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Abstract

In this paper, we point out that there exist scaling and initialization problems in
most existing multiple kernel learning (MKL) approaches, which employ the large
margin principle to jointly learn both a kernel and an SVM classifier. The reason
is that the margin itself can not well describe how good a kernel is due to the
negligence of the scaling. We use the ratio between the margin and the radius
of the minimum enclosing ball to measure the goodness of a kernel, and present a
new minimization formulation for kernel learning. This formulation is invariant to
scalings of learned kernels, and when learning linear combination of basis kernels
it is also invariant to scalings of basis kernels and to the types (e.g., Ly or Lg) of
norm constraints on combination coefficients. We establish the differentiability of
our formulation, and propose a gradient projection algorithm for kernel learning.
Experiments show that our method significantly outperforms both SVM with the
uniform combination of basis kernels and other state-of-art MKL approaches.

1 Introduction

In the past years, kernel methods, like support vector machines (SVM), have achieved great success
in many learning problems, such as classification and regression. For such tasks, the performance
strongly depends on the choice of the kernels used. A good kernel function, which implicitly char-
acterizes a suitable transformation of input data, can greatly benefit the accuracy of the predictor.
However, when there are many available kernels, it is difficult for the user to pick out a suitable one.

Kernel learning has been developed to jointly learn both a kernel function and an SVM classifier.
Chapelle et al. [1] present several principles to tune parameters in kernel functions. In particular,
when the learned kernel is restricted to be a linear combination of multiple basis kernels, the prob-
lem of learning the combination coefficients as well as an SVM classifier is usually called multiple
kernel learning (MKL). Lanckriet et al. [2] formulate the MKL problem as a quadratically con-
strained quadratic programming problem, which implicitly uses an L; norm constraint to promote
sparse combinations. To enhance the computational efficiency, different approaches for solving this
MKL problem have been proposed using SMO-like strategies [3], semi-infinite linear program [4],
gradient-based methods [5], and second-order optimization [6]. Some other subsequent work ex-
plores more generality of multiple kernel learning by promoting non-sparse [7, 8] or group-sparse
[9] combinations of basis kernels, or using other forms of learned kernels, e.g., a combination of an
exponential number of kernels [10] or nonlinear combinations [11, 12, 13].

Most existing MKL approaches employ the objective function used in SVM. With an acceptable
empirical loss, they aim to find the kernel which leads to the largest margin of the SVM classi-
fier. However, despite the substantial progress in both the algorithmic design and the theoretical
understanding for the MKL problem, none of the approaches seems to reliably outperform baseline



methods, like SVM with the uniform combination of basis kernels [13]. As will be shown in this
paper, the large margin principle used in these methods causes the scaling problem and the initializa-
tion problem, which can strongly affect final solutions of learned kernels as well as performances.
It implicates that the large margin preference can not reliably result in a good kernel, and thus the
margin itself is not a suitable measure of the goodness of a kernel.

Motivated by the generalization bounds for SVM and kernel learning, we use the ratio between
the margin of the SVM classifier and the radius of the minimum enclosing ball (MEB) of data in
the feature space endowed with the learned kernel as a measure of the goodness of the kernel, and
propose a new kernel learning formulation. Our formulation differs from the radius-based principle
by Chapelle et al. [1]. Their principle is sensitive to kernel scalings when a nonzero empirical loss
is allowed, also causing the same problems as the margin-based formulations. We prove that our
formulation is invariant to scalings of learned kernels, and also invariant to initial scalings of basis
kernels and to the types (e.g., L1 or Lg) of norm constraints on kernel parameters for the MKL
problem. Therefore our formulation completely addresses the scaling and initialization problems.
Experiments show that our approach gives significant performance improvements both over SVM
with the uniform combination of basis kernels and over other state-of-art kernel learning methods.

Our proposed kernel learning problem can be reformulated to a tri-level optimization problem. We
establish the differentiability of a general family of multilevel optimization problems. This enables
us to generally tackle the radius of the minimal enclosing ball, or other complicated optimal value
functions, in the kernel learning framework by simple gradient-based methods. We hope that our
results will also benefit other learning problems.

