Abstraction and Relational learning

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper

Authors

Charles Kemp, Alan Jern

Abstract

Many categories are better described by providing relational information than listing characteristic features. We present a hierarchical generative model that helps to explain how relational categories are learned and used. Our model learns abstract schemata that specify the relational similarities shared by members of a category, and our emphasis on abstraction departs from previous theoretical proposals that focus instead on comparison of concrete instances. Our first experiment suggests that our abstraction-based account can address some of the tasks that have previously been used to support comparison-based approaches. Our second experiment focuses on one-shot schema learning, a problem that raises challenges for comparison-based approaches but is handled naturally by our abstraction-based account.