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Abstract

In this paper, we propose an efficient algorithm for estimating the natural policy
gradient using parameter-based exploration; this algorithm samples directly in the
parameter space. Unlike previous methods based on natural gradients, our algo-
rithm calculates the natural policy gradient using the inverse of the exact Fisher
information matrix. The computational cost of this algorithm is equal to that of
conventional policy gradients whereas previous natural policy gradient methods
have a prohibitive computational cost. Experimental results show that the pro-
posed method outperforms several policy gradient methods.

1 Introduction

Reinforcement learning can be used to handle policy search problems in unknown environments.
Policy gradient methods [22, 20, 5] train parameterized stochastic policies by climbing the gradient
of the average reward. The advantage of such methods is that one can easily deal with continuous
state-action and continuing (not episodic) tasks. Policy gradient methods have thus been successfully
applied to several practical tasks [11, 21, 16].

In the domain of control, a policy is often constructed with a controller and an exploration strat-
egy. The controller is represented by a domain-appropriate pre-structured parametric function. The
exploration strategy is required to seek the parameters of the controller. Instead of directly perturb-
ing the parameters of the controller, conventional exploration strategies perturb the resulting control
signal. However, a significant problem with the sampling strategy is that the high variance in their
gradient estimates leads to slow convergence. Recently,parameter-based exploration[18] strategies
that search the controller parameter space by direct parameter perturbation have been proposed, and
these have been demonstrated to work more efficiently than conventional strategies [17, 18, 13].
Another approach to speeding up policy gradient methods is to replace the gradient with thenatural
gradient [2], the so-called natural policy gradient [9, 4, 15]; this is motivated by the intuition that
a change in the policy parameterization should not influence the result of the policy update. The
combination of parameter-based exploration strategies and the natural policy gradient is expected
to result in improvements in the convergence rate; however, such an algorithm has not yet been
proposed.

However, natural policy gradients with parameter-based exploration strategies have a disadvantage
in that the computational cost is high. The natural policy gradient requires the computation of
the inverse of the Fisher information matrix (FIM) of the policy distribution; this is prohibitively
expensive, especially for a high-dimensional policy. Unfortunately, parameter-based exploration
strategies tend to have higher dimensions than control-based ones. Therefore, the expected method
is difficult to apply for realistic control tasks.
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In this paper, we propose a new reinforcement learning method that combines the natural policy
gradient and parameter-based exploration. We derive an efficient algorithm for estimating the natu-
ral policy gradient with a particular exploration strategy implementation. Our algorithm calculates
the natural policy gradient using the inverse of the exact FIM and the Monte Carlo-estimated gra-
dient. The resulting algorithm, callednatural policy gradients with parameter-based exploration
(NPGPE), has a computational cost similar to that of conventional policy gradient algorithms. Nu-
merical experiments show that the proposed method outperforms several policy gradient methods,
including the current state-of-the-art NAC [15] with control-based exploration.

2 Policy Search Framework

We consider the standard reinforcement learning framework in which an agent interacts with a
Markov decision process. In this section, we review the estimation of policy gradients and describe
the difference between control- and parameter-based exploration.

2.1 Markov Decision Process Notation

At each discrete timet, the agent observes statest ∈ S, selects actionat ∈ A, and then receives an
instantaneous rewardrt ∈ < resulting from a state transition in the environment. The stateS and the
actionA are both defined as continuous spaces in this paper. The next statest+1 is chosen according
to the transition probabilitypT (st+1|st,at), and the rewardrt is given randomly according to the
expectationR(st,at). The agent does not knowpT (st+1|st,at) andR(st,at) in advance.

The objective of the reinforcement learning agent is to construct a policy that maximizes the agent’s
performance. A parameterized policyπ(a|s, θ) is defined as a probability distribution over an action
space under a given state with parametersθ. We assume that eachθ ∈ <d has a unique well-defined
stationary distributionpD(s|θ). Under this assumption, a natural performance measure for infinite
horizon tasks is theaverage reward

η(θ) =
∫

S
pD(s|θ)

∫

A
π(a|s, θ)R(s,a)dads.

