4], disease/fault diagnosis [5, 6, 7], toxic chemical
identification [8], computer vision [9, 10] or the adaptive traveling salesman problem [11], one often
encounters the problem of identifying an unknown object while minimizing the number of binary
questions posed about that object. In these problems, there is aset © = {6, -- , 0} of M different
objects and a set @ = {q1,--- ,qn} of N distinct subsets of © known as queries. An unknown
object § is generated from this set © with a certain prior probability distribution IT = (71, -, war),
i.e., m; = Pr(6 = 6;), and the goal is to uniquely identify this unknown object through as few queries
from () as possible, where a query ¢ € () returns a value 1 if € ¢, and O otherwise. For example,
in active learning, the objects are classifiers and the queries are the labels for fixed test points. In
active diagnosis, objects may correspond to faults, and queries to alarms. This problem has been
generically referred to as binary testing or object/entity identification in the literature [5, 12]. We
will refer to this problem as object identification. Our attention is restricted to the case where © and
@ are finite, and the queries are noiseless.

The goal in object identification is to construct an optimal binary decision tree, where each internal
node in the tree is associated with a query from (), and each leaf node corresponds to an object
from ©. Optimality is often with respect to the expected depth of the leaf node corresponding to
the unknown object 6. In general the determination of an optimal tree is NP-complete [13]. Hence,
various greedy algorithms [5, 14] have been proposed to obtain a suboptimal binary decision tree. A
well studied algorithm for this problem is known as the splitting algorithm [5] or generalized binary
search (GBS) [1, 2]. This is the greedy algorithm which selects a query that most evenly divides the
probability mass of the remaining objects [1, 2, 5, 15].



GBS assumes that the end goal is to rapidly identify individual objects. However, in applications
such as disease diagnosis, where © is a collection of possible diseases, it may only be necessary
to identify the intervention or response to an object, rather than the object itself. In these prob-
lems, the object set © is partitioned into groups and it is only necessary to identify the group to
which the unknown object belongs. We note below that GBS is not necessarily efficient for group
identification.

To address this problem, we first present a new interpretation of GBS from a coding-theoretic per-
spective by viewing the problem of object identification as constrained source coding. Specifically,
we present an exact formula for the expected number of queries required to identify an unknown
object in terms of Shannon entropy of the prior distribution II, and show that GBS is a top-down
algorithm that greedily minimizes this cost function. Then, we extend this framework to the problem
of group identification and derive a natural extension of GBS for this problem.

We also extend the coding theoretic framework to the problem of object (or group) identification
where the cost of identifying an object grows exponentially in the number of queries, i.e., the cost
of identifying an object using d queries is A? for some fixed A > 1. Applications where such
a scenario arises have been discussed earlier in the context of source coding [16], random search
trees [17] and design of alphabetic codes [18], for which efficient optimal or greedy algorithms
have been presented. In the context of object/group identification, the exponential cost function has
certain advantages in terms of avoiding deep trees (which is crucial in time-critical applications)
and being more robust to misspecification of the prior probabilities. However, there does not exist
an algorithm to the best of our knowledge that constructs a good suboptimal decision tree for the
problem of object/group identification with exponential costs. Once again, we show below that GBS
is not necessarily efficient for minimizing the exponential cost function, and propose an improved
greedy algorithm that generalizes GBS.

1.1 Notation

We denote an object identification problem by a pair (B, II) where B is a known M x N binary
matrix with b;; equal to 1 if §; € g;, and 0 otherwise. A decision tree T' constructed on (B, IT) has a
query from the set () at each of its internal nodes, with the leaf nodes terminating in the objects from
©. For a decision tree with L leaves, the leaf nodes are indexed by the set £ = {1,--- , L} and the
internal nodes are indexed by the setZ = {L+1,--- ,2L —1}. Atany node ‘a’, let @, C @ denote
the set of queries that have been performed along the path from the root node up to that node. An
object 6; reaches node ‘a’ if it agrees with the true 6 on all queries in @), i.e., the binary values in B
for the rows corresponding to ; and # are same over the columns corresponding to queries in Q.
At any internal node a € Z, let [(a), r(a) denote the “left” and “right” child nodes, and let ©, C ©
denote the set of objects that reach node ‘a’. Thus, the sets ©;q) € O4,0,(q) € O, correspond
to the objects in ©, that respond 0 and 1 to the query at node ‘a’, respectively. We denote by
To, =Y. (i:0:€0,} Tis the probability mass of the objects reaching node ‘a’ in the tree. Finally, we
denote the Shannon entropy of a proportion 7 € [0, 1] by H(7) := —mlogy ™ — (1 —7) logy(1 — )
and that of a vector II = (my,---,mp) by H(II) := — " m;log, m;, where we use the limit,
7113%) mlog, ™ = 0, to define the value of 0log, 0.

