
Robust Principal Component Analysis: Exact Recovery of
Corrupted Low-Rank Matrices via Convex Optimization

Supplementary material: proofs of main results

John Wright∗, Yigang Peng, Yi Ma
Visual Computing Group
Microsoft Research Asia

{jowrig,v-yipe,mayi}@microsoft.com

Arvind Ganesh, Shankar Rao
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
{abalasu2,srrao}@uiuc.edu

This supplementary appendix provides additional details of the proofs of our results. Sections 1 and 2 prove
our main result on Robust PCA, Theorem 1 of the paper. Section 3 explores the implications of this analysis
for the related problem of low-rank matrix completion, and proves Theorem 2 of the paper.

For completeness, this supplement duplicates material appearing in the journal version of this paper
[9]. The reader is encouraged to consult that work for a more thorough exposition of our main results.

1 Analysis Framework

In this section, we begin our analysis of the semidefinite program
min
A,E

‖A‖∗ + λ‖E‖1 subj A+ E = D. (1)

After introducing notation, we provide two sufficient conditions for a pair (A,E) to be the unique optimal
solution to (1). The first condition, given in Lemma 1.1 below, is stated in terms of the existence of a dual
vectorW that certifies optimality of the pair (A,E). The existence (or non-existence) of such a dual vector is
itself a random convex programming feasibility problem, and so the condition in this Lemma is not directly
amenable to analysis. The next step, outlined in Lemma 1.3, is to show that if there exists some W0 that does
not violate the constraints of this feasibility problem too badly, then it can be refined to produce a W∞ that
satisfies the constraints and certifies optimality of (A,E). The probabilistic analysis in the following Section
2 will then show that, with high probability, such a W0 exists.

1.1 Notation

For any n ∈ Z+, [n] .= {1 . . . n}. For M ∈ Rm×m, and I, J ⊂ [m], MI,J will denote the submatrix of M
consisting of those rows indexed by I and those columns indexed by J . We will use • as shorthand for the
entire index set: MI,• is the submatrix consisting of those rows indexed by I . M∗ will denote the transpose
of M . For matrices P,Q ∈ Rm×n, 〈P,Q〉 .= trace[P ∗Q] will denote the (Frobenius) inner product. The
symbol I will denote the identity matrix or identity operator on matrices; the distinction will be clear from
context.

‖M‖p,q will denote the operator norm of the matrix M , as a linear map between `p and `q . Important special
cases are the spectral norm ‖M‖2,2, and the max row- and column norms,

‖M‖2,∞ = max
i
‖Mi,•‖2 and ‖M‖1,2 = max

j
‖M•,j‖2, (2)

and the max element norm
‖M‖1,∞ = max

i,j
|Mij |. (3)

∗For more information, see http://perception.csl.illinois.edu/matrix-rank/home.html. This
work was partially supported by NSF IIS 08-49292, NSF ECCS 07-01676, and ONR N00014-09-1-0230.
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We will also often reason about linear operators on matrices. If L : Rm×m → Rm×m is a linear map, ‖L‖F,F
will denote its operator norm with respect to the Frobenius norm on matrices:

‖L‖F,F
.= sup

M∈Rm×m\{0}

‖L[M ]‖F
‖M‖F

. (4)

If S is a subspace, πS will denote the projection operator onto that subspace. For U ∈ Rm×r, πU will denote
the projection operator onto the range of U . Finally, if I ⊂ [m], πI

.=
∑
i∈I eie

∗
i will denote the projection

onto those coordinates indexed by I .

We will let
Ω .= {(i, j) | E0ij 6= 0} (5)

denote the set of corrupted entries. By slight abuse of notation, we will identify Ω with subspace {M |Mij =
0 ∀ (i, j) ∈ Ωc}, so πΩ will denote the projection onto the corrupted elements. We will let Σ ∈ Rm×m be an
iid Rademacher (Bernoulli ±1) matrix that defines the signs of the corrupted entries:

sign(E0) = πΩ[Σ]. (6)

Expressing sign(E0) in this way allows us to exploit independence between Ω and Σ.

The symbol ⊗ will denote the Kronecker product between matrices. “vec” will denote the operator that
vectorizes a matrix by stacking the columns. For M ∈ Rm×m, this operator stacks the entries Mij in
lexicographic order. For x = vec[M ] ∈ Rm×m we write xΩ as shorthand for xL(Ω), where L(Ω) =
{jm + i | (i, j) ∈ Ω} ⊂ [m2], and as further shorthand, we will occasionally use vecΩ[M ] to denote
[vec[M ]]Ω.

In both our analysis and optimization algorithm, we will make frequent use of the soft thresholding operator,
which we denote Sγ :

Sγ [x] =
{

0, |x| ≤ γ,
sign(x)(|x| − γ), |x| > γ.

(7)

For matrices X , Sγ [X] will denote the matrix obtained by applying Sγ to each element of Xij . Finally, we
often find it convenient to use the notation

SΩc

γ [X] .= πΩ⊥ [Sγ [X]]. (8)

That is, SΩc

γ applies the soft threshold to X but only retains those elements not in Ω.