The paper is structured as follows. Section 2 shows problems in previous MKL formulations. In
Section 3 we present a new kernel learning formulation and give discussions. Then, we study the
differentiability of multilevel optimization problems and give an efficient algorithm in Section 4 and
Section 5, respectively. Experiments are shown in Section 6. Finally, we close with a conclusion.

2 Measuring how good a kernel is

Let D = {(z1,y1) .- (Tn, yn)} denote a training set of n pairs of input points z; € X" and target
labels y; € {+1}. Suppose we have a kernel family £ = {k : X x X — R}, in which any kernel
function & implicitly defines a transformation ¢(+; k) from the input space X to a feature space by
k(xe,zq) = (¢(xe; k), d(xq; k)). Let a classifier be linear in the feature space endowed with k, as

flz;w,b,k) = (¢(x; k), w) +b, (D
the sign of which is used to classify data. The task of kernel learning (for binary classification) is to
learn both a kernel function k£ € K and a classifier w and b.

To make the problem trackable, the learned kernel is usually restricted to a parametric form (%) (,)s
where 6 = [6;]; is the kernel parameter. Then the problem of learning a kernel transfers to the prob-
lem of learning a kernel parameter . The most common used kernel form is a linear combination
of multiple basis kernels, as

k(a)('a )= Z;nzl ‘9.7kj('7 ), 0; = 0. 2
2.1 Problems in multiple kernel learning

Most existing MKL approaches, e.g., [2, 4, 5], employ the equivalent objective function as in SVM:

ming 4 p.¢; %||w||2 +C> &, st yif(ziwbk)+&>1,& >0, 3)

where &; is the hinge loss. This problem can be reformulated to
miny : G(k), 4)
where é(k}) = miny, p ¢, %||w||2 +CY &, st yif(zw,bk)+&>1,6 >0. ®)

For any kernel k, the optimal classifier w and b is actually the SVM classifier with the kernel k. Let v
denote the margin of the SVM classifier in the feature space endowed with k. We have =2 = ||w||2.
Thus the term ||w||? makes formulation (3) prefer the kernel that results in an SVM classifier with a
larger margin (as well as an acceptable empirical loss). Here, a natural question is that for different
kernels whether the margins of SVM classifiers can well measure the goodness of the kernels.



To answer this question, we consider what happens when a kernel k is enlarged by a scalar a:
k™" = ak, where a > 1. The corresponding transformations satisfy ¢(-; k") = v/a¢(-; k). For
k, let {w*,b*} denote the optimal solution of (5). For k™%, we set wy = wj/+/a and by = b7,
then we have [|wz||? = ||w}]|?/a, and f(z; w2, ba, k™*) and f(z;w}, bi, k) are the same classifier,
resulting in the same ;. Then we obtain: G(ak) = G(k"") < Fllws|? + C Y, & < |Jwill> +
CY & = G (k), which means the enlarged kernel gives a larger margin and a smaller objective
value. As a consequence, on one hand, the large margin preference guides the scaling of the learned
kernel to be as large as possible. On the other hand, any kernel, even the one resulting in a bad
performance, can give an arbitrarily large margin by enlarging its scaling. This problem is called the
scaling problem. It shows that the margin is not a suitable measure of the goodness of a kernel.

In the linear combination case, the scaling problem causes that the kernel parameter 6 does not
converge in the optimization. A remedy is to use a norm constraint on . However, it has been
shown in recent literature [7, 9] that different types of norm constraints fit different data sets. So
users face the difficulty of choosing a suitable norm constraint. Even after a norm constraint is
selected, the scaling problem also causes another problem about the initialization. Consider an L
norm constraint and a learned kernel which is a combination of two basis kernels, as

EO(,) =01ki(,) + O2ka(-,-), 01,02 >0, 61+6=1. (6)
To leave the empirical loss out of consideration, assume: (a) both k; and k5 can lead to zero em-
pirical loss, (b) k1 results in a larger margin than k,. For simplicity, we further restrict 67 and 65
to be equal to 0 or 1, to enable kernel selection. The MKL formulation (3), of course, will choose
ky from {k1, ko} due to the large margin preference. Then we set K}V (-,-) = akq(-,-), where a
is a small scalar to make that k" has a smaller margin than ky. After k7°V substitutes for k1, the
MKL formulation (3) will select ko from {k]%, ko }. The example shows that the final solution can
be greatly affected by the initial scalings of basis kernels, although a norm constraint is used. This
problem is called the initialization problem. When the MKL framework is extended from the linear
combination cases to the nonlinear cases, the scaling problem becomes more serious, as even a finite
scaling of the learned kernel may not be generally guaranteed by a simple norm constraint on kernel
parameters for some kernel forms. These problems implicate that the margin itself is not enough to
measure the goodness of kernels.

