
Constructing Skill Trees for Reinforcement Learning
Agents from Demonstration Trajectories

George Konidaris† Scott Kuindersma†‡ Andrew Barto† Roderic Grupen‡
Autonomous Learning Laboratory† Laboratory for Perceptual Robotics‡

Computer Science Department, University of Massachusetts Amherst
{gdk, scottk, barto, grupen}@cs.umass.edu

Abstract

We introduce CST, an algorithm for constructing skill trees from demonstration
trajectories in continuous reinforcement learning domains. CST uses a change-
point detection method to segment each trajectory into a skill chain by detecting
a change of appropriate abstraction, or that a segment is too complex to model
as a single skill. The skill chains from each trajectory are then merged to form a
skill tree. We demonstrate that CST constructs an appropriate skill tree that can
be further refined through learning in a challenging continuous domain, and that
it can be used to segment demonstration trajectories on a mobile manipulator into
chains of skills where each skill is assigned an appropriate abstraction.

1 Introduction

Hierarchical reinforcement learning [1] offers an appealing family of approaches to scaling up stan-
dard reinforcement learning (RL) [2] methods by enabling the use of both low-level primitive actions
and higher-level macro-actions (or skills). A core research goal in hierarchical RL is the develop-
ment of methods by which an agent can autonomously acquire its own high-level skills.

Recently, Konidaris and Barto [3] introduced a general method for skill discovery in continuous
RL domains called skill chaining. Skill chaining adaptively segments complex policies into skills
that can be executed sequentially and that are easier to represent and learn. It can be coupled with
abstraction selection [4] to select skill-specific abstractions, which can aid in acquiring policies that
are high-dimensional when represented monolithically, but can be broken into subpolicies that can
be defined over far fewer variables. Unfortunately, performing skill chaining iteratively is slow:
it creates skills sequentially, and requires several episodes to learn a new skill policy followed by
several further episodes to learn by trial and error where it can be executed successfully. While this
is reasonable for many problems, in domains where experience is expensive (such as robotics) we
require a faster method. Moreover, with the growing realization that learning policies completely
from scratch in such domains is infeasible, we may also need to bootstrap learning through a method
that provides a reasonable initial policy such as learning from demonstration [5], sequencing existing
controllers [6], using a kinematic planner, or using a feedback controller [7].

We introduce CST, a new skill acquisition method that can build skill trees (with appropriate ab-
stractions) from a set of sample solution trajectories obtained from demonstration, a planner, or a
controller. CST uses an incremental MAP changepoint detection method [8] to segment each so-
lution trajectory into skills and then merges the resulting skill chains into a skill tree. The time
complexity of CST is controlled through the use of a particle filter. We show that CST can construct
a skill tree from human demonstration trajectories in Pinball, a challenging dynamic continuous do-
main, and that the resulting skills can be refined using RL. We further show that it can be used to
segment demonstration trajectories from a mobile manipulator into chains of skills, where each skill
is assigned an appropriate abstraction.

1

2 Background

2.1 Hierarchical Reinforcement Learning and the Options Framework

The options framework [9] adds methods for hierarchical planning and learning using temporally-
extended actions to the standard RL framework. Rather than restricting the agent to selecting actions
that take a single time step to complete, it models higher-level decision making using options: ac-
tions that have their own policies and which may require multiple time steps to complete. An option,
o, consists of three components: an option policy, πo, giving the probability of executing each action
in each state in which the option is defined; an initiation set indicator function, Io, which is 1 for
states where the option can be executed and 0 elsewhere; and a termination condition, βo, giving
the probability of option execution terminating in states where the option is defined. Options can be
added to an agent’s action repertoire alongside its primitive actions, and the agent chooses when to
execute them in the same way it chooses when to execute primitive actions.

Methods for creating new options must determine when to create an option, how to define its termi-
nation condition (skill discovery), how to define its initiation set, and how to learn its policy. Given
an option reward function, policy learning can be viewed as just another RL problem. Creation and
termination are typically performed by the identification of option goal states, with an option created
to reach a goal state and then terminate. The initiation set is then the set of states from which a goal
state can be reached. Although there are many skill discovery methods for discrete domains, very
few exist for continuous domains. To the best of our knowledge (see Section 6), skill chaining [3] is
the only such method that does not make any assumptions about the domain structure.