Throughout, we will use the symbol Wm
r to refer to the Stiefel manifold of matrices U ∈ Rm×r with or-

thonormal columns: U∗U = Ir×r. We will use SO(r) to refer to the special orthogonal group of r × r
matrices R such that R∗R = RR∗ = Ir×r and det(R) = 1.

1.2 Optimality conditions for (A0, E0)

We begin with a simple sufficient condition for the pair (A0, E0) to be the unique optimal solution to (1).
These conditions are stated in terms of a dual vector, the existence of which certifies optimality. Our anal-
ysis will then show that under the stated circumstances, such a dual certificate can be produced with high
probability.
Lemma 1.1. Let (A0, E0) ∈ Rm×m × Rm×m, with

Ω .= supp(E0) ⊆ [m]× [m]. (9)

Let A0 = USV ∗ denote the compact singular value decomposition of A0, and Θ denote the subspace
generated by matrices with column space range(U) or row space range(V ):

Θ .= {UM∗ |M ∈ Rm×r}+ {MV ∗ |M ∈ Rm×r} ⊂ Rm×m. (10)

Suppose that ‖πΩπΘ‖F,F < 1 and there exists W ∈ Rm×m such that{ [UV ∗ +W ]ij = λ sign(E0i,j) ∀ i, j ∈ Ω,
|[UV ∗ +W ]ij | < λ ∀ i, j ∈ Ωc,
U∗W = 0, WV = 0, ‖W‖2,2 < 1

}
. (11)

Then the pair (A0, E0) is the unique optimal solution to (1).
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Proof. We show that if a Lagrange multiplier vector Y .= UV ∗ + W satisfying this system exists, then
any nonzero perturbation A0 7→ A0 + ∆, E0 7→ E0 − ∆ respecting the constraint A + E = A0 + E0

will increase the objective function. By convexity, we may restrict our interest to ∆ satisfying ‖∆‖1,∞ <
min(i,j)∈Ω |E0ij |. For such ∆,

λ‖E0 −∆‖1 − λ‖E0‖1 = −λ
∑

(i,j)∈Ω

sign(E0ij)∆ij + λ
∑

(i,j)/∈Ω

|∆ij | ≥ 〈Y,−∆〉.

with equality if and only if πΩ⊥ [∆] = 0 (since on this set |Yij | is strictly smaller than λ). Similarly, since
Y = UV ∗ +W ∈ ∂‖ · ‖∗

∣∣
A0

,
‖A0 + ∆‖∗ ≥ ‖A0‖∗ + 〈Y,∆〉. (12)

Moreover, since ‖A0‖∗ = 〈UV ∗, A0〉 = 〈Y,A0〉, ‖A0‖∗ + 〈Y,∆〉 = 〈Y,A0 + ∆〉. Thus, by Lemma 1.2
below, if equality holds in (12), then ∆ ∈ Θ. Summing the two subgradient bounds, we have

‖A0 + ∆‖∗ + λ‖E0 −∆‖1 ≥ ‖A0‖∗ + λ‖E0‖1,

with equality only if ∆ ∈ Ω ∩Θ. If ‖πΩπΘ‖F,F < 1, then Ω ∩Θ = {0} and so either

‖A0 + ∆‖∗ + λ‖E0 −∆‖1 > ‖A0‖∗ + λ‖E0‖1,

or ∆ = 0.

Lemma 1.2. Consider P ∈ Rm×m, with ‖P‖2,2 = 1 and σmin(P ) < 1. Write the full singular value

decomposition of P as P = [ U1 U2 ]
[
I 0
0 Σ2

]
[ V1 V2 ]∗ where ‖Σ2‖2,2 < 1. Let Q ∈ Rm×m have

reduced singular value decomposition Q = UΣV ∗. Then if 〈P,Q〉 = ‖Q‖∗, U∗U2 = 0 and V ∗V2 = 0.

Proof. Let r denote the rank of Q.

〈P,Q〉 =
〈[

I 0
0 Σ2

]
,

[
U∗1U
U∗2U

]
Σ [ V ∗V1 V ∗V2 ]

〉
.

Let Y, Z ∈ Rm×r denote the matrices Y .=
[
U∗1U
U∗2U

]
, Z .=

[
V ∗1 V
V ∗2 V

]
, and notice that both Y and Z have

orthonormal columns. Then, after the above rotation

〈P,Q〉 =
m∑
i=1

σi(P )
r∑
j=1

σj(Q)ZijYij =
r∑
j=1

σj(Q)
m∑
i=1

σi(P )ZijYij . (13)

For all j,
∑m
i=1 σi(P )ZijYij ≤

∥∥[ I 0
0 Σ2

]
Z•,j

∥∥
2
‖Y•,j‖2 ≤ 1, with equality if and only if σi(P ) < 1 =⇒

Zij = 0 and Z•,j = Y•,j . Since whenever 〈P,Q〉 = ‖Q‖∗ each of the
∑m
i=1 σi(P )ZijYij must be one, this

implies that U∗2U and V ∗2 V are both zero.

