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Abstract

This document contains detailed proofs of theorems stated in the main paper enti-
tledRandom Projection Trees Revisited.

1 Proof of Theorem 4

Theorem 1 (Theorem 4 restated). There is a constantc2 with the following property. Suppose an
RPTREE-MAX is built using data setS ⊂ R

D . Pick any cellC in the RPTREE-MAX ; suppose
thatS ∩C has doubling dimension≤ d. Then for anys ≥ 2, with probability at least1− 1/4 (over
the randomization in constructing the subtree rooted atC), for every descendantC′ which is more
thanc2 · s · d log d levels belowC, we have radius(C′) ≤ radius(C)/s.

Proof. Without loss of generality assume thats is a power of2. We will prove the result by induc-
tion. Recall the following result.

Fact 2 (Implicit in Theorem 3 in [1]). There is a constantc1 with the following property. Suppose
an RPTREE-MAX is built using data setS ⊂ R

D . Pick any cellC in theRPTREE-MAX ; suppose
thatS ∩ C has doubling dimension≤ d. Then for anyδ > 0, with probability at least1 − δ (over
the randomization in constructing the subtree rooted atC), for every descendantC′ which is more
thanc1d log d + log(1/δ) levels belowC, we have radius(C′) ≤ radius(C)/2.

Fact 2 proves the base case fors = 2. For the induction step, letL(s) denote the number of levels it
takes to reduce the size by a factor ofs with high confidence. Then we have

L(s) ≤ L(s/2) + c1d log d + L(s/2) + 2 = 2L(s/2) + c1d log d + 2

Solving the recurrence givesL(s) = O (sd log d)

2 Proof of Lemma 6

Lemma 3 (Lemma 6 restated). Let B = B(x, δ) be a ball contained inside anRPTREE cell of
radius∆ that contains a datasetS of doubling dimensiond. Lets us say that a random split splits
this ball if the split separates the data setS into two parts. Then a random split of the cell splitsB

with probability atmost3δ
√

d
∆ .

Proof. The RPTREE-MAX splits proceed by randomly projecting the data in a cell ontothe real
line and then choosing a split point in an interval of length12∆/

√
D. It is important to note that

∗Work done as an undergraduate student at IIT Kanpur
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the random direction and the split point are chosen independently. Hence, suppose data inside the
ball B gets projected onto an intervalB̃ of radiusr, then the probability of it getting split is atmost
r
√

D/6∆ since the split point is chosen randomly in an interval of length12∆/
√

D independently
of the projection. LetRB be the random variable that gives the radius of the intervalB̃. Hence the
probability ofB getting split is the following

√
D

6∆

∞
∫

0

rP [RB = r] dr =

√
D

6∆

∞
∫

0

r
∫

0

P [RB = r] dtdr =

√
D

6∆

∞
∫

0

∞
∫

t

P [RB = r] drdt

=

√
D

6∆

∞
∫

0

Pr[RB ≥ t]dt

We have the following result from [1]

Fact 4 (Lemma 6 of [1]). P

[

RB ≥ 4δ√
D

√

2
(

d + ln 2
η

)

]

≤ η

Fix the valuel = 4δ√
D

√

2 (d + ln 2). Using the fact that for anyt, Pr[RB ≥ t] ≤ 1 and making the

change of variablest = 4δ√
D

√

2
(

d + ln 2
η

)

we get

∞
∫

0

Pr[RB ≥ t]dt =

l
∫

0

Pr[RB ≥ t]dt +

∞
∫

l

Pr[RB ≥ t]dt ≤
l
∫

0

1dt +

0
∫

1

ηdt(η)

Simplifying the above expression, we get the split probability to be atmost

2δ

3∆









√

2 (d + ln 2) +

1
∫

0

dη
√

2
(

d + ln 2
η

)









=
2δ

3∆







√

2 (d + ln 2) + 2
√

2ed

∞
∫

√
ln 2+d

e−x2

dx







Now
∞
∫

a

e−x2

dx = 1
2

[

∞
∫

−∞
e−x2

dx −
a
∫

−a

e−x2

dx

]

≤
√

π
2

[

1 −
√

1 − e−a2

]

≤
√

π
2 e−a2

since1 −
√

1 − x < x for 0 < x < 1. Usingd ≥ 1 , we get the probability of the ballB getting split to be

atmost 2δ
3∆

[

√

2 (d + ln 2) +
√

π
2

]

≤ 3δ
√

d
∆ .

3 Proof of Lemma 7

Lemma 5 (Lemma 7 restated). LetB1(x1, ∆/960s
√

d) andB2(x2, ∆/960s
√

d) be a pair of balls
with the centers separated by atleast∆/s−∆/960s

√
d. Suppose these balls are contained in a ball

B(x, ∆) containing dataS of doubling dimensiond. Then a random split of the cell is a good split
with respect to this pair with probability atleast156s .