2.2 Skill Chaining and Abstraction Selection

Skill chaining mirrors an idea present in other control fields—for example, in robotics a similar idea
is known as pre-image backchaining [10, 11], and in control for chaotic systems as adaptive targeting
[12]. Given a continuous RL problem where the policy is either too difficult to learn directly or too
complex to represent monolithically, we construct a skill tree such that we can obtain a trajectory
from every start state to a solution state by executing a sequence (or chain) of acquired skills.

This is accomplished as follows. The agent starts with an initial list of target events (regions of the
state space), T , which in most cases consists simply of the solution regions of the problem. It then
performs RL as usual to try to learn a reasonable policy for the problem. When the agent triggers
some target event, To—which occurs when it moves from a state not contained in any event in T to
one contained in To—it creates a new option, o, with the goal of reaching To. As the agent continues
to interact with the environment it learns a policy for o, and adds it to its set of available actions.
Initially, o has an initiation set that covers the whole state space. Over time, some executions of
o will succeed (the agent reaches To), and some will fail. The agent uses these states as training
examples and learns Io, the initiation set of o, using a classifier. When learning has converged, Io
is added to T as a new target event. An agent applying this method along a single trajectory will
slowly learn a chain of skills that grows backward from the task goal region towards the start region
(as depicted in Figure 1). More generally, multiple trajectories, noise in control, stochasticity in the
environment, or simple variance will result in skill trees rather than skill chains because more than
one option will be created to reach some target events. Eventually, the entire state space is covered
by acquired skills. A more detailed description can be found in Konidaris and Barto [3].

(a) (b) (c) (d)

Figure 1: An agent creates options using skill chaining. (a) First, the agent encounters a target
event and creates an option to reach it. (b) Entering the initiation set of this first option triggers the
creation of a second option whose target is the initiation set of the first option. (c) Finally, after many
trajectories the agent has created a chain of options to reach the original target. (d) When multiple
options are created to target an initiation set, the chain splits and the agent creates a skill tree.

2

The major advantage of skill chaining is that it provides a mechanism for the agent to adaptively
represent a complex policy using a collection of simpler policies. We can take this further and allow
each individual option policy to use its own state abstraction. In this way, we may be able to represent
high-dimensional policies using component policies that are low-dimensional (and therefore feasible
to learn). For example, a complex policy like driving to school in the morning, that requires far too
many features to be easily represented monolithically, may be broken into component tasks (such
as walking to the car, opening the door, inserting the key, etc.) that do not. Abstraction selection
[4] is a simple mechanism for achieving this. Given a library of possible abstractions, and a set of
sample trajectories (as, for example, obtained when initially learning an option policy), abstraction
selection finds the abstraction best able to represent the value function inferred from the sample
trajectories. It can be combined with skill chaining to learn a skill tree where each skill has its own
abstraction; in such cases, the initiation set of each skill will be restricted to states where its policy
can be well-represented using its abstraction.

2.3 Changepoint Detection

Skill chaining learns a segmented policy by creating a new option when either the most suitable
abstraction changes, or the value function (and therefore policy) becomes too complex to represent
with a single option. We would like to segment an entire trajectory at once; the question then
becomes: how many options exist along it, and where do they begin and end? This can be modeled
as a multiple changepoint detection problem [8]. In this setting, we are given observed data and a
set of candidate models. The data are segmented such that the data within a segment are generated
by a single model. We are to infer the number of changepoints and their positions, and select and fit
an appropriate model for each segment. Figure 2 shows a simple example.

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

Figure 2: Data with multiple segments. The observed data (left) are generated by three different
models (solid line, changepoints shown using dashed lines, right) plus noise. The first and third
segments are generated by linear models, whereas the second is quadratic.

Unlike the standard regression setting, in RL our data is sequentially but not necessarily spatially
segmented, and we would like to perform changepoint detection online—processing transitions as
they occur and then discarding them. Fearnhead and Liu [8] introduced online algorithms for both
Bayesian and MAP changepoint detection; we use the simpler method that obtains the MAP change-
points and models via an online Viterbi algorithm.