2 GBS Greedily Minimizes the Expected Number of Queries

We begin by noting that object identification reduces to the standard source coding problem [19]
in the special case when @ is complete, meaning, for any S C O there exists a query g € Q) such
that either ¢ = S or © \ ¢ = S. Here, the problem of constructing an optimal binary decision tree
is equivalent to constructing optimal variable length binary prefix codes, for which there exists an
efficient optimal algorithm known as the Huffman algorithm [20]. It is also known that the expected
length of any binary prefix code (i.e., expected depth of any binary decision tree) is bounded below
by the Shannon entropy of the prior distribution II [19].

For the problem of object identification, where () is not complete, the entropy lower bound is still
valid, but Huffman coding cannot be implemented. In this case, GBS is a greedy, top-down al-
gorithm that is analogous to Shannon-Fano coding [21, 22]. We now show that GBS is actually
greedily minimizing the expected number of queries required to identify an object.



First, we define a parameter called the reduction factor on the binary matrix/tree combination that
provides a useful quantification on the expected number of queries required to identify an object.

Definition 1 (Reduction factor). Let T be a decision tree constructed on the pair (B,II). The
reduction factor at any internal node ‘a’ in the tree is defined by p, = max{me,,,, T, }/Te,-

Note that 0.5 < p, < 1. Given an object identification problem (B, II), let 7 (B, IT) denote the set
of decision trees that can uniquely identify all the objects in the set ©. We assume that the rows of
B are distinct so that 7 (B, II) # ). For any decision tree T' € T (B, II), let {p, }oc7 denote the
set of reduction factors and let d; denote the number of queries required to identify object 6; in the
tree. Then the expected number of queries required to identify an unknown object using a tree (or,
the expected depth of a tree) is L, (II) = ), m;d;. Note that the cost function depends on both IT
andd = (dq, - -+ ,dp). However, we do not show the dependence on d explicitly.

Theorem 1. Forany T € T (B, I1), the expected number of queries required to identify an unknown
object is given by
Ly(T) = H() + > 7e,[1— H(pa)]- )
a€l

Theorems 1, 2 and 3 are special cases of Theorem 4, whose proof is sketched in the Appendix.
Complete proofs are given in the Supplemental Material. Since H(p,) < 1, this theorem recovers
the result that L, (IT) is bounded below by the Shannon entropy H (II). It presents the exact formula
for the gap in this lower bound. It also follows from the above result that a tree attains the entropy
bound iff the reduction factors are equal to 0.5 at each internal node in the tree. Using this result,
minimizing L1 (IT) can be formulated as the following optimization problem:

Ter’zr’l(llg,H)H(H) + Eaez Te,[1 — H(pa)]- 2
Since II is fixed, this optimization problem reduces to minimizing ) ., 7e,[l — H(pa)] over
7 (B,II). As mentioned earlier, finding a global optimal solution for this optimization problem is
NP-complete [13]. Instead, we may take a top down approach and minimize the objective function
by minimizing the term C, := mo,[1 — H(p,)] at each internal node, starting from the root node.
Note that the only term that depends on the query chosen at node ‘a’ in this cost function is p,.
Hence the algorithm reduces to minimizing p, (i.e., choosing a split as balanced as possible) at each
internal node a € 7.

In other words, greedy minimization of (2) is equivalent to GBS. In the next section, we show how
this framework can be extended to derive greedy algorithms for the problems of group identification
and object identification with exponential costs.

3 Extensions of GBS
3.1 Group Identification

In group identification’, the goal is not to determine the unknown object # € ©, rather the group to
which it belongs, in as few queries as possible. Here, in addition to B and II, the group labels for
the objects are also provided, where the groups are assumed to be disjoint.