2.2 Policy Gradients

Policy gradient methods update policies by estimating the gradient of the average reward w.r.t. the
policy parameters. The state-action value isQθ(s,a) = E[

∑∞
t=1 rt − η(θ)|s1 = s,a1 = a, θ], and

it is assumed thatπ(a|s, θ) is differentiable w.r.t.θ. The exact gradient of the average reward (see
[20]) is given by

∇θη(θ) =
∫

S
pD(s|θ)

∫

A
π(a|s, θ)∇θ log π(a|s, θ)Qθ(s,a)dads. (1)

The natural gradient [2] has a basis in information geometry, which studies the Riemannian geomet-
ric structure of the manifold of probability distributions. A result in information geometry states that
the FIM defines a Riemannian metric tensor on the space of probability distributions [3] and that the
direction of the steepest descent on a Riemannian manifold is given by the natural gradient, given by
the conventional gradient premultiplied by the inverse matrix of the Riemannian metric tensor [2].
Thus, the natural gradient can be computed from the gradient and the FIM, and it tends to converge
faster than the conventional gradient.

Kakade [9] applied the natural gradient to policy search; this was called as the natural policy gra-
dient. If the FIM is invertible, the natural policy gradient∇̃θη(θ) ≡ F−1

θ ∇θη(θ) is given by the
policy gradient premultiplied by the inverse matrix of the FIMFθ. In this paper, we employ the FIM
proposed by Kakade [9], defined as

Fθ =
∫

S
pD(s|θ)

∫

A
π(a|s, θ)∇θ log π(a|s, θ)∇θ log π(a|s, θ)Tdads.

2



Figure 1: Illustration of the main difference between control-based exploration and parameter-based
exploration. The controllerψ(u|s,w) is represented by a single-layer perceptron. While the control-
based exploration strategy (left) perturbs the resulting control signal, the parameter-based explo-
ration strategy (right) perturbs the parameters of the controller.

2.3 Learning from Samples

The calculation of (1) requires knowledge of the underlying transition probabilitiespD(s|θ).
The GPOMDP algorithm [5] instead computes a Monte Carlo approximation of (1): the
agent interacts with the environment, producing an observation, action, and reward sequence
{s1,a1, r1, s2, ..., sT ,aT , rT }. Under mild technical assumptions, the policy gradient approxima-
tion is

∇θη(θ) ≈ 1
T

T∑
t=1

rtzt,

wherezt = βzt−1 + ∇θ log π(at|st, θ) is called theeligibility trace [12], ∇θ log π(at|st, θ) is
called thecharacteristic eligibility[22], andβ denotes the discount factor (0 ≤ β < 1). As β → 1,
the estimation approaches the true gradient1 , but the variance increases (β is set to 0.9 in all
experiments). We definẽ∇θ log π(at|st, θ) ≡ F−1

θ ∇θ log π(at|st, θ). Therefore, the natural policy
gradient approximation is

∇̃θη(θ) ≈ 1
T

T∑
t=1

F−1
θ rtzt =

1
T

T∑
t=1

rtz̃t, (2)

wherez̃t = βz̃t−1 + ∇̃θ log π(at|st, θ). To estimate the natural policy gradient, the heuristic sug-
gested by Kakade [9] used

Fθ,t = (1− 1
t
)Fθ,t−1 +

1
t
(∇θ log π(at|st, θ)∇θ log π(at|st, θ)T + λI), (3)

the online estimate of the FIM, whereλ is a small positive constant.

2.4 Parameter-based Exploration

In most control tasks, we attempt to have a (deterministic or stochastic) controllerψ(u|s,w) and
an exploration strategy, whereu ∈ U ⊆ <m denotes control andw ∈ W ⊆ <n, the parameters
of the controller. The objective of learning is to seek suitable values of the parametersw, and
the exploration strategy is required to carry out stochastic sampling near the current parameters. A
typical exploration strategy model, we callcontrol-based exploration, would be a normal distribution
for the control space (Figure1 (left)). In this case, the action of the agent is control, and the policy is
represented by

πU (u|s, θ) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(u− ψ(s,w))TΣ−1(u− ψ(s,w))

)
: S → U ,

whereΣ is them ×m covariance matrix and the agent seeksθ = 〈w, Σ〉. The control at timet is
generated by

ũt = ψ(st,w),
ut ∼ N (ũt, Σ).