The changepoint process is implemented as follows. We observe data tuples (xt, yt), for times
t ∈ [1, T], and are given a set of models Q with prior p(q ∈ Q). We model the marginal probability
of a segment length l with PMF g(l) and CDF G(l) =

∑l
i=1 g(i). Finally, we assume that we

can fit a segment from time j + 1 to t using model q to obtain the probability of the data P (j, t, q)
conditioned on q.

This results in a Hidden Markov Model where the hidden state at time t is the model qt and the
observed data is yt given xt. The hidden state transition probability from time i to time j with
model q is given by g(j − i− 1)p(q) (reflecting the probability of a segment of length j − i− 1 and
the prior for q). The probability of an observed data segment starting at time i + 1 and continuing
through j using q is P (i, j, q)(1−G(j − i− 1)), reflecting the fit probability and the probability of
a segment of at least j− i− 1 steps. Note that a transition between two instances of the same model
(but with different parameters) is possible. We can thus use an online Viterbi algorithm to compute
Pt(j, q), the probability of the changepoint previous to time t occuring at time j using model q:

Pt(j, q) = (1−G(t− j − 1))P (j, t, q)p(q)PMAP
j , and (1)

3

PMAP
j = max

i,q

Pj(i, q)g(j − i)
1−G(j − i− 1)

,∀j < t. (2)

At time j, the i and q maximizing Equation 2 are the MAP changepoint position and model for the
current segment, respectively. We then perform this procedure for time i, repeating until we reach
time 1, to obtain the changepoints and models for the entire sequence.

Thus, at each time step t we compute Pt(j, q) for each model q and changepoint time j < t (using
PMAP

j) and then compute PMAP
t and store it.1 This requires O(T) storage and O(TL|Q|) time

per timestep, where L is the time required to compute P (j, t, q). We can reduce L to a constant for
most models of interest by storing a small sufficient statistic and updating it incrementally in time
independent of t, obtaining P (j, t, q) from P (j, t−1, q). In addition, since most Pt(j, q) values will
be close to zero, we can employ a particle filter to discard most combinations of j and q and retain
a constant number per timestep. Each particle then stores j, q, PMAP

j , sufficient statistics and its
Viterbi path. We use the Stratified Optimal Resampling algorithm of Fearnhead and Liu [8] to filter
down to M particles whenever the number of particles reaches N . This results in a time complexity
of O(NL) and storage complexity of O(Nc), where there are O(c) changepoints in the data.

3 Constructing Skill Trees from Sample Trajectories

We propose using changepoint detection to segment sample trajectories into skills, using return Rt

(sum of discounted reward) as the target variable. This provides an intuitive mapping to RL since
a value function is simply an estimator of return; segmentation based on return thus provides a
natural way to segment the value function implied by a trajectory into simpler value functions, or
to detect a change in model (and therefore abstraction). To do so, we must select an appropriate
model of expected skill (segment) length, and an appropriate model for fitting the data. We assume
a geometric distribution for skill lengths with parameter p, so that g(l) = (1 − p)l−1p and G(l) =
(1− (1− p)l). This gives us a natural way to set p since p = 1

k , where k is the expected skill length.

Since RL in continuous state spaces usually employs linear function approximation, it is natural to
use a linear regression model with Gaussian noise as our model of the data. Following Fearnhead
and Liu [8], we assume conjugate priors: the Gaussian noise prior has mean zero, and variance with
inverse gamma prior with parameters v

2 and u
2 . The prior for each weight is a zero-mean Gaussian

with variance σ2δ. Integrating the likelihood function over the parameters obtains:

P (j, t, q) =
π−

n
2

δm
|(A + D)−1| 12 u

v
2

(y + u)
n+v

2

Γ(n+v
2)

Γ(v
2)

, (3)

where n = t − j, q has m basis functions, Γ is the Gamma function, D is an m by m matrix with
δ−1 on the diagonal and zeros elsewhere, and:

A =
t∑

i=j

Φ(xi)Φ(xi)T y = (
t∑

i=j

R2
i)− bT (A + D)−1b, (4)

where Φ(xi) is a vector of m basis functions evaluated at state xi, Ri =
∑T

j=i γ
j−irj is the return

obtained from state i, and b =
∑t

i=j RiΦ(xi).

Note that we are using each Rt as the target regression variable in this formulation, even though we
only observe rt for each state. However, to compute Equation 3 we need only retain sufficient statis-
tics A, b and (

∑t
i=j R

2
i). Each can be updated incrementally using rt (the latter two using traces).