Thus, we can guarantee that (A0, E0) is optimal with high probability by asserting that a certain random
convex feasibility problem is satisfiable with high probability. While there are potentially many W satisfying
these constraints, most of them lack an explicit expression. As has proven fruitful in a variety of related
problems, we will instead consider a putative dual vector W0 that does have an explicit expression: the
minimum Frobenius norm solution to the equality constraints in (11). We will see that this vector already
satisfies the operator norm constraint with high probability. However, the box constraint due to sign(E0)
is likely to be violated. We then describe an iterative procedure that, with high probability, fixes the box
constraint, while respecting the equality and operator norm constraints. The output of this iteration is the
desired certifying dual vector.

1.3 Iterative construction of the dual certificate

In constructing the dual certificate, we will use the fact that the violations of the inequality constraints, viewed
as a matrix, often have sparse rows and sparse columns. To formalize this, fix a small constant c ∈ [0, 1], and
define

Ψc
.=
{
M ∈ Rm×m | ‖M•,j‖0 ≤ cm∀ j, ‖Mi,•‖0 ≤ cm∀ i, πΩ[M ] = 0

}
. (14)
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We will show that such matrices are near the nullspace of the equality constraints in (11). The equality
constraints in (11) can be expressed as

πΩ[W ] = πΩ[λ sign(E0)− UV ∗] and πΘ[W ] = 0.

We will let Γ denote the orthogonal complement of the nullspace of these constraints:

Γ .= Θ + Ω. (15)

Let ξc denote the operator norm of πΓ, with respect to the Frobenius norm on Rm×m, restricted to Ψc:

ξc
.= sup
M∈Ψc\{0}

‖πΓM‖F
‖M‖F

∈ [0, 1]. (16)

In Section 2.3, we establish a useful probabilistic upper bound for this quantity. Before investigating these
properties, we show that if ξc and W0 are well-controlled, we can find a dual vector certifying optimality of
(A0, E0).
Lemma 1.3 (Iterative construction of a dual certificate). Suppose for some c ∈ (0, 1) and ε > 0, there exists
W0 satisfying πΘ[W0] = 0 and πΩ[W0] = πΩ[λ sign(E0)− UV ∗], such that

‖UV ∗ +W0‖1,2 +
1

1− ξc

∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F
≤ (λ− ε)

√
cm, (17)

‖UV ∗ +W0‖2,∞ +
1

1− ξc

∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F
≤ (λ− ε)

√
cm, (18)

and
‖W0‖2,2 +

1
1− ξc

‖SΩc

λ−ε(UV
∗ +W0)‖F < 1. (19)

Then there exists W∞ satisfying the system (11).

Proof. We construct a convergent sequence W0,W1, . . . whose limit satisfies (11). For each k, set

Wk = Wk−1 − πΓ⊥SΩc

λ−ε (UV ∗ +Wk−1) . (20)

Notice that πΘ[Wk] = πΘ[Wk−1] and πΩ[Wk] = πΩ[Wk−1], so for all k, πΘ[Wk] = 0 and πΩ[Wk] =
πΩ[λ sign(E0) − UV ∗]. We will further show by induction that the sequence (Wk) satisfies the following
properties:

‖UV ∗ +Wk‖1,2 ≤ ‖UV ∗ +W0‖1,2 +
∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F

k−1∑
i=0

ξic, (21)

‖UV ∗ +Wk‖2,∞ ≤ ‖UV ∗ +W0‖2,∞ +
∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F

k−1∑
i=0

ξic, (22)

max
i

∥∥∥∥[SΩc

λ−ε (UV ∗ +Wk−1)
]
i,•

∥∥∥∥
0

≤ cm, (23)

max
j

∥∥∥∥[SΩc

λ−ε (UV ∗ +Wk−1)
]
•,j

∥∥∥∥
0

≤ cm, (24)

‖SΩc

λ−ε(UV
∗ +Wk)‖F ≤ ξkc ‖SΩc

λ−ε(UV
∗ +W0)‖F . (25)

For k = 0, (21), (22) and (25) hold trivially. The sparsity assertion (23) follows from the assumptions of the
lemma: for all i,∥∥∥∥[SΩc

λ−ε(UV
∗ +W0)

]
i,•

∥∥∥∥
0

≤
‖[UV ∗ +W0]i,•‖22

(λ− ε)2
≤
‖UV ∗ +W0‖21,2

(λ− ε)2
≤ cm.

The exact same reasoning applied to the columns gives (24). Now, suppose the statements (21)-(25) hold for
W0 . . .Wk−1. Then

‖UV ∗ +Wk‖1,2 ≤ ‖UV ∗ +Wk−1‖1,2 +
∥∥∥SΩc

λ−ε(UV
∗ +Wk−1)

∥∥∥
F

≤ ‖UV ∗ +Wk−1‖1,2 +
∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F
ξk−1
c

≤ ‖UV ∗ +W0‖1,2 +
∥∥∥SΩc

λ−ε(UV
∗ +W0)

∥∥∥
F

k−1∑
i=0

ξic,
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establishing (21) for k. The same reasoning applied to ‖·‖2,∞ establishes (22) for k. Bounding the summation
in (21) by 1

1−ξc and applying assumption (17) of the lemma gives that ‖UV ∗ +Wk‖21,2 ≤ (λ− ε)2cm. This
implies (23): the number of entries of each column of UV ∗+Wk that exceed λ−ε in absolute value is at most
cm. The same chain of reasoning establishes that (24): the rows of SΩc

λ−ε(UV
∗ +Wk) are also cm-sparse.