We denote a group identification problem by (B, I1,y), where y = (y1, - , yar) denotes the group
labels of the objects, y; € {1,---, K}. Let {©F}X_ | be the partition of ©, where O% = {0, € © :
y; = k}. Itis important to note here that the group identification problem cannot be simply reduced
to an object identification problem with groups {©1,--- ,©%} as “meta objects,” since the objects
within a group need not respond the same to each query. For instance, consider the toy example
shown in Figure 1 where the objects 6, 65 and 63 belonging to group 1 cannot be collapsed into a
single meta object as these objects respond differently to queries ¢; and gs.

In this context, we also note that GBS can fail to produce a good solution for a group identification
problem as it does not take the group labels into consideration while choosing queries. Once again,
consider the toy example shown in Figure 1 where query ¢ is sufficient to identify the group of an
unknown object, whereas GBS requires 2 queries to identify the group when the unknown object is
either 65 or 64. Here, we propose a natural extension of GBS to the problem of group identification.

!Golovin et.al. [23] simultaneously studied the problem of group identification in the context of object
identification with persistent noise. Their algorithm is an extension of that in [24].



@1 q2 qs | Group label, y 11 0 .
6,10 1 1 1 0.25 / \
|1 1 0 1 0.25 y=1
610 1 O 1 0.25 / \
0,1 0 0 2 0.25 V= y=1
Figure 1: Toy Example Figure 2: Decision tree constructed using GBS

Note that when constructing a tree for group identification, a greedy, top-down algorithm terminates
splitting when all the objects at the node belong to the same group. Hence, a tree constructed in this
fashion can have multiple objects ending in the same leaf node and multiple leaves ending in the
same group. For a tree with L leaves, we denote by £L¥ € £ = {1,---, L} the set of leaves that
terminate in group k. Similar to ©F C ©, we denote by ©OF C ©, the set of objects belonging to
group k that reach node ‘a’ in a tree. Also, in addition to the reduction factor defined in Section 2,
we define a new parameter called the group reduction factor for each group k € {1,--- , K} ateach
internal node.

Definition 2 (Group reduction factor). Let T be a decision tree constructed on a group identification
problem (B, 11, y). The group reduction factor for any group k at an internal node ‘a’ is defined by
pa =max{rer mor }/Ter.

Given (B, 11, y), let 7 (B, II,y) denote the set of decision trees that can uniquely identify the groups
of all objects in the set ©. For any decision tree T' € 7 (B, I, y), let d; denote the depth of leaf
node j € L. Let random variable X denote the number of queries required to identify the group
of an unknown object . Then, the expected number of queries required to identify the group of an
unknown object using the given tree is equal to

K
=Y Pr(¢ € 0" E[X]0 € OF] = ZW > o,
k=1

jeELE

3)

Theorem 2. Forany T € 7 (B,11,y), the expected number of queries required to identify the group
of an unknown object is given by

Tok k
L.(II) = — o
() = HLy) + > _me, |1 = Hlpa) + > —=H(p) “
acl k=1 @
where I, = (w1, -+ ,mox ) denotes the probability distribution of the object groups induced by

the labels'y and H (-) denotes the Shannon entropy.

Note that the term in the summation in (4) is non-negative. Hence, the above result implies that
L, (IT) is bounded below by the Shannon entropy of the probability distribution of the groups. It
also follows from this result that this lower bound is achieved iff the reduction factor p,, is equal to
0.5 and the group reduction factors { p’;},{,(:l are equal to 1 at every internal node in the tree. Also,
note that the result in Theorem 1 is a special case of this result where each group is of size 1 leading
to p¥ = 1 for all groups at every internal node.

Using this result, the problem of finding a decision tree with minimum L (IT) can be formulated as:

rerin  Yacz O, [1 ~H(pa) + Xiy 7 H (pa)} : %)

This optimization problem being a generalized version of that in (2) is NP-complete. Hence, we
may take a top-down approach and minimize the objective function greedily by minimizing the term

7o, — H(pa) + Ek 1 @5 H(p")] at each internal node, starting from the root node. Note that

uye)

the terms that depend on the query chosen at node ‘a’ are p, and p*. Hence the algorithm reduces
to minimizing Cy, := 1 — H(p,) + Zk 1 Tro{; H(p¥) at each internal node ‘a