Thus, the sufficient statistics required to obtain the fit probability can be computed incrementally
and online at each timestep, without requiring any transition data to be stored. Furthermore, A and
b are the same matrices used for performing a least-squares fit to the data using Rt as the regression
target. They can thus be used to produce a value function fit (equivalent to a least-squares Monte
Carlo estimate) for the skill segment if so desired; again, without the need to store the trajectory.

Using this model we can segment a single trajectory into a skill chain; given multiple skill chains
from different trajectories, we would like to merge them into a skill tree. We merge two trajectory

1In practice all equations are computed in log form to ensure numerical stability.

4

segments by assigning them to the same skill (rather than two distinct skills). Since we wish to
build skills that can be sequentially executed, we can only consider merging two segments when
they have the same target—which means that the segments immediately following each of them
have been merged. Since we assume that all trajectories have the same final goal, we merge two
chains by starting at their final skill segments. For each pair of segments, we determine whether or
not they are a good statistical match, and if so merging them, repeating this process until we fail to
merge a pair of skill segments, after which the remaining skill chains branch off on their own. Since
P (j, t, q) as defined in Equation 3 is the integration over the likelihood function of our model given
segment data, we can reuse it as a measure of whether a pair of trajectories are better modeled as
one skill (where we simply sum their sufficient statistics), or as two separate skills (forming new
sufficient statistics using two groups of basis functions, each of which is zero over the other’s data
segments). Before merging, we perform a fast test to ensure that the trajectory pairs actually overlap
in state space—if they do not, we will often be able to represent them both simultaneously with low
error and hence our metric may incorrectly suggest a merge.

Segmenting a sample trajectory should be performed using a lower-order function approximator
than that used for policy learning, since we see merely a single trajectory sample rather than a
dense sample over the state space. However, merging should be performed using the same function
approximator used for learning. This necessitates the maintenance of two sets of sufficient statistics
during segmentation; fortunately, the majority of time is consumed computing P (j, t, q), which
during segmentation is only required using the lower-order approximator.

If we are to merge skills obtained over multiple trajectories into trees, we require the component
skills to be aligned, meaning that the changepoints occur in roughly the same places. This will occur
naturally in domains where changepoints are primarily caused by a change in relevant abstraction.
When this is not the case, they may vary since segmentation is then based on function approximation
boundaries, and hence two trajectories segmented independently may be poorly aligned. Therefore,
when segmenting two trajectories sequentially in anticipation of a merge, we may wish to include
a bias on changepoint locations in the second trajectory. We model this bias as a Mixture of Gaus-
sians, centering an isotropic Gaussian at each location in state-space where a changepoint previously
occurred. We can include this bias during changepoint detection by multiplying Equation 1 with the
resulting PDF evaluated at the current state.

4 Acquiring Skills from Human Demonstration in the PinBall Domain

The Pinball domain is a continuous domain with dynamic aspects, sharp discontinuities, and ex-
tended control characteristics that make it difficult for control and function approximation.2 Previ-
ous experiments have shown that skill chaining is able to find a very good policy while flat learning
finds a poor solution [3]. In this section, we evaluate the performance benefits obtained using a skill
tree generated from a pair of human-provided solution trajectories.

The goal of PinBall is to maneuver the small ball (which starts in one of two places) into the large
red hole. The ball is dynamic (drag coefficient 0.995), so its state is described by four variables: x,
y, ẋ and ẏ. Collisions with obstacles are fully elastic and cause the ball to bounce, so rather than
merely avoiding obstacles the agent may choose to use them to efficiently reach the hole. There
are five primitive actions: incrementing or decrementing ẋ or ẏ by a small amount (which incurs
a reward of −5 per action), or leaving them unchanged (which incurs a reward of −1 per action);
reaching the goal obtains a reward of 10, 000. We use the Pinball domain instance shown in Figure 3
with 5 pairs (one trajectory in each pair for each start state) of human demonstration trajectories.