1[5] showed that the approximation error is proportional to(1−β)/(1−|κ2|), whereκ2 is the sub-dominant
eigenvalue of the Markov chain
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One useful feature of such aGaussian unit[22] is that the agent can potentially control its degree of
exploratory behavior.

The control-based exploration strategy samples near the output of the controller. However, the
structures of the parameter space and the control space are not always identical. Therefore, the
sampling strategy generates controls that are not likely to be generated from the current controller,
even if the exploration variances decrease. This property leads to large variance gradient estimates.
This might be one reason why the policy improvement gets stuck.

To address this issue, Sehnke et al. [18] introduced a different exploration strategy for policy gradient
methods calledpolicy gradients with parameter-based exploration(PGPE). In this approach, the
action of the agent is the parameters of the controller, and the policy is represented by

πW (w̃|s, θ) =
1

(2π)n/2|Σ̃|1/2
exp

(
−1

2
(w̃ −w)TΣ̃−1(w̃ −w)

)
: S → W,

whereΣ̃ is then× n covariance matrix and the agent seeksθ = 〈w, Σ̃〉. The controller is included
in the dynamics of the environment, and the control at timet is generated by

w̃t ∼ N (w, Σ̃),
ut = ψ(st, w̃t).

GPOMDP-based methods can estimate policy gradients such as partially observable settings, i.e., the
policy πW (w̃|s, θ) excludes the observation of the current state. Because this exploration strategy
directly perturbs the parameters (Figure1 (right)), the samples are generated near the current param-
eters under small exploration variances. Note that the advantage of this framework is that because
the gradient is estimated directly by sampling the parameters of the controller, the implementation
of the policy gradient algorithms does not require∂

∂θ ψ, which is difficult to derive from complex
controllers.

Sehnke et al. [18] demonstrated that PGPE can yield faster convergence than the control-based ex-
ploration strategy in several challenging episodic tasks. However, the parameter-based exploration
tends to have a higher dimension than the control-based one. Therefore, because of the computa-
tional cost of the inverse ofFθ calculated by (3), natural policy gradients find limited applications.

3 Natural Policy Gradients with Parameter-based Exploration

In this section, we propose a new algorithm callednatural policy gradients with parameter-based
exploration(NPGPE) for the efficient estimation of the natural policy gradient.

3.1 Implementation of Gaussian-based Exploration Strategy

We employ the policy representation modelµ(w̃|θ), a multivariate normal distribution with parame-
tersθ = 〈w,C〉, wherew represents the mean andC, the Cholesky decomposition of the covariance
matrix Σ̃ such thatC is ann × n upper triangular matrix and̃Σ = CTC. Sun et al. [19] noted
two advantages of this implementation:C makes explicit then(n + 1)/2 independent parameters
determining the covariance matrix̃Σ; in addition, the diagonal elements ofC are the square roots of
the eigenvalues of̃Σ, and therefore,CTC is always positive semidefinite. In the remainder of the
text, we considerθ to be an[n(n + 3)/2]-dimensional column vector consisting of the elements of
w and the upper-right elements ofC, i.e.,

θ = [wT, (C1:n,1)T, (C2:n,2)T, ..., (Cn:n,n)T]T.

Here,Ck:n,k is the sub-matrix inC at rowk to n and columnk.

3.2 Inverse of Fisher Information Matrix

Previous natural policy gradient methods [9] use the empirical FIM, which is estimated from a
sample path. Such methods are highly inefficient forµ(w̃|θ) to invert the empirical FIM, a matrix
with O(n4) elements. We avoid this problem by directly computing the exact FIM.

4



Algorithm 1 Natural Policy Gradient Method with Parameter-based Exploration

Require: θ = 〈w,C〉: policy parameters,ψ(u|s,w): controller,α: step size,β: discount rate,b:
baseline.

