
Supplementary Material
Optimal Web-scale Tiering as a Flow Problem

A Practical Issues

A.1 Deferred and Approximate Updates

Assume that we updated zd at iteration n and we revisit it at iteration n′. This means that zd at
iteration n′ is given by applying gradients of fλ(zd) repeatedly and by moving η in the negative
gradient direction. We may compute the aggregate result of all steps by simply adding up the
steplengths for each segment, rescaled by the slope λj . Denote by

s(n) :=
n∑
j=1

ηj and let δ(n′, n) := s(n′)− s(n) (10)

the aggregate steps lengths from time n to time n′. Note that λ−1
t is the aggregate steplength

required to cross the interval [t− 1, t]. Algorithm 2 carries out the deferred updates by moving step
by step down the slope of fλ. This is required for invoking the gradient computation and update
step of Algorithm 1.

While precomputing the steplength is a significant computational improvement, storing (10) is
substantial: a billion steps translate into 4GB of data. This can be remedied by an integral
approximation

δ(n′, n) =

n′∑
j=n+1

ηj =

n′∑
j=n+1

1√
j+n0

≈ 2
[√

n′ + n0 −
√
n+ n0

]
which becomes increasingly accurate for large |n′ − n|. It allows us to obtain values for δ(n′, n′) in
constant time without any storage.

A.2 Data Reduction and Max/Sum Heuristics

The amount of data used in the optimization problem can be reduced significantly by eliminating
documents and queries which are definitely assigned to particular tiers.

Consider the case of only two tiers (we only have λ1): any query occurring more frequently vq than
λ1 will automatically ensure that the associated pages are cached. Consequently we may remove
this query from the dataset, assign all related pages to the first tier xd = 0 and remove them from
all remaining queries. Secondly, any document d for which

∑
q∈Qd

vq is displayed less than λ1

will definitely not be in the cache. Consequently all queries using d will by default fail and can be
removed from the dataset. Note that this thresholding procedure can be repeated with the remaining
(so far undetermined) documents and queries.

An analogous reasoning applies to multiple tiers: for any query q with weight vq ≥ λt we know
that all d ∈ Dq will definitely be stored in tier t or lower — the subgradients with respect to zd are
at least vq at this tier. Any document which, accumulated over all queries q ∈ Qd is not requested
more than λt times cannot be displayed at t or higher. An appealing side-effect of this data
reduction is that the gradients of the remaining functions lq cover a much smaller dynamic range.
This accelerates convergence [11] since optimization progress inversely depends on the gradient
range.

Furthermore, both sd :=
∑
q∈Qd

vq and md := maxq∈Qd
vq are good tiering heuristics in their own

right. If we had only one page per query the optimal solution would be to sort according to sd. On
the other hand, for large |Dq| ordering documents according to md proves near optimal as we see

10



on both synthetic and real data. This suggests a very simple heuristic for obtaining near-optimal
tiering, namely to sort based on md. Empirically we found that a good initialization for the page
variables zd to be −(0.9 logmd + 0.1 log sd) scaled and shifted to fit the [1, k] range, which helps
convergence. But if we use Algorithm 3 for extra computational advantage, the constant
initialization zd = k already works efficiently.

B Extensions

We describe three types of extensions on our proposed tiering approach: beyond hit and miss,
smoothing and robustness. We will discuss those in turn.

B.1 Beyond Hit and Miss

So far we only discussed a rather primitive model of penalties per query, namely that we would
incur a penalty vqpt for not serving a query at level t. The motivation for this simplification was
twofold — we were interested in finding the optimal tier arrangement for a given set of pages to be
retrieved per query and moreover, we did not distinguish between the value of different pages or
the possibility of retrieving only a partial set of results per query. In the following we show that
considerably more sophisticated score functions still lead to integral solutions.

Lemma 10 Denote by S a collection of sets, and by λSt, γSt ≥ 0 and ηS ∈ R weighting
coefficients. Then, the optimization problem obtained by replacing

∑
q vq maxd:(d,q)∈G zd with

∑
S∈S

max
d∈S

[
ηSzd +

∑
t

λSt max(0, t− zd) + γSt max(0, zd − t)

]
has an integral solution.
B.2 Smoothing

The approach we discussed so far works well whenever the number of queries significantly exceeds
the number of pages in the cache. While the query stream of search engines is obviously
tremendous, the above assumption is no longer satisfied when optimizing over hundreds of billions
of pages (this would require nearly a Trillion queries to obtain good statistics in the tails).