Proof. The techniques used in the proof of this lemma are the same as those used to prove a similar
result in [1]. We are giving a proof sketch here for completeness. We use the following two results
from [1]

Fact 6 (Lemma 5 of [1]). Fix anyx ∈ R
D. Pick a random vectorU ∼ N (0, (1/D)ID). Then for

anyα, β > 0 :

(a) P

[

|U · x| ≤ α · ‖x‖√
D

]

≤
√

2
π α,

(b) P

[

|U · x| ≥ β · ‖x‖√
D

]

≤ 2
β e−β2/2.

2



Fact 7 (Corollary 8 of [1]). SupposeS ⊂ R
D lies within ballB(x, ∆). Pick any0 < δ < 2/e2.

Let this set be projected randomly onto the real line. Let us denote bỹx, the projection ofx by S̃,
the projection of the setS. Then with probability atleast1− δ over the choice of random projection

ontoR,
∣

∣

∣
median{S̃} − x̃

∣

∣

∣
≤ ∆√

D
·
√

2 ln 2
δ .

Projections of points, sets etc. are denoted with a tilde (˜) sign. Applying Fact 4 withη = 2
e31 , we

get that with probability> 1− 2
e31 , the ballB1 gets projected to an interval of length atmost∆

30s
√

D

centered at̃x1. The same holds forB2. Applying Fact 6(a) withα = 384
959 gives us|x̃1 − x̃2| ≥ ∆

2s
√

D

with probability1 − 1536
4795 . Furthermore, an application of Fact 6(b) withβ =

√
2 ln 40 shows that

with probability atleast1 − 1
54 , |x̃1 − x̃| ≤ 3∆√

D
. The same holds true for̃x2 as well. Finally an

application of Fact 7 withδ = 1
20 shows that the median of the projected setS̃ will lie within a

distance3∆√
D

of x̃ (i.e. the projection of the center of the cell) with probability atleast1 − 1
20 .

Simple calculations show that the preceding guarantees imply that with probability atleast12 over the
choice of random projections, the projections of both the balls will lie within the interval from which
a split point would be chosen. Further more there would be a gap of atleast ∆

2s
√

D
−2 ∆

30s
√

D
between

the projections of the two balls. Hence, given that these good events take place, with probability

atleast
√

D
12∆

(

∆
2s

√
D

− 2 ∆
30s

√
D

)

over the choice of the split point, the balls will get cleanlyseparated.

Note that this uses independence of the choice of projectionand the choice of the split point. Thus
the probability of a good split is atleast156s .

4 Proof of Lemma 9

Lemma 8 (Lemma 9 restated). Consider a cellC of radius∆ in the RPTREE-MAX containing
data of doubling dimensiond and fix a pair of ballsB1(x1, ∆/960s

√
d) andB2(x2, ∆/960s

√
d)

with the centers separated by atleast∆/s − ∆/960s
√

d. Letpi
j denote the probability that a celli

levels belowC has a descendantj levels below itself that contains data points from both the balls.

Thenp0
k ≤

(

1 − 1
68s

)l
pl

k−l.

Proof. We have the following expression forp0
k :

p0
k ≤ P [split at level0 is a good split] · 0 +

P [split at level0 is a bad split] · 2p1
k−1 +

P [split at level0 is a neutral split] · p1
k−1

≤ 1

320s
· 2p1

k−1 +

(

1 − 1

320s
− 1

56s

)

· p1
k−1

=

(

1 +
1

320s
− 1

56s

)

· p1
k−1

=

(

1 − 1

68s

)

p1
k−1

≤
(

1 − 1

68s

)2

p2
k−2

(

Similarly p1
k−1 ≤

(

1 − 1

68s

)

p2
k−2

)

...

≤
(

1 − 1

68s

)l

pl
k−l
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5 Proof of Lemma 11

Lemma 9 (Lemma 11 restated). There exists a constantc5 such that the probability of a ball of
radius R in a cell of radius∆ getting split before it lands up in a cell of radius∆/2 is at most
c5Rd

√
d log d

∆ .

Proof. The only bad event for us is the one in whichB gets split before it gets separated from
all the Bj ’s. Call this eventE. Also, denote byE[i] the bad event thatB gets split for the first
time in theith split and the precedingi − 1 splits are incapable of separatingB from all theBj ’s.
ThusP [E] ≤ ∑

i>0

P [E[i]]. Since any given split is a useful split (i.e. separatesB from a fixedBj)

with probability > 1
192 , the probability thati − 1 splits will fail to separate allBjs from theB

(while not splittingB) is at mostmin
{

1,
(

1 − 1
192

)i−1 · N
}

whereN = dO(d) is the number of

ballsBj . Since all splits in an RPTREE-MAX are independent of each other, we haveP [E[i]] ≤
min

{

1,
(

1 − 1
192

)i−1 · N
}

· 3R
√

d
∆ . Letk be such that

(

1 − 1
192

)k−1 ≤ 1
4N . Clearlyk = O (d log d)

suffices. Thus we have

P [E] ≤ 3R
√

d

∆

∑

i>0

min

{

1,

(

1 − 1

192

)i−1

· N
}

≤ 3R
√

d

∆

(

k
∑

i=1

1 +

∞
∑

i=1

1

4

(

1 − 1

192

)i
)

which gives usP [E] = O
(

Rd
√

d log d
∆

)

since the second summation is just a constant.