1: Initialize z̃0 = 0, observes1.
2: for t = 1, ... do
3: Draw ξt ∼ N (0, I), compute actioñwt = CTξt + w.
4: Executeut ∼ ψ(ut|st, w̃t), obtain observationst+1 and rewardrt.
5: ∇̃w log µ(w̃t|θ) = w̃t −w, ∇̃C log µ(w̃t|θ) = {triu(ξtξ

T
t )− 1

2diag(ξtξ
T
t )− 1

2I}C
6: z̃t = βz̃t−1 + ∇̃θ log µ(w̃t|θ)
7: θ ← θ + α(rt − b)z̃t

8: end for

Substitutingπ = µ(w̃|θ) into (1), we can rewrite the policy gradient to obtain

∇θη(θ) =
∫

S
pD(s|θ)

∫

W
µ(w̃|θ)∇θ log µ(w̃|θ)Qθ(s, w̃)dw̃ds.

Furthermore, the FIM of this distribution is

Fθ =
∫

S
pD(s|θ)

∫

W
µ(w̃|θ)∇θ log µ(w̃|θ)∇θ log µ(w̃|θ)Tdw̃ds

=
∫

W
µ(w̃|θ)∇θ log µ(w̃|θ)∇θ log µ(w̃|θ)Tdw̃.

BecauseFθ is independent ofpD(s|θ), we can use the real FIM.

Sun et al. [19] proved that the precise FIM of the Gaussian distributionN (w,CTC) becomes a
block-diagonal matrixdiag(F0, ...,Fn) whose first blockF0 is identical toΣ̃−1 and whosek-th
(1 ≤ k ≤ n) blockFk is given by

Fk =
[
c−2
k,k 0
0 0

]
+ Σ̃−1

k:n,k:n

= [0 Ik̄]C−1
(
vkvT

k + I
)
C−T

[
0
Ik̄

]
,

wherevk denotes ann-dimensional column vector of which the only nonzero element is thek-th
element that is one, andIk̄ is the[n− k + 1]-dimensional identity matrix.

Further, Akimoto et al. [1] derived the inverse matrix of thek-th diagonal blockFk of the FIM.
BecauseFθ is a block-diagonal matrix andC is upper triangular, it is easy to verify that the inverse
matrix of the FIM is

F−1
k = [0 Ik̄]CT

(
−1

2
vkvT

k +
[
0 0
0 Ik̄

])
C

[
0
Ik̄

]
,

where we use

vT
k C

[
0 0
0 Ik̄

]
C−1 = vT

k and [0 Ik̄]C
[
0 0
0 Ik̄

]
C−1 = [0 Ik̄] . (4)

3.3 Natural Policy Gradient

Now, we derive the eligibility premultiplied by the inverse matrix of the FIM̃∇θ log µ(w̃t|θ) =
F−1

θ ∇θ log µ(w̃t|θ) in the same manner as [1]. The characteristic eligibility w.r.t.w is given by

∇w log µ(w̃t|θ) = Σ̃−1(w̃t −w).

Obviously,F−1
0 = Σ̃ and∇̃w log µ(w̃t|θ) = F−1

0 ∇w log µ(w̃t|θ) = w̃t − w. The characteristic
eligibility w.r.t. C is given by

∂

∂ci,j
log µ(w̃t|θ) = vT

i

(
triu(YtC−T)− diag(C−1)

)
vj ,
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Figure 2: Performance of NPG(w) as compared to that of NPG(u), VPG(w), and VPG(u) in the
linear quadratic regulation task averaged over 100 trials. Left: The empirical optimum denotes the
mean return under the optimum gain. Center and Right: Illustration of the main difference between
control- and parameter-based exploration. The sampling area of1σ in the state-control space (center)
and the state-parameter space (right) is plotted.

wheretriu(YtC−T) denotes the upper triangular matrix whose(i, j) element is identical to the
(i, j) element ofYtC−T if i ≤ j and zero otherwise, andYt = C−T(w̃t −w)(w̃t −w)TC−1 is
a symmetric matrix.

Let ck = (ck,k, ..., ck,n)T (of dimensionn + 1 − k); then, the characteristic eligibility w.r.t.ck is
expressed as

∇ck
log µ(w̃t|θ) = [0 Ik̄]

(
C−1Yt − diag(C−1)

)
vk.