Assume that each document d comes with a set of features φd, e.g. its relevance in the Hubs and
Spokes model, or alternatively PageRank [9, 12], the indegrees/outdegrees of a page, the likelihood
that it is spam, or other content-related information. In this case, one would expect that such
information ought to be valuable in deciding at which tier to store a page. We can take advantage of
this by modeling zd = 〈φd, w〉 for a suitable parameter vector w and a page-feature vector φd. The
resulting optimization problem is convex in w and we can use the same algorithm we used for zd to
optimize over w. Focusing only φd exclusively, though, is ineffective since it ignores the fact that
certain pages simply happen to be popular whereas others simply happen not to be popular at all
despite meaningful features φd. Replacing φd by (φd, νded), where ed is the unit vector for
document d and νd is an indicator variable which characterizes an a-priori estimate of the
importance of a page, allows us to have a page-specific weight for common pages whereas for
infrequent pages we simply smooth over the prior coefficients.

B.3 Robustness

So far we assumed that vq is exactly observed. This can be extended to allow for deviations in v by
means of robust optimization. The following minimax problem remains convex, hence it is
accessible to efficient solution:

minimize
z

maximize
ε∈E

∑
q

[
(vq + εq) max

d∈Dq

zd

]
+
∑
d

fλ(zd) (11)

Here ε ∈ E denotes an admissible perturbation of query values, and may be any `p balls
(0 < p <∞) around v, thus including the case of sparse perturbation when p < 1.

11



C Experiments on Synthetic Data

The purpose of experiments on synthetic data is to obtain a small enough dataset which allows us
to compare both heuristics, the online solver, and the (much slower) LP solution exactly. We
generated a random bipartite query-page graph using 150 queries and 150 pages. Each query vertex
has a degree of 3, and value vq := 10(2 + q)−0.8 mimicking a power law distribution of real data.

We experimented with a 2-tier system by varying the relative size of the prime (cache) tier. We
evaluate system performance in session miss: for each session q, a miss occurs if any one of the
associated pages is not found in cache, incurring vq misses for that session. The experimental
results are summarized in Figure 4. Our proposed method (OPT-tier) outperforms baselines by a
significant margin.

To assess the convergence properties of our online algorithm, we compare the quality of the
solutions given by linear program (Section 3.1) and online algorithm (Section 3.4). From Figure 4,
shows that the online solver (ONL OPT-tier) converges to the solution of linear programming (LP
OPT-tier) within few passes over the data. Note that the LP solver is computationally costly, thus
unsuitable for problems even at the scale of 1000.

We examine the same synthetic data set for a 3-tier assignment problem. Here we can vary i.e. the
relative sizes of the prime tier and the second tier. We report the relative improvement of our tiering
algorithm as ratios of (generalized) session misses in Figure 5. As before, our method consistently
outperforms the max heristic and, especially the sum heuristic. We observe that the size of the
prime tier affects relative improvement more than the size of the second tier.

Figure 4: Session miss rate performance
on the 150 queries-150 documents with
3 docs/query dataset. The caching per-
formance was rescaled to yield a miss
rate of 1 for a cache size of 2.5% for
sessions. Our proposed method (OPT-
tier) outperforms baselines by a signifi-
cant margin in the total cache miss rate.
The online solver (ONL OPT-tier) con-
verges to the LP solution (LP OPT-tier).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

1.1

1.2

1.3

1.4

 

Tier−0 Size

3−Tier System: OPT versus SUM

Tier−1 Size

 

R
el

at
iv

e 
Im

pr
ov

em
en

t

1.1

1.15

1.2

1.25

1.3

1.35

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

1.1

1.2

1.3

1.4

 

Tier−0 Size

3−Tier System: OPT versus MAX

Tier−1 Size
 

R
el

at
iv

e 
Im

pr
ov

em
en

t

1.05

1.1

1.15

1.2

1.25

1.3

Figure 5: Cache performance for a set of 3 tiers. Our method consistently outperforms the baselines
for all choices of both tiers. The difference is most pronounced for large tier sizes where interactions
between pages matter most.

12



D Proofs

Lemma 1 Assume that Ck ≥ |D| > Ck−1. Then there exists an optimal solution of (2) such that∑
d {zd ≤ t} = Ct for all 1 ≤ t < k.

Proof Assume that z∗, v∗ is the optimal solution. Note that the objective function only depends on
v∗ directly. If the capacity constraint is not met with equality we may decrease the tiers of an
arbitrary set of pages until the constraints are met. Since this only relaxes the constraints on v∗
further while not increasing the objective function, the solution is still optimal.

Lemma 2 The solutions of (2) and (4) are equivalent.