4.1 Implementation Details

Overall task learning for both standard and option-learning agents used linear FA Sarsa (γ = 1, ε =
0.01) using a 5th-order Fourier basis [13] with α = 0.0005. Option policy learning used Q-learning
(αo = 0.0005, γ = 1, ε = 0.01) with a 3rd-order Fourier basis. Initiation sets were learned using
logistic regression using 2nd order polynomial features with learning rate η = 0.1 and 100 sweeps
per new data point. Other parameters were as in Konidaris and Barto [3].

2Java source code for Pinball can be downloaded at http://www-all.cs.umass.edu/̃ gdk/pinball

5

CST used an expected skill length of 100, δ = 0.0001, particle filter parameters N = 30 and M =
50, and a first-order Fourier Basis (16 basis functions). After segmenting the first trajectory we used
isotropic Gaussians with variance 0.52 to bias the segmentation of the second. The full 3rd-order
Fourier basis representation was used for merging. To obtain a fair comparison to skill chaining,
we initialized the CST skill policies using 10 episodes of experience replay of the demonstrated
trajectories, rather than using the sufficient statistics to perform a least-squares value function fit.

4.2 Results

Trajectory segmentation was successful for all demonstration trajectories, and all pairs were merged
successfully into skill trees when the alignment bias was used to segment the second trajectory in
the pair (two of the five could not be merged due to misalignments when the bias was not used).
Example segmentations and the resulting merged trajectories are shown in Figure 3.

(a) (b) (c) (d)

Figure 3: The Pinball instance used in our experiment (a), along with segmented skill chains from a
pair of sample solution trajectories (b and c), and the assignments obtained when the two chains are
merged (d).

20 40 60 80 100 120 140
−20

−15

−10

−5

0

5
x 10

4

Episodes

R
et

ur
n

Pre−learned
Skill Chaining
Skill Tree

Figure 4: Learning curves in the PinBall domain, for agents employing skill trees created from
demonstration trajectories, skill chaining agents, and agents starting with pre-learned skills.

The learning curves obtained using the resulting skill trees to RL agents are shown in Figure 4. These
results compare the learning curves of CST agents, agents that perform skill chaining from scratch,
and agents that are given fully pre-learned skills (obtained over 250 episodes of skill chaining). They
show that the CST policies are not good enough to use immediately, as the agents do worse than
those given pre-learned skills for the first few episodes. However, very shortly thereafter the CST
agents are able to learn excellent policies—immediately performing much better than skill chaining
agents, and shortly thereafter even exceeding the performance of agents with pre-learned skills. This
is likely because the skill tree structure obtained from demonstration has fewer but better skills than
that learned incrementally by skill chaining agents.

In addition, segmenting demonstration trajectories into skills results in much faster learning than
attempting to acquire the entire policy by demonstration at once. The learning curve for agents
that first perform experience replay on the overall task value function and then proceed using skill
chaining (not shown) is virtually identical to that of agents performing skill chaining from scratch.

6

5 Acquiring Skills from Human Demonstration on the uBot

In this section we show that CST is able to create skill chains and select appropriate abstractions for
each skill from human demonstration on the uBot-5, a dynamically balancing mobile manipulator.
Demonstration trajectories are obtained from an expert human operator, controlling the uBot as it
enters a corridor, approaches a door, pushes the door open, turns right into a new corridor, and finally
approaches and pushes on a panel (illustrated in Figure 5).

(a) (b) (c) (d)

Figure 5: Starting at the beginning of a corridor (a), the uBot must approach and push open a door
(b), turn through the doorway (c), then approach and push a panel (d).

To simplify perception, the uBot uses colored purple, orange and yellow circles placed on the door
and panel, beginning of the back wall, and middle of the back wall, respectively, as perceptually
salient markers indicating the centroid of each object. The distances (obtained using stereo vision)
between the uBot and each marker are computed at 8Hz and filtered. The uBot is able to engage
one of two motor abstractions at a time: either performing end-point position control of its hand,
or controlling the speed and angle of its forward motion. Thus, we constructed six sensorimotor
abstractions, each containing either the differences between the arm endpoint position and marker
position, or the distance to and angle between the robot’s torso and the object. We assume a reward
function of −1 every 10th of a second.

Abstraction Description Trajectories
Required

a torso-purple Drive to door. 2
b endpoint-purple Open door. 1
c torso-orange Drive toward wall. 1
d torso-yellow Turn. 2
e torso-purple Drive to panel. 1
f endpoint-purple Press panel. 3

Figure 6: A demonstration trajectory segmented into skills, each with an appropriate abstraction.