Group-GBS (GGBS) A-GBS
Initialize: £ = {root node}, Qoot =0 Initialize: £ = {root node}, Qroot =0
while some a € L has more than one group while some a € L has more than one object
Choose query ¢* = argmingeo\q, Ca(q) Choose query q* = argmingeq\g, Ca(q)
Form child nodes [(a), (a) Form child nodes l(a), r(a).
Replace ‘a’ with [(a), r(a) in £ Replace ‘a’ with [(a),7(a) in £
end end
™ TO(q e,
Ca=1—H(pa) + Yi; w22 H(pk) Ca = 702 Da(Oia) + 752 Da(Or(a))

Figure 3: Greedy algorithm for group identifi- Figure 4: Greedy algorithm for object identifi-
cation cation with exponential costs

Note that this objective function consists of two terms, the first term [1 — H (p, )] favors queries that
evenly distribute the probability mass of the objects at node ‘a’ to its child nodes (regardless of the

group) while the term ), — 05 H(p") favors queries that transfer an entire group of objects to one of

its child nodes. This algorlthm which we refer to as Group Generalized Binary Search (GGBS), is
summarized in Figure 3. Finally, as an interesting connection with greedy decision-tree algorithms
for multi-class classification, it can be shown that GGBS is equivalent to the decision-tree splitting
algorithm used in the C4.5 software package, based on the entropy impurity measure [25].

3.2 Exponential Costs

Now assume the cost of identifying an object is defined by L (II) := log, (3, miA%), where A > 1
and d; corresponds to the depth of object 6, in a tree. In the limiting case where A tends to 1 and oo,
this cost function reduces to the average depth and worst case depth, respectively. That is,

Ly() = iLJmIL,\(H) = Zmdl, Loo(IT) := Ahj&Lk(H) = ie{rlnaXM}d

As mentioned in Section 2, GBS is tailored to minimize L, (IT), and hence may not produce a good
suboptimal solution for the exponential cost function with A > 1. Thus, we derive an extension
of GBS for the problem of exponential costs. Here, we use a result by Campbell [26] which states
that the exponential cost Ly (II) of any tree T is bounded below by the a-Rényi entropy, given by
Ho(I) := L log, (3, %), where o = m. We consider a general object identification
problem and derive an explicit formula for the gap in this lower bound. We then use this formula to
derive a family of greedy algorithms that minimize the exponential cost function Ly (IT) for A > 1.
Note that the entropy bound reduces to the Shannon entropy H (II) and log, M, in the limiting cases
where )\ tends to 1 and oo, respectively.

Theorem 3. For any A > 1 and any T € T (B, 1I), the exponential cost L (H) is given by

A = A 3 me, [ — DA% =D, (O,) + D, (@) + D (e,,@)]
a€l Teq @
where d, denotes the depth of any internal node ‘a’ in the tree, ©, denotes the set of objects that

al/a
reachnode ‘a’, mo, = >, W, a= 71+1;g2)\ and D, (0,) :== [Z{i:(he@a} (%) } )
{'L':Q,',E@a} @

The term in summation over internal nodes Z in the above result corresponds to the gap in the
Campbell’s lower bound. This result suggests a top-down greedy approach to minimize L (1),

which is to minimize the term (A — 1)A% — D, (0,) + ng“) Do (Oya)) + Trig“) Do (0;(q) at
each internal node, starting from the root node. Noting that the terms that depend on the query
chosen at node ‘a’ are 7e, ), 76, (. > Pa(Oi(a)) and Dy (O,(4)), this reduces to minimizing C,

Fi;m Do (Oi(a)) + ﬂig” Da(O,(q)) at each internal node. This algorithm, which we refer to as
A-GBS, can be summarized as shown in Figure 4. Also, it can be shown by the application of
L’Hopital’s rule that in the limiting case where A — 1, \-GBS reduces to GBS, and in the case
where A — 0o, A-GBS reduces to GBS with uniform prior 7; = 1/M. The latter algorithm is GBS
but with the true prior II replaced by a uniform distribution.
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Figure 5: Beta distribution over the range [0.5,1] Figure 6: Expected number of queries required to identify
for different values of 3 when av = 1 the group of an object using GBS and GGBS

3.3 Group Identification with Exponential Costs

Finally, we complete our discussion by considering the problem of group identification with expo-
nential costs. Here, the cost of identifying the group of an object given a tree T' € 7 (B, II,y), is

defined to be Ly (II) = log, (Zjeﬁ F@j)\dj>, which reduces to (3) in the limiting case as A — 1,
and to max;ec dj, i.e., the worst case depth of the tree, in the case where A — oo.