Finally, notice that

‖SΩc

λ−ε(UV
∗ +Wk)‖F =

∥∥∥SΩc

λ−ε

(
UV ∗ +Wk−1 − πΓ⊥SΩc

λ−ε(UV
∗ +Wk−1)

)∥∥∥
F

=
∥∥∥ SΩc

λ−ε

(
UV ∗ +Wk−1 − SΩc

λ−ε(UV
∗ +Wk−1) + πΓSΩc

λ−ε(UV
∗ +Wk−1)

) ∥∥∥
F
.

Since the entries of UV ∗ + Wk−1 − SΩc

λ−ε(UV
∗ + Wk−1) have magnitude ≤ λ − ε, πΓSΩc

λ−ε(UV
∗ +

Wk−1) dominates SΩc

λ−ε(UV
∗ + Wk) elementwise in absolute value. Hence, ‖SΩc

λ−ε(UV
∗ + Wk)‖F ≤

‖πΓSΩc

λ−ε(UV
∗+Wk−1)‖F ≤ ξc‖SΩc

λ−ε(UV
∗+Wk−1)‖F , where we have used that SΩc

λ−ε(UV
∗+Wk−1) ∈

Ψc. Thus each of the three statements holds for all k, and ‖SΩc

λ−ε(UV
∗ + Wk)‖F decreases geometrically.

For all k sufficiently large, ‖UV ∗ +Wk‖1,∞ ≤ λ.

Meanwhile, notice that

‖Wk‖2,2 ≤ ‖Wk−1‖2,2 + ‖πΓ⊥SΩc

λ−ε(UV
∗ +Wk−1)‖2,2

≤ ‖Wk−1‖2,2 + ‖SΩc

λ−ε(UV
∗ +Wk−1)‖F

≤ ‖Wk−1‖2,2 + ξk−1
c ‖SΩc

λ−ε(UV
∗ +W0)‖F .

By induction, it is easy to show that

‖Wk‖2,2 ≤ ‖W0‖2,2 + ‖SΩc

λ−ε(UV
∗ +W0)‖F

k−1∑
i=0

ξic.

By the second assumption of the lemma, this quantity is bounded by 1 for all k.

2 Probabilistic Analysis of the Initial Dual Vector

In this section, we analyze the minimum Frobenius norm solution to the equality constraints in the optimality
condition (11). We show that with high probability, this initial dual vector satisfies the operator norm con-
straint, and that the violations of the box constraint are small enough that the iteration described in (20) will
succeed in producing a dual certificate. The analysis is organized as follows: in Section 2.1, we introduce
several tools and preliminary results. Section 2.2 then shows that with overwhelming probability the operator
norm of the initial dual vector is bounded by a constant that can be made arbitrarily small by assuming the
error probability ρs and rank r are both low enough. Section 2.3 then shows that the restricted operator norm
ξc is also bounded by a small constant, establishing that all row- and column- sparse matrices are nearly
orthogonal to the subspace spanned by the equality constraints in (11). Section 2.4 analyzes the violations of
the box constraint. Finally, Section 2.5 combines these results with the results of Section 1 to prove our main
result, Theorem 1.

2.1 Tools and preliminaries

In this section, we will often need to refer to the following subspaces

ΞU
.= {UM∗ |M ∈ Rr×m},

ΞV
.= {MV ∗ |M ∈ Rm×r},

ΞUV
.= {UMV ∗ |M ∈ Rr×r}.

Notice that πΘ = πΞU + πΞV − πΞUV and that πΞUV = πΞUπΞV = πΞV πΞU .

In the Bernoulli support model, the number of errors in each row and column concentrates about ρsm. For
each j ∈ [m], let

Ij
.= {i | (i, j) ∈ Ω}, (26)

i.e., Ij contains the indices of the errors in the j-th column. Similarly, for i ∈ [m], set

Ji
.= {j | (i, j) ∈ Ω}. (27)
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In terms of these quantities, for each η > 0, define the event

EΩ(η) : max
j
|Ij | < (1 + η)ρs and max

i
|Ji| < (1 + η)ρs.

Much of our analysis hinges on the operator norm of πΩπΘ. We will see that on the above event EΩ(η), this
quantity can be controlled by bounding norms of submatrices of the singular vectors U and V . This results
in a number of bounds involving the following function of the rank and error probability:

τ(r/m, ρs)
.= 2

√
r/m+

√
ρs

1−
√
r/m

. (28)

Where τ is used as shorthand, it should be understood as τ(r/m, ρs). We will repeatedly refer to the following
good events:

EΩU : ‖πΩπΞU ‖F,F ≤ τ (r/m, ρs) ,
EΩV : ‖πΩπΞV ‖F,F ≤ τ (r/m, ρs) ,
EΩΘ : ‖πΩπΘ‖F,F ≤ 2τ (r/m, ρs) .