We gathered 12 demonstration trajectories from the uBot, of which 3 had to be discarded because
the perceptual features were too noisy. Of the remaining 9, all segmented sensibly and 8 were able to
be merged into a single skill chain. An example segmentation corresponding to this chain is shown
in Figure 6 along with the abstractions selected, a brief description of each skill segment, and the
number of sample trajectories required before the skill policy (learned using ridge regression with a
5th order Fourier basis) could be replayed successfully 9 times out of 10. This shows that CST is
able to segment trajectories obtained from a robot platform, select an appropriate abstraction in each
case, and then replay the resulting policies using a small number of sample trajectories.

6 Related Work

Several methods exist for skill discovery in discrete reinforcement learning domains; the most recent
relevant work is by Mehta et al. [14], which induces task hierarchies from demonstration trajectories

7

in discrete domains, but assumes a factored MDP with given dynamic Bayes network action models.
By contrast, we know of very little work on skill acquisition in continuous domains where the skills
or action hierarchy are not designed in advance. Mugan and Kuipers [15] use learned qualitatively-
discretized factored models of a continuous state space to derive options, which is only feasible and
appropriate in some settings. In Neumann et al. [16], an agent learns to solve a complex task by
sequencing task-specific parametrized motion templates. Finally, Tedrake [17] builds a similar tree
to ours in the model-based control setting.

A sequence of policies represented using linear function approximators may be considered a switch-
ing linear dynamical system. Methods exist for learning such systems from data [18, 19]; these
methods are able to handle multivariate target variables and models that repeat in the sequence.
However, they are consequently more complex and computationally intensive than the much simpler
changepoint detection method we use, and they have not been used in the context of skill acquisition.

A great deal of work exists in robotics under the general heading of learning from demonstration [5],
where control policies are learned using sample trajectories obtained from a human, robot demon-
strator, or a planner. Most methods learn an entire single policy from data, although some perform
segmentation—for example, Jenkins and Matarić [20] segment demonstrated data into motion prim-
itives, and thereby build a motion primitive library. They perform segmentation using a heuristic
specific to human-like kinematic motions; more recent work has used more principled statistical
methods [21, 22] to segment the data into multiple models as a way to avoid perceptual aliasing in
the policy. Other methods use demonstration to provide an initial policy that is then refined using
reinforcement learning (e.g., Peters and Schaal [23]). Prior to our work, we know of no existing
method that both performs trajectory segmentation and results in motion primitives suitable for fur-
ther learning.

7 Discussion and Conclusions

CST makes several key assumptions. The first is that the demonstrated skills form a tree, when in
some cases they may form a more general graph (e.g., when the demonstrated policy has a loop).
A straightforward modification of the procedure to merge skill chains could accommodate such
cases. We also assume that the domain reward function is known and that each option reward can be
obtained from it by adding in a termination reward. A method for using inferred reward functions
(e.g., Abbeel and Ng [24]) could be incorporated into our method when this is not true. However,
this requires segmentation based on policy rather than value function, since rewards are not given
at demonstration time. Because policies are usually multivariate, this would require a multivariate
changepoint detection algorithm, such as that by Xuan and Murphy [18]. Finally, we assume that
the best model for combining a pair of skills is the model selected for representing both individually.
This may not always hold—two skills best represented individually by one model may be better
represented together using another (perhaps more general) one. Since the correct abstraction would
presumably be at least competitive during segmentation, such cases can be resolved by considering
segmentations other than the final MAP solution when merging.

Segmenting demonstration trajectories into skills has several advantages. Each skill is allocated its
own abstraction, and therefore can be learned and represented efficiently—potentially allowing us
to learn higher dimensional, extended policies. During learning, an unsuccessful or partial episode
can still improve skills whose goals where nevertheless reached. Confidence-based learning meth-
ods [25] can be applied to each skill individually. Finally, skills learned using agent-centric features
(such as in our uBot example) can be transferred to new problems [26], and thereby detached from a
problem-specific setting to be more generally useful. Taken together, these advantages, in conjunc-
tion with the application of CST to bootstrap skill policy acquisition, may prove crucial to scaling
up policy learning methods to high-dimensional, continuous domains.