According to (4),diag(C−1)vk = c−1
k,kvk and

vT
k Cvk = ck,k and

[
0 0
0 Ik̄

]
Cvk = ck,kvk,

thek-th block ofF−1
θ ∇θ log µ(w̃t|θ) is therefore

∇̃ck
log µ(w̃t|θ) = F−1

k ∇ck
log µ(w̃t|θ)

= [0 Ik̄]CT

(
−1

2
vkvT

k +
[
0 0
0 Ik̄

])
C

[
0 0
0 Ik̄

] (
C−1Yt − diag(C−1)

)
vk

= [0 Ik̄]CT

(
−1

2
vkvT

k +
[
0 0
0 Ik̄

])
(Yt − I)vk.

Becausẽ∇ck
log µ(w̃t|θ)T =

(
∇̃C log µ(w̃t|θ)

)
k,k:n

, we obtain

∇̃C log µ(w̃t|θ) =
(

triu(Yt)− 1
2
diag(Yt)− 1

2
I
)

C. (5)

Therefore, the time complexity of computing

∇̃θ log µ(w̃t|θ) = [∇̃w log µ(w̃t|θ)T, ∇̃c1 log µ(w̃t|θ)T, ..., ∇̃cn log µ(w̃t|θ)T]T

is O(n3), which is of the same order as the computation of∇θ log µ(w̃t|θ). This is a significant im-
provement over the current natural policy gradient estimation using (2) and (3) with parameter-based
exploration, whose complexity isO(n6). Note that more simple forms for exploration distribution
could be used. When we use the exploration strategy that is represented as an independent normal
distribution for each parameterwi in w, the natural policy gradient is estimated inO(n) time. This
limited form ignores the relationship between parameters, but it is practical for high-dimensional
controllers.

3.4 An Algorithm

For a parameterized class of controllersψ(u|s,w), we can use the exploration strategyµ(w̃|θ). An
online version based on the GPOMDP algorithm of this implementation is shown in Algorithm 1. In
practice, the parameters of the controllerw̃t are generated bỹwt = CTξt +w, whereξt ∼ N (0, I)
are normal random numbers. Now, we can instead useYt = C−T(w̃t−w)(w̃t−w)TC−1 = ξtξ

T
t .

To reduce the variance of the gradient estimation, we employ variance reduction techniques [6] to
adapt the reinforcement baselineb.
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Figure 3: Simulator of a two-link arm robot.

4 Experiments

In this section, we evaluate the performance of our proposed NPGPE method. The efficiency of
parameter-based exploration has been reported for episodic tasks [18]. We compare parameter- and
control-based exploration strategies with natural gradient and conventional ”vanilla” gradients using
a simple continuing task as an example of a linear control problem. We also demonstrate NPGPE’s
usefulness for a physically realistic locomotion task using a two-link arm robot simulator.

4.1 Implementation

We compare two different exploration strategies. The first is the parameter-based exploration strat-
egyµ(w̃|θ) presented in Section 3.1. The second is the control-based exploration strategyε(u|ũ,D)
represented by a normal distribution for a control space, whereũ is the mean vector of the control
generated by controllerψ andD represents the Cholesky decomposition of the covariance matrix
Σ such thatD is anm ×m upper triangular matrix andΣ = DTD. The parameters of the policy
πU (u|s, θ) areθ = 〈w,D〉 to be an[n+m(m+1)/2]-dimensional column vector consisting of the
elements ofw and the upper-right elements ofD.

4.2 Linear Quadratic Regulator

The following linear control problem can serve as a benchmark of delayed reinforcement tasks [10].
The dynamics of the environment is

st+1 = st + ut + δ,

wheres ∈ <1, u ∈ <1, andδ ∼ N (0, 0.52). The immediate reward is given byrt = −s2
t − u2

t . In
this experiment, the set of possible states is constrained to lie in the range [-4, 4], andst is truncated.
When the agent chooses an action that does not lie in the range[−4, 4], the action executed in the
environment is also truncated. The controller is represented byψ(u|s,w) = s ·w, wherew ∈ <1.
The optimal parameter is given byw∗ = 2/(1 + 2β +

√
4β2 + 1)− 1 from the Riccati equation.