In establishing that these events are overwhelmingly likely, the following result on singular values of Gaussian
matrices will prove useful:

Fact 2.1. LetM ∈ Rm×n,m > n and suppose that the elements ofM are independent identically distributed
N (0, 1) random variables. Then

P
[
σmax(M) ≥

√
m+

√
n+ t

]
≤ exp

(
− t

2

2

)
,

P
[
σmin(M) ≤

√
m−

√
n− t

]
≤ exp

(
− t

2

2

)
.

This result is widely used in the literature, with various estimates of the error exponent. The form stated here
can be obtained by via the bounds E [σmax(M)] ≤

√
m+
√
n and E [σmin(M)] ≥

√
m−
√
n, in conjunction

with [6] Proposition 2.18, Equation (2.35), and the observation that the singular values are 1-Lipschitz.

Lemma 2.2. Fix any η ∈ (0, 1/16). Consider (U, V,Ω) drawn from the random orthogonal model of rank
r < m with error probability ρs > 0. Then there exists t?(r/m, ρs) > 0 such that

PU,V,Ω [EΩ(η) ∩ EΩU ∩ EΩV ∩ EΩΘ] ≥ 1− 4m exp
(
−mt

?2

2

)
− 4m exp

(
−η

2ρ2
sm

2

)
. (29)

In particular, if for all m larger than some m0 ∈ Z, r/m ≤ ρr < 1, then

PU,V,Ω [EΩ(η) ∩ EΩU ∩ EΩV ∩ EΩΘ] ≥ 1− exp (−Cm+O(log(m))) . (30)

Proof. Each of the random variables |Ij | is a sum of m independent Bernoulli(ρs) random variables
X1,j , X2,j , . . . Xm,j . The partial sum

∑k
i=1Xk − ρsk is a Martingale whose differences are all bounded

by 1. So by Azuma’s inequality, we have P [|Ij | − ρsm > t] < exp
(
− t2

2m

)
. The same calculation clearly

holds for the Ji, and so setting t = ηρsm,

P [EΩ(η)c] ≤ 2mP [|Ij | > ρs(1 + η)m] ≤ 2m exp
(
−η

2ρ2
sm

2

)
. (31)

So, with high probability each row and column of E0 is (1 + η)ρsm-sparse. We next show that such sparse
vectors are nearly orthogonal to the random subspace range(U). The matrix U is uniformly distributed on
Wm
r , and can be realized by orthogonalizing a Gaussian matrix. Let Z ∈ Rm×r be an iid N (0, 1

m ) matrix;
then U is equal in distribution to Z(Z∗Z)−1/2. For each Ij ,∥∥∥ZIj ,•(Z∗Z)−1/2

∥∥∥
2,2
≤
‖ZIj ,•‖2,2
σmin(Z)

,
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where σmin(Z) denotes the r-th singular value of the m× r matrix Z. Now, for any t > 0

P
[
σmin(Z) < 1−

√
r/m− t

]
< exp

(
− t

2m

2

)
. (32)

Meanwhile, on the event EΩ(η),

PZ|Ω
[
‖ZIj ,•‖2,2 >

√
r/m+

√
|Ij |/m+ t

]
< exp

(
− t

2m

2

)
. (33)

Hence,

P

[
‖UIj ,•‖2,2 >

√
r/m+

√
1 + η

√
ρs + t

1−
√
r/m− t

]

≤ PU |Ij

[
‖UIj ,•‖2,2 >

√
r/m+

√
1 + η

√
ρs + t

1−
√
r/m− t

| |Ij | < (1 + η)ρsm

]
+ P [|Ij | ≥ (1 + η)ρsm]

< 2 exp
(
−mt

2

2

)
+ exp

(
−η

2ρ2
sm

2

)
.

Set t? ≤ min
(

1
3 −

1
3

√
r
m ,
√
ηρs
)
. By the assumption of the lemma,

√
1 + η +

√
η < 4/3, and√

r/m+
√

1 + η
√
ρs + t?

1−
√
r/m− t?

≤
√
r/m+

(√
1 + η +

√
η
)√

ρs
2
3

(
1−

√
r/m

)
≤

√
r/m+ 4

3

√
ρs

2
3

(
1−

√
r/m

) ≤ τ(r/m, ρs).

So, (applying a symmetric argument to the VJi ), then, for the event E1 defined below,

E1 : max
(

max
j
‖UIj ,•‖2,2,max

i
‖VJi,•‖2,2

)
≤ τ(r/m, ρs), (34)

PU,V,Ω [E1 ∩ EΩ(η)] > 1− 4m exp
(
−mt

?2

2

)
− 4m exp

(
−η

2ρ2
sm

2

)
. (35)

If for all m > m0, r/m ≤ ρr < 1, then t∗ is bounded away from zero. We next show that E1 implies EΩU ,
EΩV , and EΩΘ. We can express πΩ[M ] in terms of its action on the columns ofM : πΩ[M ] =

∑
j πIjM•,je

∗
j .