2.2 Measuring the goodness of kernels with the radiuses of MEB

Now we need to find a more reasonable way to measure the goodness of kernels. Below we in-
troduce the generalization error bounds for SVM and kernel learning, which inspire us to con-
sider the minimum enclosing ball to learn a kernel. For SVM with a fixed kernel, it is well
known that the estimation error, which denotes the gap between the expected error and the em-
pirical error, is bounded by /O(R?vy~2)/n, where R is the radius of the minimum enclosing
ball (MEB) of data in the feature space endowed with the kernel used. For SVM with a ker-
nel learned from a kernel family K, if we restrict that the radius of the minimum enclosing ball
in the feature space endowed with the learned kernel to be no larger than R, then the theoret-
ical results of Srebro and Ben-David [14] say: for any fixed margin v > 0 and any fixed ra-
dius R > 0, with probability at least 1 — § over a training set of size n, the estimation error is

no larger than %(2 + dg log % + 256{3—22 log 7 log U%Rz —log ). Scalar dy denotes
the pseudodimension [14] of the kernel family K. For example, dg of linear combination ker-
nels is no larger than the number of basis kernels, and dg of the Gaussian kernels with a form of

EO) (22, 2b) = e 0l=" =2"I” is no larger than 1 (See [14] for more details). The above results clearly
state that the generalization error bounds for SVM with both fixed kernels and learned kernels de-
pend on the ratio between the margin v and the radius R of the minimum enclosing ball of data.
Although some new results of the generalization bounds for kernel learning, like [15], give different
types of dependencies on dg, they also rely on the margin-and-radius ratio.

In SVM with a fixed kernel, the radius R is a constant and we can safely minimize ||w]||? (as well as
the empirical loss). However, in kernel learning, the radius R changes drastically from one kernel
to another (An example is given in the supplemental materials: when we uniformly combine p basis
kernels by kynir = ?:1 %kj, the squared radius becomes only zl) of the squared radius of each basis
kernel.). Thus we should also take the radius into account. As a result, we use the ratio between the
margin v and the radius R to measure how good a kernel is for kernel learning.



Given any kernel k, the radius of the minimum enclosing ball, denoted by R(k), can be obtained by:
R%*(k) =miny . y, s.t. y>|o(zik)—c|? (7

This problem is a convex minimization problem, being equivalent to its dual problem, as
R2(k) = maxg, » .0ik(xi, ;) — Zi’jﬂik(xi,x]—)ﬂj, st. >, Bi=1, 5 >0, )
which shows a property of R?(k): for any kernel k and any scalar a >0, we have R?(ak) = aR?(k).

3 Learning kernels with the radiuses

Considering the ratio between the margin and the radius of MEB, we propose a new formulation, as
ming . pe, 3 R2R)w]?+CX &, st yi((o(zik),w) +b) +&>1, & >0, (9)

where R?(k)||w]||? is a radius-based regularizer that prefers a large ratio between the margin and the
radius, and ), & is the hinge loss which is an upper bound of empirical misclassified error. This
optimization problem is called radius based kernel learning problem, referred to as RKL.

