Fast Image Deconvolution using Hyper-Laplacian Priors

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper


Dilip Krishnan, Rob Fergus


The heavy-tailed distribution of gradients in natural scenes have proven effective priors for a range of problems such as denoising, deblurring and super-resolution. However, the use of sparse distributions makes the problem non-convex and impractically slow to solve for multi-megapixel images. In this paper we describe a deconvolution approach that is several orders of magnitude faster than existing techniques that use hyper-Laplacian priors. We adopt an alternating minimization scheme where one of the two phases is a non-convex problem that is separable over pixels. This per-pixel sub-problem may be solved with a lookup table (LUT). Alternatively, for two specific values of α, 1/2 and 2/3 an analytic solution can be found, by finding the roots of a cubic and quartic polynomial, respectively. Our approach (using either LUTs or analytic formulae) is able to deconvolve a 1 megapixel image in less than ∼3 seconds, achieving comparable quality to existing methods such as iteratively reweighted least squares (IRLS) that take ∼20 minutes. Furthermore, our method is quite general and can easily be extended to related image processing problems, beyond the deconvolution application demonstrated.