Theorem 4. For any A > 1l and any T € T (B,11,y), the exponential cost L (I1) of identifying the
group of an object is given by

A — \Ha(lly) + E Te, |:<)\ - 1)>‘da - Da(@a) + Touw —Daq <6l(a ) TOre) Da(gr(a))
Te ye)
a€l @ @
where IIy, = (mo1, -+ ,ToK ) denotes the probability distribution of the object groups induced by

ﬂ'ok aql/a 1
the labels'y, D, (0,) := {Zk 1( ) } with oo = THlog, }*

Note that the definition of D,,(©,) in this theorem is a generalization of that in Theorem 3. As
mentioned earlier, Theorems 1-3 are special cases of the above theorem, where Theorem 2 follows
as A — 1 and Theorem 1 follows when each group is of size one in addition. This result also
implies a top-down, greedy algorithm to minimize L (IT), which is to choose a query that minimizes

C, = 9““) Da(O1a)) + 22D, (O, (q)) at each internal node. Once again, it can be shown by
the apphcatlon of L’Hopital’s rule that in the limiting case where A — 1, this reduces to GGBS, and
in the case where A — o0, this reduces to choosing a query that minimizes the maximum number of
groups in the child nodes [27].

4 Performance of the Greedy Algorithms

We compare the performance of the proposed algorithms to that of GBS on synthetic data generated
using different random data models.

4.1 Group Identification

For fixed M = |©] and N = |Q|, we consider a random data model where each query ¢ € Q is
associated with a pair of parameters (v, (q),V»(q)) € [0.5,1]%. Here, 7,,(q) reflects the correlation
of the object responses within a group, and 7, (q) captures the correlation of object responses between
groups. When ,,(¢) is close to 0.5, each object within a group is equally likely to exhibit 0 or 1
as its response to query ¢, whereas, when it is close to 1, most of the objects within a group are
highly likely to exhibit the same query response. Similarly, when v;(q) is close to 0.5, each group
is equally likely to exhibit O or 1 as its response to the query, where a group response corresponds
to the majority vote of the object responses within a group, while, as 7;(q) tends to 1, most of the
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groups are highly likely to exhibit the same response. Given these correlation values (v, (q), 75(q))
for a query ¢, the object responses to query ¢ (i.e., the binary column of 0’s and 1’s corresponding
to query ¢ in B) are generated as follows

1. Flip a fair coin to generate a Bernoulli random variable, x

2. For each group k € {1,--- , K}, assign a binary label by, where by, = a with probability 7;(q)

3. For each object in group k, assign by, as the object response to ¢ with probability 7., (g)

Given the correlation parameters (7., (q), 75(¢)), ¥¢ € @, a random dataset can be created by fol-
lowing the above procedure for each query.

We compare the performances of GBS and GGBS on random datasets generated using the above
model. We demonstrate the results on datasets of size N = 200 (# of queries) and M = 400
(# of objects), where we randomly partitioned the objects into 15 groups and assumed a uniform
prior on the objects. For each dataset, the correlation parameters are drawn from independent beta
distributions over the range [0.5,1], i.e., v, (¢) ~ Beta(l,3,,) and ~,(¢) ~ Beta(1, ;) where
Buw, By € {0.5,0.75,0.95,1,2,4,8}. Figure 5 shows the density function (pdf) of Beta(1, 3) for
different values of (3. Note that 3 = 1 corresponds to a uniform distribution, while, for 5 < 1 the
distribution is right skewed and for 8 > 1 the distribution is left skewed.

Figure 6 compares the mean value of the cost function L4 (IT) for GBS and GGBS over 100 randomly
generated datasets, for each value of (8., 0 ). This shows the improved performance of GGBS over
GBS in group identification. Especially, note that GGBS achieves performance close to the entropy
bound as (3, decreases. This is due to the increased number of queries with ,,(¢) close to 1 in the
dataset. As the correlation parameter ~,,(q) tends to 1, choosing that query keeps the groups intact,
i.e., the group reduction factors p¥ tend to 1 for these queries. Such queries offer significant gains
in group identification, but can be overlooked by GBS.