Chapelle et al. [1] also utilize the radius of MEB to tune kernel parameters for hard margin SVM.
Our formulation (9) is equivalent to theirs if &; is restricted to be zero. To give a soft margin version,
they modify the kernel matrix K (¢) = K (6) + &1, resulting in a formulation equivalent to:

ymin, 5 RO w]? + CRA(K) 32, €8, st yi((@(wis k), w) +b) + & 2 1, & 2 0.(10)
The function RQ(k(e)) in the second term, which may become small, makes that minimizing the
objective function can not reliably give a small empirical loss, even when C' is large. Besides, when
we reduce the scaling of a kernel by multiplying it with a small scalar a and substitute w0 = w/\/a
for w to keep the same &;, the objective function always decreases (due to the decrease of R? in
the empirical loss term), still leading to scaling problems. Do et al. [16] recently propose to learn a
linear kernel combination, as defined in (2), through

w 4 2
egjnilg% > I QJJ.H + ngﬁgz(kj) D287 sty (wy, dlais ky)) +b) + & > 1, & > 0. (1)

Their objective function also can be always decreased by multiplying 6 with a large scalar. Thus
their method does not address the scaling problem, also resulting in the initialization problem. If we
initially adjust the scalings of basis kernels to make each R(k;) be equal to each other, then their for-
mulation is equivalent to the margin-based formulation (3). Different from the above formulations,
our formulation (9) is invariant to scalings of kernels.

3.1 Invariance to scalings of kernels

Now we discuss the properties of formulation (9). The RKL problem can be reformulated to
ming G(k), (12)
where G(k) = Hgfgl sREB)|lwll® + C Y &, st yi((p(as k), w) +0) + & > 1, & > 0. (13)

Functional G(k) defines a measure of the goodness of kernel functions, which consider a trade-off
between the margin-and-radius ratio and the empirical loss. This functional is invariant to the scaling
of k, as stated by the following proposition.

Proposition 1. For any kernel k and any scalar a > 0, equation G(ak) = G(k) holds.

Proof. For the scaled kernel ak, equation R?(ak) = aR?(k) holds. Thereby, we get
G(ak) = miny pg, $R?(B)l|lw]* + C3Z; &, st yi((Vad(zs k), w) +b) + & = 1, & > 0.(14)

Let % =w replace w in (14), and then (14) becomes equivalent to (13). Thus G(ak)=G(k). O

For a parametric kernel form (%), the RKL problem transfers to minimizing a function g(#) =
G(k'9)). Here we temporarily focus on the linear combination case defined by (2), and use gjinear(6)
to denote g(f) in such case. Due to the scaling invariance, for any 6 and any @ > 0, we have
Qlincar (@0) = Glinear (). It makes the problem of minimizing ginear(#) be invariant to the types of
norm constraints on 6, as stated in the following.



Proposition 2. Given any norm definition N () and any set S C R, suppose there exists ¢ > 0
that satisfies ¢ € S. Let (a) denote the problem of minimizing incar(0) s.t. 6; > 0, and (b) denote
the problem of minimizing giinear(0) s.t. 0; > 0 and N'(0) € S. Then we have: (1) For any local
(global) optimal solution of (a), denoted by 6, %6‘“ is also the local (global) optimal solution
of (b). (2) For any local (global) optimal solution of (b), denoted by 6°, 8° is also the local (global)
optimal solution of (a).

Proof. The complete proof is given in the the supplemental materials. Here we only prove the
equivalence of global optimal solutions of (a) and (b). On one hand, if 8¢ is the global optimal
solution of (a), then for any 6 that satisfies §; > 0 and N (0) € S, we have glincar(ﬁga) =
Glinear (0%) < g(0). Due to N(Wmea) =c €S, zg¥" also satisfies the constraint of (b),
and thus ﬁ@“ is the global optimal solution of (b). On the other hand, for any 6 (6; > 0),
ghnear(ﬁe) = Qlinear(6) due to the scaling invariance. If #° is the global optimal solution of (b),
then for any 6 (9; > 0), as /\%0)9 satisfies the constraint of (b), we have glinear (0°) < glinear( ﬁ 0),
giving grinear (0°) < Glinear (8). Thus #° is the global optimal solution of (a). O

As the problems of minimizing ginear(¢) under different types of norm constraints on 6 are all
equivalent to the same problem without any norm constraint, they are equivalent to each other. Based
on the above proposition, we can also get the another conclusion: in the linear combination case the
minimization problem (12) is also invariant to the initial scalings of basis kernels (see below).