So,
πΞUπΩ[M ] = πU

∑
j

πIjM•,je
∗
j , (36)

and ‖πΞUπΩ[M ]‖2F =
∑
j

‖πUπIjM•,j‖22 =
∑
j

‖U∗πIjM•,j‖22

≤
∑
j

‖UIj ,•‖22,2‖M•,j‖22 ≤
(

max
j
‖UIj ,•‖2,2

)2

‖M‖2F ,

and so on E1, ‖πΩπΞU ‖F,F = ‖πΞUπΩ‖F,F ≤ τ(r/m, ρs); and so E1 =⇒ EΩU . A symmetric argument
establishes that E1 =⇒ EΩV . Now, notice that since

πΩπΘ[M ] = πΩπΞU [M ] + πΩ [πU⊥MπV ] , (37)
if we choose a basis B ∈ Rm−r for the orthogonal complement of range(U) and define ΞU⊥V

.=
{BQV ∗ | Q ∈ Rm−r×r} ⊂ Rm×m, then

‖πΩπΘ‖F,F ≤ ‖πΩπΞU ‖F,F +
∥∥πΩπΞ

U⊥V

∥∥
F,F

. (38)

Since ∥∥πΩπΞ
U⊥V

∥∥
F,F

= sup
M∈Ξ

U⊥V \{0}
‖πΩ[M ]‖F

≤ sup
M∈ΞV \{0}

‖πΩ[M ]‖F = ‖πΩπΞV ‖F,F ,

E1 =⇒ EΩΘ and the proof is complete.
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We will need to understand concentration of Lipschitz functions of matrices that are uniformly distributed
(according to the Haar measure) on two manifolds of interest: the Stiefel manifold Wm

r and the group of r×r
orthogonal matrices with determinant one, SO(r). This is governed by the concentration function on these
spaces:

Definition 2.3. [6] Let (X, d) be a metric space. For a given measure µ on X , the concentration
function is defined as

αX,d,µ(t)
.
= sup

{
1− µ(At) | A ⊂ X,µ(A) ≥ 1

2

}
, (39)

where At = {x | d(x,A) < t} is a t-neighborhood of A.

The concentration functions for Wm
r and SO(r) are well known:

Fact 2.4 ([7] Theorems 6.5.1 and 6.7.1). For r < m the manifold Wm
r , with distance d(X,Y )

.
=

‖X − Y ‖F , the Haar measure µ has concentration function

αW,d,µ(t) ≤
√
π

8
exp

(
−mt

2

8

)
. (40)

Similarly, on SO(r) with δ(X,Y )
.
= ‖X − Y ‖F , and ν the Haar measure,

αSO(r),δ,ν(t) ≤
√
π

8
exp

(
−rt

2

8

)
. (41)

Propositions 1.3 and 1.8 of [6] then imply that Lipschitz functions on these spaces concentrate about their
medians and expectations:
Corollary 2.5. Suppose r < m, and let f : Rm×r → R with Lipschitz norm

‖f‖lip
.= sup
X 6=Y

|f(X)− f(Y )|
‖X − Y ‖F

. (42)

Then if U is distributed according to the Haar measure on Wm
r , and median(f) denotes any median,

P [f(U) ≥ median(f) + t] ≤ exp

(
− mt2

8‖f‖2lip

)
. (43)

Similarly, if g : Rr×r → Rm with Lipschitz norm

‖g‖lip
.= sup
X 6=Y

|g(X)− g(Y )|
‖X − Y ‖F

. (44)

Then if R is distributed according to the Haar measure on SO(r), g satisfies the following tail bound:

P
[
|g(R)− E[g(R)]| ≥ ‖g‖lip

√
8π
r + t

]
≤ 2 exp

(
− rt2

8‖g‖2lip

)
. (45)

Proof. The concentration result (43) is a restatement of [6] Proposition 1.3. For (45), notice first that [6]
Proposition 1.3 implies that

P [|g(R)−median(g)| ≥ t] ≤ 2 exp

(
− rt2

8‖g‖2lip

)
. (46)

If we set

ā
.=
∫ ∞

0

2 exp

(
− rt2

8‖g‖2lip

)
dt = ‖g‖lip

√
8π
r
, (47)

then [6] Proposition 1.8 gives

P [|g(R)− E[g]| ≥ ā+ t] ≤ 2 exp

(
− rt2

8‖g‖2lip

)
. (48)
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2.2 Bounding the operator norm

In this section, we begin our analysis of the minimum Frobenius norm solution to the equality constraints
of the feasibility problem (11). We show that with overwhelming probability this matrix also has operator
norm bounded by a small constant. An important byproduct of this analysis is a simple proof for that, with
the same models studied here, the easier problem of matrix completion – filling missing entries in a low-rank
matrix – can be efficiently and exactly solved by convex optimization, even for cases when the rank of the
matrix grows in proportion to the dimensionality. Section 3 further elucidates connections to that problem.