Acknowledgements

We would like to thank Dan Xie and Dirk Ruiken for their invaluable help with the uBot, and
Phil Thomas and Brenna Argall for useful discussions. Andrew Barto and George Konidaris were
supported by the Air Force Office of Scientific Research under grant FA9550-08-1-0418. Scott
Kuindersma is supported by a NASA GSRP fellowship.

8

References
[1] A.G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event

Dynamic Systems, 13:41–77, 2003. Special Issue on Reinforcement Learning.
[2] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA,

1998.
[3] G.D. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning domains using skill

chaining. In Advances in Neural Information Processing Systems 22, pages 1015–1023, 2009.
[4] G.D. Konidaris and A.G. Barto. Efficient skill learning using abstraction selection. In Proceedings of the

Twenty First International Joint Conference on Artificial Intelligence, July 2009.
[5] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.

Robotics and Autonomous Systems, 57:469–483, 2009.
[6] M. Huber and R.A. Grupen. A feedback control structure for on-line learning tasks. Robotics and Au-

tonomous Systems, 22(3-4):303–315, 1997.
[7] M. Rosenstein and A.G. Barto. Supervised actor-critic reinforcement learning. In J. Si, A.G. Barto,

A. Powell, and D. Wunsch, editors, Learning and Approximate Dynamic Programming: Scaling up the
Real World, pages 359–380. John Wiley & Sons, Inc., New York, 2004.

[8] P. Fearnhead and Z. Liu. On-line inference for multiple changepoint problems. Journal of the Royal
Statistical Society B, 69:589–605, 2007.

[9] R.S. Sutton, D. Precup, and S.P. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.

[10] T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Automatic synthesis of fine-motion strategies for robots.
The International Journal of Robotics Research, 3(1):3–24, 1984.

[11] R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of dynamically dextrous robot
behaviors. International Journal of Robotics Research, 18(6):534–555, 1999.

[12] S. Boccaletti, A. Farini, E.J. Kostelich, and F.T. Arecchi. Adaptive targeting of chaos. Physical Review
E, 55(5):4845–4848, 1997.

[13] G.D. Konidaris and S. Osentoski. Value function approximation in reinforcement learning using the
Fourier basis. Technical Report UM-CS-2008-19, Department of Computer Science, University of Mas-
sachusetts Amherst, June 2008.

[14] N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer of MAXQ hierarchies.
In Proceedings of the Twenty Fifth International Conference on Machine Learning, pages 648–655, 2008.

[15] J. Mugan and B. Kuipers. Autonomously learning an action hierarchy using a learned qualitative state
representation. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, 2009.

[16] G. Neumann, W. Maass, and J. Peters. Learning complex motions by sequencing simpler motion tem-
plates. In Proceedings of the 26th International Conference on Machine Learning, 2009.

[17] R. Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees. In Proceedings of
Robotics: Science and Systems, pages 18–24, 2009.

[18] X. Xuan and K. Murphy. Modeling changing dependency structure in multivariate time series. In Pro-
ceedings of the Twenty-Fourth International Conference on Machine Learning, 2007.

[19] E.B. Fox, E.B. Sudderth, M.I. Jordan, and A.S. Willsky. Nonparametric Bayesian learning of switching
linear dynamical systems. In Advances in Neural Information Processing Systems 21, 2008.

[20] O.C. Jenkins and M. Matarić. Performance-derived behavior vocabularies: data-driven acquisition of
skills from motion. International Journal of Humanoid Robotics, 1(2):237–288, 2004.

[21] D.H. Grollman and O.C. Jenkins. Incremental learning of subtasks from unsegmented demonstration. In
International Conference on Intelligent Robots and Systems, 2010.

[22] J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins. Learning from demonstration using a multi-valued
function regressor for time-series data. In Proceedings of the Tenth IEEE-RAS International Conference
on Humanoid Robots, 2010.

[23] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.
[24] P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of

the 21st International Conference on Machine Learning, 2004.
[25] S. Chernova and M. Veloso. Confidence-based policy learning from demonstration using Gaussian mix-

ture models. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multi-
agent Systems, 2007.

[26] G.D. Konidaris and A.G. Barto. Building portable options: Skill transfer in reinforcement learning. In
Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, 2007.

9