Proposition 3. Let k; denote basis kernels, and a; > 0 be initial scaling coefficients of basis kernels.
Give a norm constraint N'(0) €S, which is by the same definition as in Proposition 2. Let (a) denote
the problem of minimizing G (3_; 0;k;) w.rt. 6 s.t. ;>0 and N'(0) €S, and (b) denote the problem
with different initial scalings: minimizing G(3_; 0;a;k;) w.rt. 0 s.t. 0; > 0 and N'(0) € S. Then:
(1) Problem (a) and problem (b) have the same local and global optimums. (2) For any local (global)

] . b
ca;0;

optimal solution of (b), denoted by 6°, [We’bm] j is also the local (global) optimal solution of (a).

Proof. By proposition 2, problems (b) is equivalent to the one without any norm constraint: mini-
mizing G (3, 0;a;k;) w.r.t.  s.t. ; > 0, which is denoted by problem (c). Let §; =a;0;, and then
problem (c) is equivalent to the problem of minimizing G(}_; f;k;) w.et. 0 s.t. 6; > 0, which is

denoted by problem (d) (local and global optimal solutions of problems (c) and (d) have one-to-one

correspondences due to the simple transform 9~j = a;0;). Again, by Proposition 2, problem (d) is
equivalent to the one with A/(#) € S, which is indeed problem (a). So we have conclusion (1). By
proper transformations of optimal solutions of these equivalent problems, we get conclusion (2). [

Note that in Proposition 3, optimal solutions of problems (a) and (b), which are with different initial
scalings of basis kernels, actually result in the same kernel combinations up to the scalings.

As shown in the above three propositions, our proposed formulation not only completely addresses
scaling and initialization problems, but also is not sensitive to the types of norm constraints used.

3.2 Reformulation to a tri-level optimization problem

The remaining task is to optimize the RKL problem (12). Given a parametric kernel form k(%) for
any parameter 6, to obtain the value of the objective function g(6) = G(k®) in (12), we need to
solve the SVM-like problem in (13), which is a convex minimization problem and can be solved by
its dual problem. Indeed, the whole RKL problem is transformed to a tri-level optimization problem:

ming g(6), 15)
where g(0) = {maxmziai - %%w)zi’jaiajyiyjf(i’j(@)? st oy =0, 0<q; < C’},(16)
where 72(0) = {maxm B (0) — X, 5K (0)8), s.b. 0,8 = 1, 5 > o} . 17)

Notation K (6) denotes the kernel matrix [k?) (x;,2;)]; ;. The above formulations show that given
any 6 the calculation of a value of g(6) requires solving a bi-level optimization problem. First, solve
the MEB dual problem (17), and obtain the optimal value r%(6) and the optimal solution, denoted by



B7. Then, take 7"2(9) into the objective function of the SVM dual problem (16), solve it, and obtain
the value of g(6), as well as the optimal solution of (16), denoted by a;. Unlike in other kernel
learning approaches, here the optimization of the SVM dual problem relies on another optimal value
function 72 (6), making the RKL problem more challenging.

If g(#), which is the objective function in the top-level optimization, is differentiable and we can get
its derivatives, then we can use a variety of gradient-based methods to solve the RKL problem. So in
next section, we study the differentiability of a general family of multilevel optimization problems.

4 Differentiability of the multilevel optimization problem

The Danskin’s theorem [17] states the differentiability of the optimal value of a single-level op-
timization problem, and has been applied in many MKL algorithms, e.g., [5, 12]. Unfortunately,
it is not directly applicable to the optimal value of a multilevel optimization problem. Below we
generalize the Danskin’s theorem and give new results about the multilevel optimization problem.

Let Y be a metric space, and X, U and Z be normed spaces. Suppose: (1) The function g; (x, u, 2),
is continuous on X x U x Z. (2) For all z € X the function ¢; (z, -, -) is continuously differentiable.
(3) The function g>(y, x,u) (g2: Y x X x U — Z)is continuouson Y x X x U. (4)Forally € Y
the function g2 (y, -, -) is continuously differentiable. (5) Sets ®x C X and @y C Y are compact.
By these notations, we propose the following theorem about bi-level optimal value functions.