2.2.1 General approach

We begin by showing that with high probability the minimum Frobenius norm solution is unique, and giv-
ing an explicit representation for the pseudoinverse operator in that case. This operator, denoted H†, is
applied to the matrix λ sign[E0] − UV ∗ to give the initial dual vector. We separately bound the norm of the
two terms induced by ‖H†sign[E0]‖2,2 and ‖H†[UV ∗]‖2,2, respectively. Both arguments follow in a fairly
straightforward manner by reducing to a net and then applying concentration inequalities. Throughout this
section, N will denote a 1

2 -net for Sm−1. By [6] Lemma 3.18, there is such a net with size at most exp(4m).
Moving from ‖A‖2,2 = supx,y∈Sm−1 x∗Ay to our product of nets loses at most a constant factor in the esti-
mate: ‖A‖2,2 ≤ 4 supx,y∈N x∗Ay (see e.g., [8] Proposition 2.6). We will argue that for our A of interest,
f(A) = x∗Ay concentrates, and union bound over all exp(8m) pairs in N ×N .

2.2.2 Representation and uniqueness of W0.

Lemma 2.6 (Representation of the pseudoinverse). Suppose that we have ‖πΘπΩ‖F,F < 1. Then the opera-
tor I− πΩπΘπΩ is invertible, and for any M the optimization problem

min ‖W‖F subj πΘ[W ] = 0, πΩ[W ] = πΩ[M ] (49)

has unique solution

Ŵ = πΘ⊥πΩ (I− πΩπΘπΩ)−1
πΩ[M ] = πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[M ].

Proof. Choose matrices U⊥, V ⊥ ∈ Rm×m−r whose columns form orthonormal bases for the orthogonal
complement of the ranges of U and V , respectively. Let Q denote the matrix

Q
.=

 V ⊥
∗ ⊗ U∗

V ∗ ⊗ U∗
V ∗ ⊗ U⊥∗

 .
Notice that the rows of Q are orthonormal, and that they form a basis for the subspace of vectors {vec[M ] |
M ∈ Θ}. The equality constraint in (49) can therefore be expressed as[

Q
IΩ,•

]
vec(W ) =

[
0

vecΩ[M ]

]
, (50)

Here, I is the m2 ×m2 identity matrix, and IΩ,• is the submatrix of I consisting of those rows indexed by
Ω, taken in lexicographic order. The minimum Frobenius norm solution W is simply the minimum `2 norm
solution to this system of equations. Define the matrix

P
.= Q I•,Ω.

Notice that for any matrix M ,
Q∗P IΩ,•vec[M ] = vec [πΘπΩM ] .

Since Q and IΩ,• each have orthonormal rows, ‖πΘπΩ‖F,F = ‖Q∗PIΩ,•‖2,2 = ‖P‖2,2. So, by the assump-

tion of the lemma ‖P‖2,2 < 1, and the matrix
[

I P
P ∗ I

]
is nonsingular. We therefore have the following

explicit expression for the unique minimum `2-norm solution to (50):

vec[Ŵ ] = [ Q∗ I•,Ω ]
[

I P
P ∗ I

]−1 [
0

vecΩ[M ]

]
. (51)

9



Applying the Schur complement formula (which is justified since I � P ∗P ), the above is equal to

[ Q∗ I•,Ω ]
[
−P
I

]
(I− P ∗P )−1vecΩ[M ]

= (I−Q∗Q)I•,Ω(I− P ∗P )−1IΩ,•vec[M ]

= (I−Q∗Q)I•,Ω
∞∑
k=0

(IΩ,•Q
∗QI•,Ω)kIΩ,•vec[M ]

= vec

[
πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[M ]

]
,

yielding the representation in the statement of the lemma.

2.2.3 Effect of the singular vectors

We next analyze the part of the initial dual vector W0 induced by UV ∗. From the previous lemma we have
the expression

H†[·] = πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[·], (52)

whenever ‖πΩπΘ‖F,F < 1. Analysis of H†[UV ∗] is complicated by the fact that UV ∗ and Θ are dependent
random variables. Notice, however, that πΘ depends only on the subspace spanned by the columns of U ,
not on any choice of basis for that subspace. UV ∗, on the other hand, does depend on the choice of basis.
We will use this fact to decouple H† and UV ∗, and show that the `2 operator norm of H†[UV ∗] is bounded
below a small constant with overwhelming probability.
Lemma 2.7. Let (U, V,Ω) be sampled from the random orthogonal model of rank r with error probability
ρs. Suppose that r and ρs satisfy

τ(r/m, ρs) < 1
4 . (53)

Then with probability at least 1− exp (−Cm+O(logm)), the solution WUV
0 to the optimization problem

min ‖W‖F subj U∗W = 0, WV = 0, πΩ[W ] = −πΩ[UV ∗] (54)

is unique, and satisfies∥∥WUV
0

∥∥
2,2
≤ 64 τ

( r
m
, ρs

)(
1 +

8
3

√
m

m− r − 1

)
+

8
3

√
8π

m− r − 1
. (55)

Proof. First consider the event
E1 : ‖πΩ[UV ∗]‖2,2 ≤ 64τ.