4.2 Object Identification with Exponential Costs

We consider the same random data model as above where we set K = M, i.e., each group is
comprised of one object. Thus, the only correlation parameter that determines the structure of the
dataset is 5(q), ¢ € Q. Figure 7 demonstrates the improved performance of A-GBS over standard
GBS, and GBS with uniform prior, over a range of X values, for a dataset generated using the above
random data model with v,(¢) ~ Beta(1,1) = unif[0.5,1]. Each curve in the figure corresponds
to the average value of the cost function Ly (II) as a function of A\ over 100 repetitions. In each
repetition, the prior is generated according to Zipf’s law, i.e., (j = / Zi\il i_é)jM:l, 6 > 0, after
randomly permuting the objects. Note that in the special case when § = 0, this reduces to the
uniform distribution and as § increases, it tends to a skewed distribution with most of the probability
mass concentrated on few objects.

Similar experiments have been performed on datasets generated using 7;(q) ~ Beta(c, 3) for differ-
ent values of «, 8. In all our experiments, we observed A-GBS to be consistently performing better
than both the standard GBS, and GBS with uniform prior. In addition, the performance of A\-GBS
has been observed to be very close to that of the entropy bound. Finally, Figure 7 also reflects that
A-GBS converges to GBS as A — 1, and to GBS with uniform prior as A — oo.



5 Conclusions

In this paper, we show that generalized binary search (GBS) is a top-down algorithm that greedily
minimizes the expected number of queries required to identify an object. We then use this inter-
pretation to extend GBS in two ways. First, we consider the case where the objects are partitioned
into groups, and the goal is to identify only the group of the unknown object. Second, we consider
the problem where the cost of identifying an object grows exponentially in the number of queries.
The algorithms are derived in a common framework. In particular, we prove the exact formulas for
the cost function in each case that close the gap between previously known lower bounds related to
Shannon and Rényi entropy. These exact formulas are then optimized in a greedy, top-down manner
to construct a decision tree. We demonstrate the improved performance of the proposed algorithms
over GBS through simulations. An important open question and the direction of our future work is
to relate these greedy algorithms to the global optimizer of their respective cost functions.

Acknowledgements

G. Bellala and C. Scott were supported in part by NSF Awards No. 0830490 and 0953135. S.
Bhavnani was supported in part by CDC/NIOSH grant No. R210H009441.

6 Appendix: Proof Sketch for Theorem 4

Define two new functions I, » and H o as

~ 1 A -
Byim e [Sro b — 1 = Yo, [ ] and Hym1o —
jecL jeL h=0 (Zszl ng)

where Ly, is related to the cost function L (IT) as Abx@ = (X — 1)Ly 4 1, and H,, is related to the
a-Rényi entropy H, (1) as

K K K o
1 (e} 1 « «
) = 3 = o3 ()
k=1 k=1 k=1

K a K @
— AHQ(Hy) — <Z Trg)k> = (Z W%k) ﬁa + 1 (6b)
k=1 k=1

where we use the definition of o, i.e., o« = 5 in (6a). Now, we note from Lemma 1 that

1
1+log,
Ly=> Xemg, = N2 =143 (A= 1)A7g, (7)

a€l ac€l

where d, denotes the depth of internal node ‘a’ in the tree 1. Similarly, we note from (6b) and
Lemma 2 that

AHa(ly) — 1 4 Z [76.Da(0a) — To,0, Pa(Oia) — 76,0y Pa(Ora))] - (8)
a€l
Finally, the result follows from (7) and (8) above.
Lemma 1. The function L A can be decomposed over the internal nodes in a tree T, as L A =
Y act Nemg , where d,, denotes the depth of internal node a € T and Te, is the probability mass
of the objects at that node.
Lemma 2. The function H « can be decomposed over the internal nodes in a tree T, as

~ 1
H, = D E— Z [F@apa(e)a) - le(a)Da(el(a)) — ﬂ@r(a)'Da(@r(a))]

K o
(Zk’:l Trg)k) ac€’l

where D, (0,) = {Zszl (Weg ) } and e, denotes the probability mass of the objects at any

TOq

Q=

internal node a € 1.

The above two lemmas can be proved using induction over subtrees rooted at any internal node ‘a’
in the tree. The details may be found in the Supplemental Material.
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