For clarification, we now write an NPG that employs the natural policy gradient and a VPG that em-
ploys the ”vanilla” policy gradient. Therefore, NPG(w) and VPG(w) denote the use of the parameter-
based exploration strategy, and NPG(u) and VPG(u) denote the use of the control-based exploration
strategy. Our proposed NPGPE method is NPG(w).

Figure2 (left) shows the performance of all compared methods. We can see that the algorithm using
parameter-based exploration had better performance than that using control-based exploration in the
continuing task. The natural policy gradient also improved the convergence speed, and a combina-
tion with parameter-based exploration outperformed all other methods. The reason for the accel-
eration in learning in this case may be the fact that the samples generated by the parameter-based
exploration strategy allow effective search. Figure2 (center and right) show plots of the sampling
area in the state-control space and the state-parameter space, respectively. Because control-based
exploration maintains the sampling area in the control space, the sampling is almost uniform in the
parameter space at arounds = 0, where the agent visits frequently. Therefore, the parameter-based
exploration may realize more efficient sampling than the control-based exploration.

4.3 Locomotion Task on a Two-link Arm Robot

We applied the algorithm to the robot shown in Figure3 of Kimura et al. [11]. The objective of
learning is to find control rules to move forward. The joints are controlled by servo motors that react
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Figure 4: Performance of NPG(w) as compared to that of NPG(u) and NAC(u) in the locomotion
task averaged over 100 trials. Left: Mean performance of all compared methods. Center: Parameters
of controller for NPG(w). Right: Parameters of controller for NPG(u). The parameters of the

controller are normalized bygaini =
√∑

j wi,j andweight i,j = wi,j/gaini, wherewi,j denotes

thej-th parameter of thei-th joint. Arrows in the center and right denote the changing points of the
relation between two important parameters.

to angular-position commands. At each time step, the agent observes the angular position of two
motors, where each observationo1, o2 is normalized to [0, 1], and selects an action. The immediate
reward is the distance of the body movement caused by the previous action. When the robot moves
backward, the agent receives a negative reward. The state vector is expressed ass = [o1, o2, 1]T.
The control for motori is generated byui = 1/(1 + exp(−∑

j sjwi,j)). The dimension of the
parameters of the policies isdW = n(n + 3)/2 = 27 anddU = n + m(m + 1)/2 = 9 for the
parameter- and control-based exploration strategy, respectively.

We compared NPG(w), i.e., NPGPE, with NPG(u) and NAC(u). NAC is the state-of-the-art policy
gradient algorithm [15] that combines natural policy gradients, actor-critic framework, and least-
squares temporal-difference Q-learning. NAC computes the inverse of ad×d matrix to estimate the
natural steepest ascent direction. Because NAC(w) hasO(d3

W ) time complexity for each iteration,
which is prohibitively expensive, we apply NAC to only control-based exploration.

Figure4 (left) shows our results. Initially, NPG(w) is outperformed by NAC(u); however, it then
reaches good solutions with fewer steps. Furthermore, at a later stage, NAC(u) matches NPG(u).
Figure4 (center and right) show the path of the relation between the parameters of the controller.
NPG(w) is much slower than NPG(u) to adapt the relation at an early stage; however, it can seek the
relations of important parameters (indicated by arrows in the figures) faster, whereas NPG(u) gets
stuck because of inefficient sampling.

5 Conclusions

This paper proposed a novel natural policy gradient method combined with parameter-based ex-
ploration to cope with high-dimensional reinforcement learning domains. The proposed algorithm,
NPGPE, is very simple and quickly calculates the estimation of the natural policy gradient. More-
over, the experimental results demonstrate a significant improvement in the control domain.

Future works will focus on developing actor-critic versions of NPGPE that might encourage perfor-
mance improvements at an early stage, and on combining other gradient methods such as natural
conjugate gradient methods [8].

In addition, a comparison with other direct parameter perturbation methods such as finite difference
gradient methods [14], CMA-ES [7], and NES [19] will be necessary to gain a better understanding
of the properties and efficacy of the combination of parameter-based exploration strategies and the
natural policy gradient. Furthermore, the application of the algorithm to real-world problems is
required to assess its utility.
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