Theorem 1. Let us define a bi-level optimal value function as
vi(u) = infrepy 91(2, u, va(, u)), (18)
where vo(x,w) is another optimal value function as
va(z,u) = infyea, g2(y, ,u). (19)

Iffor any x and u, go(-, x, u) has a unique minimizer y* (x, u) over ®y, then y* (x, u) are continuous
on X x U, and vy (u) is directionally differentiable. Furthermore, if for any u, the g1 (-, u, va(-, 1))
has also a unique minimizer x*(u) over ® x, then

1. the minimizer x*(u) are continuous on U,
2. v1(u) is continuously differentiable, and its derivative is equal to

du (u): (agl(z*,u,vz) + Ovo(z ,u) é)gl(:r*,u,vg)) 81}2((9 u) 892( 8,w *u) (20)

, where
Vo =va (T*,1)

du ou ou Ova

The proof is given in supplemental materials. To apply Theorem 1 to the objective function g(6) in
the RKL problem (15), we shall make sure the following two conditions are satisfied. First, both
the MEB dual problem (17) and the SVM dual problem (16) must have unique optimal solutions.
This can be guaranteed by that the kernel matrix K (6) is strictly positive definite. Second, the
kernel matrix K (6) shall be continuously differentiable to 6. Both conditions can be met in the
linear combination case when each basis kernel matrix is strictly positive definite, and can also be
easily satisfied in nonlinear cases, like in [11, 12]. If these two conditions are met, then g(6) is
continuously differentiable and

dK; ;(0) dr?(9)

dg(0 . , .
5:1(9 ) = 2r2(9)zz 305 QG YiY 5 2r4 @ 20 Gy K 5 (0) =75~ 2D
where o is the optimal solution of the SVM dual problem (16), and
r2 % dK, : 0 " dKl 0
d (9) = 3.6 dK;,i(0) E”ﬁ ;() i (22)
where 37 is the optimal solutlon of the MEB dual problem (17). In above equations, the value of
dK;,%g(e) is needed. It depends on the specific form of the parametric kernels, and the deriving of it
is easy. For example, for the linear combination kernel K; ;(0) =}, 0., K]";, we have 8%9:(9)
K" For the Gaussian kernel K; ;(0) = e~fllzi—2;1* we have dK;lié(e) = —K,; ;j(0)|z; — =]

5 Algorithm

With the derivative of g(6), we use the standard gradient projection approach with the Armijo
rule [18] for selecting step sizes to address the RKL problem. To compare with the most popu-
lar kernel learning algorithm, simpleMKL [5], in experiments we employ the linear combination



kernel form with nonnegative combination coefficients, as defined in (2). In addition, we also con-
sider three types of norm constraints on kernel parameters (combination coefficients): Li, Lo and
no norm constraint. The Ly and Lo norm constraints are as » ;0;=1and > j 0?. = 1, respectively.
The projection for the L; norm and nonnegative constraints can be efficiently done by the method
of Duchi et al. [19]. The projection for only nonnegative constraints can be accomplished by set-
ting negative elements to be zero. The projection for the Ly norm and nonnegative constraints need
another step after eliminating negative values: normalize § by multiplying it with [|0]|5".

In our gradient projection algorithm, each calculation of the objective functions g(6) needs solving
an MEB problem (17) and an SVM problem (16), whereas the gradient calculation and projec-
tion steps have ignorable time complexity compared to MEB and SVM solvers. The MEB and
SVM problems have similar forms of objective functions and constraints, and both of them can be
efficiently solved by SMO algorithms. Moreover, previous solutions o and 3; can be used as “hot-
start” to accelerate the solvers. It is because optimal solutions of two problems are continuous to
kernel parameter 6 according to Theorem 1. Thus when € moves a small step, the optimal solu-
tions also will only change a little. In real experiments our approach usually achieves approximate
convergence within one or two dozens of invocations of SVM and MEB solvers (For lack of space,
examples of the convergence speed of our algorithm are shown in the supplemental materials).

In linear combination cases, the RKL problem, as the radius-based formulation by Chapelle et al. [1],
is not convex. Gradient-based methods only guarantee local optimums. The following states the
nontrivial quality of local optimal solutions and their connections to related convex problems.