Proof Firstly, the variable sets (z, u) and (x, y) are equivalent (we have an explicit bijection). The
same applies to the constraints between them — eq. (4b) implies that the retrieval tier for query q
needs to be at least as high as that of the highest page. Finally, the objective function sums over all
tier levels from 2 to k such that a document found at tier t will contribute via p2 + . . .+ pt. Hence
equality holds.

Lemma 3 For any choice of λ with λt ≥ 0 the linear program (5) has an integral solution, i.e.
there exists some x∗, y∗ satisfying x∗dt, y

∗
qt ∈ {0; 1} which minimize (5). Moreover, for

C̄t =
∑
d x
∗
dt the solution (x∗, y∗) also solves (4).

Proof We first show that (5) has an integral solution for all choices of λ. This holds since
constraints are totally unimodular: the constraint matrix has only one 1 and one −1 entry per row.
Integrality follows [8].

By construction, for the choice of C̄t =
∑
d x
∗
dt the condition (4c) is met with equality, hence the

integral solution of (5) is also the solution of a linear program arising from a relaxation of the
integer linear program (4) to a linear program. However, since the relaxation has an integral
solution it follows that (x∗, y∗) are also optimal for (4).

Lemma 4 Denote by L∗(λ) the value of (5) at the solution of (5) and let
L(λ) := L∗(λ) +

∑
t C̄tλt. Hence L(λ) is concave in λ and moreover, L(λ) is maximized for a

choice of λ where the solution of (5) satisfies the constraints of (4).

Proof Subtracting
∑
t C̄tλt from the objective of (5) yields a reduced Lagrange function which

enforces the constraint
∑
d xdt ≥ C̄t. As such, it is concave in λ and at its maximum the capacity

constraint is satisfied.

Lemma 5 We may scale pt and λt together by constants βt > 0, such that p′t/pt = βt = λ′t/λt.
The resulting solution of this new problem (6) with (p′, λ′) is unchanged.

Proof We introduce Lagrange multipliers γdt due to constraints of the form∑k−2
t=1 γdt(xdt − xd,t+1), which can be rewritten as

∑k−1
t=1 αdtxdt. At optimality we know for a

given (p, λ) that the gradient of (6) needs to match the Lagrange multipliers (αdt). Denote by x∗
and α∗ the solution of the optimization problem and the corresponding Lagrange multipliers.
Rescaling λ and p as per assumption we see that by rescaling α the optimality conditions still hold.
Hence x∗ must also solve (5) for (p′, λ′).

Lemma 6 Assume that C̄t is monotonically decreasing and that pt = 1 for t ≥ 1. Then any choice
of λ satisfying the capacity constraints is monotonically non-increasing.

Proof If λt = λt+1 we arrive at a solution where xdt = xd,t+1 since in this case the functions
concerning both variables are identical. Moreover, choosing λt+1 > λt can only lead to an increase
in xd,t+1. However, since xdt ≥ xd,t+1 by constraint, this means that for any λt+1 ≥ λt we have
xd,t+1 = xdt.

Then we may choose λ′t = λ′t+1 = λt+λt+1

2 and obtain the same solution with a nonincreasing
sequence of λt: it has the same value of the objective function and moreover the joint subgradients
are identical since terms in λt and λt+1 are added. A recursive averaging procedure generates a
nonincreasing sequence of equivalent values for λ which completes the proof.

13



Lemma 7 The solution of (8) is equivalent to that of (5).

Proof

(A) (8) is convex, has a unique minimum value.

(B) There is an injective mapping from any set of variables in (8) to the thermometer code of (5)
with the property that the values of the objective function coincide in this case. From this
it follows that the minimum of (8) cannot exceed the minimum of (5).

(C) For an integral set of variables in (5) there is an injective map to (8) such that, again, the
objective functions coincide. From this it follows that the minimum of (5) cannot exceed
the minimum of (8).

Combination of (B) and (C) proves the claim.

Lemma 10 Denote by S a collection of sets, and by λSt, γSt ≥ 0 and ηS ∈ R weighting
coefficients. Then, the optimization problem obtained by replacing

∑
q vq maxd:(d,q)∈G zd with

∑
S∈S

max
d∈S

[
ηSzd +

∑
t

λSt max(0, t− zd) + γSt max(0, zd − t)

]
has an integral solution.

Proof [sketch only] We treat each S ∈ S as if it were a query of its own with documents d ∈ S
associated with it. Within each set S note that the score function is piecewise linear with
discontinuities occurring only at integers. Hence we may use the same thermometer code
decomposition as discussed in Section 2.3 to rewrite the problem in terms of [0, 1] valued variables
with totally unimodular constraints. The overall problem has an integral solution.

14