6 Proof of Theorem 12

Theorem 10 (Theorem 12 restated). There exists a constantc6 such that with probability> 1−1/4,
a given ballB of radiusR will be completely inscribed in anRPTREE-MAX cell C of radius no
more thanc6 · Rd

√
d log d.

Proof. Let ∆∗ = 4c5Rd
√

d log d and∆max be the radius of the entire dataset. Denote byF [i] the
event thatB ends up unsplit in a cell of radius∆max

2i . The event we are interested in isF [m] for
m = log ∆max

∆∗
. Note thatP [F [m]|F [m − 1]] is exactlyP [E] whereE is the event described in

Lemma 11 for appropriately set value of radius∆. Also P [F [m]|¬F [m − 1]] = 0. Thus we have

P [F [m]] =

m−1
∏

i=0

P [F [i + 1]|F [i]] =

m−1
∏

i=0

(

1 − c5Rd
√

d log d

∆max/2i

)

≥ 1 −
m−1
∑

i=0

c5Rd
√

d log d

∆max/2i

= 1 −
m−1
∑

i=0

c5Rd
√

d log d

2m−i∆∗ = 1 − 1

4

m−1
∑

i=0

1

2m−i
≥ 1 − 1

4

Settingc6 = 4c5 gives us the desired result.

7 Proof of Theorem 14

Let us first recall a result about smooth manifolds being usedto prove this result.

Fact 11 (Implicit in Lemma 5.3 of [2]). SupposeM is a Riemannian manifold with condition
numberτ . For anyp ∈ M andr ≤ √

ǫτ, ǫ ≤ 1
4 , letM′ = B(p, r) ∩M. LetT = Tp(M) be the

tangent space atp. Then for anyx, y ∈ M′, ‖x‖(T ) − y‖(T )‖2 ≥ (1 − ǫ)‖x − y‖2.

We will now prove the following result

Theorem 12 (Theorem 14 restated). Given a data setS ⊂ M whereM is a d-dimensional Rie-
mannian manifold with condition numberτ , then for anyǫ ≤ 1

4 , S has local covariance dimension
(

d, ǫ,
√

ǫτ
3

)

.
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Proof. SupposeM′ = B(x0, r)∩M for r =
√

ǫτ
3 and we are given data pointsS = {x1, . . . xn} ⊂

M′. Let q = arg min
x∈M

‖µ − x‖ be the closest point on the manifold to the mean. The smoothness

properties ofM tell us that the vector(µ−q) is perpendicular toTq(M), thed-dimensional tangent
space atq (in fact any pointq at which the functiong : x ∈ M 7−→ ‖x− µ‖ attains a local extrema
would also have the same property). This has interesting consequences - letf be the projection map
ontoTq(M) i.e. f(v) = v‖(Tq(M)).

Thenf(µ − q) = 0 since(µ − q) ⊥ Tq(M). This implies that for any vectorv ∈ R
D, f(v − µ) =

f(v − q) + f(q − µ) = f(v − q) = f(v) − f(q) sincef is a linear map. We now note that
min

i
‖µ − xi‖ ≤ r. If this were not true then we would have

∑

i

‖µ − xi‖ > nr2 whereas we know

that
∑

i

‖µ− xi‖ ≤∑
i

‖x0 − xi‖ ≤ nr2 since for any random variableX ∈ R
D and fixedv ∈ R

D,

we haveE
[

‖X − v‖2
]

≥ E
[

‖X − E [X ] ‖2
]

. Since‖µ− xi‖ ≤ r for somexi ∈ M, we know, by
definition ofq, that‖µ − q‖ ≤ r as well.

We also have‖µ − x0‖ ≤ r (since the convex hull of the points is contained in the ballB and the
mean, being a convex combination of the points, is containedin the hull) and‖xi − x0‖ ≤ r for all
pointsxi. Hence we have for any pointxi, ‖xi − q‖ ≤ ‖xi − x0‖ + ‖x0 − µ‖ + ‖µ− q‖ ≤ 3r and
conclude thatS ⊂ B(q, 3r) ∩M = B(q,

√
ǫτ) ∩M which means we can apply Fact 11 between

the vectorsxi andq.

Let T = Tq(M) andq as chosen above. We have
∑

x∈S

‖(x − µ)‖(T )‖2 =
∑

x∈S

‖f(x − µ)‖2 =
∑

x∈S

‖f(x − q)‖2 =
∑

x∈S

‖f(x) − f(q)‖2

≥
∑

x∈S

(1 − ǫ)‖x − q‖2 ≥ (1 − ǫ)
∑

x∈S

‖x − µ‖2

where the last inequality again uses the fact that for a random variableX ∈ R
D and fixedv ∈ R

D,
E
[

‖X − v‖2
]

≥ E
[

‖X − E [X ] ‖2
]

.
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