Proposition 4. In linear combination cases, for any local optimal solution of the RKL problem,
denoted by 0*, there exist C1 > 0 and Cy > 0 that 0* is the global optimal solution of the following
convex problem:

, gll}}gé S llwi|l? 4+ Cur?(0) + C2 32, €2, st yi (3 (wy, ¢(wi; 05k;)) +b) +6 >1, £>0.(23)

The proof can be found in the supplemental materials. The proposition also gives another possible
way to address the RKL problem: iteratively solve the convex problem (23) with a search for Cy
and C5. However, it is difficult to find exact values of C; and C; by a grid search, and even a rough
search will result in too high computational load. Besides, such method is also lack of extension
ability to nonlinear parametric kernel forms. Then, in the experiments, we demonstrate that the
gradient-based approach can give satisfactory performances, which are significantly better than ones
of SVM with the uniform combination of basis kernels and of other kernel learning approaches.

6 Experiments

In this section, we illustrate the performances of our presented RKL approach, in comparison with
SVM with the uniform combination of basis kernels (Unif), the margin-based MKL method using
formulation (3) (MKL), and the kernel learning principle by Chapelle et al. [1] using formulation
(10) (KL-C). The evaluation is made on eleven public available data sets from UCI repository [20]
and LIBSVM Data [21] (see Table 1). All data sets have been normalized to be zero-means and
unit-variances on every feature. The used basis kernels are the same as in SimpleMKL [5]: 10
Gaussian kernels with bandwidths v¢ € {0.5,1,2,5,7,10,12,15,17,20} and 10 polynomial ker-
nels of degree 1 to 10. All kernel matrices have been normalized to unit trace, as in [5, 7]. Note that
although our RKL formulation is theoretically invariant to the initial scalings, the normalization is
still applied in RKL to avoid numerical problems caused by large value kernel matrices in SVM and
MEB solvers. To show impacts of different norm constraints, we use three types of them: L;, Lo
and no norm constraint. With no norm constraint, only RKL can converge, and so only its results are
reported. The SVM toolbox used is LIBSVM [21]. MKL with the L; norm constraint is solved by
the code from SimpleMKL [5]. Other problems are solved by standard gradient-projection methods,
where the calculation of gradients of the MKL formulation (3) and Chapelle’s formulation (10) is
the same as in [5] and [1], respectively. The initial € is set to be 556 where e is an all-ones vector.

The trade-off coefficients C' in SVM, MKL, KL-C and RKL are automatically determined by
3-fold cross-validations on training sets. In all methods, C is selected from the set Scoer =
{0.01,0.1,1,10,100}. For each data set, we split it to five parts, and each time we use four parts as
the training set and the remaining one as the test set. The average accuracies with standard deviations
and average numbers of selected basis kernels are reported in Table 1.



Table 1: The testing accuracies (Acc.) with standard deviations (in parentheses), and the average
numbers of selected basis kernels (Nk). We set the numbers of our method to be bold if our method
outperforms both Unif and other two kernel learning approaches under the same norm constraint.

Index 1 2 3 4 5 6 7 8
Unif MKL KL-C Ours MKL KL-C Ours Ours
Constraint Ly L Ly Lo Lo Lo No

Dataset Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk Acc. Nk

Tonosphere 94.0(1.4) 20 92.9(1.6) 3.8 86.0(1.9)4.0 95.7(0.9) 2.8 94.3(1.5) 20 84.4(1.6) 18 95.7(0.9)3.0 95.7(0.9) 3.0
Splice 51.7(0.1) 20 79.5(1.9) 1.0 80.5(1.9)2.8 86.5(2.4)3.2 82.0(2.2) 20 74.0(2.6) 14 86.5(2.4)2.2 86.3(2.5)3.2
Liver 58.0(0.0) 20 59.1(1.4) 4.2 62.9(3.5)4.0 64.1(4.2)3.6 67.03.8) 20 64.1(3.9) 11 64.1(4.2)8.0 64.3(4.3)6.6
Fourclass  81.2(1.9) 20 97.7(1.2) 7.0 94.0(1.2)2.0 100 (0.0) 1.0 97.3(1.6) 20 94.0(1.3) 17 100 (0.0) 1.0 100 (0.0) 1.6
Heart 83.7(6.1) 20 84.1(5.7) 7.4 83.3(5.9)1.8 84.1(5.7)5.2 83.7(5.8) 20 83.3(5.1) 19 84.4(5.9)5.4 84.8(5.0)5.8
Germannum 70.0(0.0) 20 70.0(0.0) 7.2 71.9(1.8)9.8 73.7(1.6)4.8 71.5(0.8) 20 71.6(2.1) 13 73.9(1.2)6.0 73.9(1.8)5.8
Musk] 61.4(2.9) 20 85.5(2.9) 1.6 73.9(2.9)2.0 93.3(2.3)4.0 87.43.0) 20 61.93.1) 19 93.5(2.2)3.8 93.3(2.3)3.8
Wdbc 94.4(1.8) 20 97.0(1.8) 1.2 97.4(2.3)4.6 97.4(1.6)6.2 96.8(1.6) 20 97.4(2.0) 11 97.6(1.9)5.8 97.6(1.9)5.8
Wpbe 76.5(2.9) 20 76.5(2.9) 7.2 52.2(5.9)9.6 76.52.9) 17 75.9(1.8) 20 51.0(6.6) 17 76.5(2.9) 15 76.5(2.9) 15
Sonar 76.5(1.8) 20 82.3(5.6) 2.6 80.8(5.8) 7.4 86.0(2.6)2.6 85.2(2.9) 20 80.2(5.9) 11 86.0(2.6)2.6 86.0(3.3)3.0
Coloncancer 67.2(11) 20 82.6(8.5) 13 74.54.4) 11 84.2(4.2)7.2 76.59.0) 20 76.03.6) 15 84.2(42)5.6 84.2(42)7.6

The results in Table 1 can be summarized as follows. (a) RKL gives the best results on most sets.
Under L; norm constraints, RKL (Index 4) outperforms all other methods (Index 1, 2, 3) on 8 out
of 11 sets, and also gives results equal to the best ones of other methods on the remaining 3 sets.
In particular, RKL gains 5 or more percents of accuracies on Splice, Liver and Musk1 over MKL,
and gains more than 9 percents on four sets over KL-C. Under Lo norm constraints, the results are
similar: RKL (Index 7) outperforms other methods (Index 5, 6) on 10 out of 11 sets, with only 1
inverse result. (b) Both MKL and KL-C are sensitive to the types of norm constraints (Compare
Index 2 and 5, as well as 3 and 6). As shown in recent literature [7, 9], for the MKL formulation,
different types of norm constraints fit different data sets. However, RKL outperforms MKL (as well
as KL-C) under both L; and Ly norm constraints on most sets. (c) RKL is invariant to the types
of norm constraints. See Index 4, 7 and 8. Most accuracy numbers of them are the same. Several
exceptions with slight differences are possibly due to precisions of numerical computation. (d) For
MKL, the L1 norm constraint always results in sparse combinations, whereas the L, norm constraint
always gives non-sparse results (see Index 2 and 5). (e) An interesting thing is that, our presented
RKL gives sparse solutions on most sets, whatever types of norm constraints are used. As there usu-
ally exist redundancies in the basis kernels, the searching for good kernels and small empirical loss
often directly leads to sparse solutions. We notice that KL-C under L norm constraints also slightly
promotes sparsity (Index 6). Compared to KL-C under L, norm constraints, RKL provides not only
higher performances but also more sparsity, which benefits both interpretability and computational
efficiency in prediction.

7 Conclusion

In this paper, we show that the margin term used in previous MKL formulations is not a suitable
measure of the goodness of kernels, resulting in scaling and initialization problems. We propose
a new formulation, called RKL, which uses the ratio between the margin and the radius of MEB
to learn kernels. We prove that our formulation is invariant to kernel scalings, and also invariant
to scalings of basis kernels and to the types of norm constraints for the MKL problem. Then,
by establishing the differentiability of a general family of multilevel optimal value functions, we
propose a gradient-based algorithm to address the RKL problem. We also provide the property of
solutions of our algorithm. The experiments validate that our approach outperforms both SVM with
the uniform combination of basis kernels and other state-of-art kernel learning methods.
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