Fix x,y ∈ N and write

x∗πΩ[UV ∗]y = 〈U∗πΩ[xy∗], V ∗〉 .
On the event EΩU , ‖U∗πΩ[xy∗]‖F ≤ τ . So, as a function of V , f(V ) .= x∗πΩ[UV ∗]y is τ -Lipschitz. Since
the distribution of V is invariant under the orthogonal transformation V 7→ −V , f(V ) is a symmetric random
variable and 0 is a median. Hence, on the event EΩU the tail bound (43) implies that

PV |U,Ω [f(V ) > t] < exp
(
−mt

2

8τ2

)
. (56)

Set t = 16τ . A union bound over the ≤ exp(8m) elements of N ×N shows that on EΩU ,

PV |U,Ω
[
‖πΩ[UV ∗]‖2,2 > 64τ

]
≤ PV |U,Ω

[
sup

x,y∈N×N
x∗πΩ[UV ∗]y > 16τ

]
≤ exp (−24m) ,

and hence we can conclude that

PU,V,Ω [E1] ≥ 1− exp (−24m)− P[EcΩU ]
≥ 1− exp (−Cm+O(logm)) .
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Now, consider the combined event E1 ∩ EΩΘ. On this event, the representation in Lemma 2.6 is valid and

WUV
0 = −πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[UV ∗]. (57)

For any M , πΘ⊥ [M ] = πU⊥MπV ⊥ , ‖πΘ⊥ [M ]‖2,2 ≤ ‖M‖2,2, so

‖WUV
0 ‖2,2 ≤

∥∥∥∥∥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[UV ∗]

∥∥∥∥∥
2,2

≤ ‖πΩ [UV ∗]‖2,2 +

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k[UV ∗]

∥∥∥∥∥
2,2

. (58)

We have already addressed the first term. To bound the second, we expand our probability space as follows.
Consider Ũ and Ṽ distributed according to the Haar measure on Wm

m−1. Identify U and V with the first r
columns of Ũ and Ṽ , respectively, and write Û and V̂ for the remaining m − 1 − r columns. Notice that U
and V are indeed distributed according to the random orthogonal model of rank r, and that Û and V̂ follow
the random orthogonal model of rank m − r − 1 (although, of course, U and Û now dependent random
variables). Write ∥∥∥∥∥

∞∑
k=1

(πΩπΘπΩ)k [UV ∗]

∥∥∥∥∥
2,2

=

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
Ũ Ṽ ∗ − Û V̂ ∗

]∥∥∥∥∥
2,2

≤

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
Ũ Ṽ ∗

]∥∥∥∥∥
2,2

+

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
Û V̂ ∗

]∥∥∥∥∥
2,2

.

We next show that with overwhelming probability each of these terms is well-controlled. Notice that if
R ∈ SO (m− r − 1) is any orthogonal matrix, then the joint distribution Ũ , U , and Û is invariant under the
map

Ũ 7→ Ũ

[
I 0
0 R

]
. (59)

This follows from the right orthogonal invariance of the Haar measure on Wm
m−1 (see e.g., [5] Sec-

tion 1.4.3). Since this map preserves U and V , it also preserves Θ. Hence, the term of interest,∥∥∥∑∞k=1(πΩπΘπΩ)k
[
Û V̂ ∗

]∥∥∥
2,2

is equal in distribution to
∥∥∥∑∞k=1(πΩπΘπΩ)k

[
ÛRV̂ ∗

]∥∥∥
2,2

. The orthogonal

matrix R is independent of all of the other terms in this expression. This independence allows us to esti-
mate the norm by first bounding the operator norm of the map

∑∞
k=1(πΩπΘπΩ)k and then applying measure

concentration on SO (m− r − 1). For fixed x,y ∈ N , consider the quantity

x∗
∞∑
k=1

(πΩπΘπΩ)k
[
ÛRV̂ ∗

]
y =

〈
Û∗

( ∞∑
k=1

(πΩπΘπΩ)k[xy∗]

)
V̂ , R

〉
.= 〈M,R〉 .

This is a ‖M‖F -Lipschitz function of R. Since for any w ∈ Sm−1, Rw is uniformly distributed on Sm−1,
E[e∗iRw] = 0 for all i. So, E[R] = 0 and ER|M 〈M,R〉 = 0. On the event EΩΘ,

‖M‖F ≤
∞∑
k=1

(πΩπΘπΩ)k[xy∗] ≤ ‖πΩπΘπΩ‖F,F
1− ‖πΩπΘπΩ‖F,F

‖xy∗‖F ≤
4τ2

1− 4τ2
≤ 4τ

3
. (60)

Hence, on EΩΘ by (45)

PR|M [〈M,R〉 > γ(m) + t] < 2 exp
(
−9(m− r − 1)t2

128× τ2

)
, (61)

where γ(m) .=
4τ( rm ,ρs)2

1−4τ( rm ,ρs)2

√
8π

m−r−1 ≤ 1
3

√
8π

m−r−1 . For compactness of notation, set β(m, r) .=√
m−r−1
m . Then, setting t = 64τ

3β , union bounding over the ≤ exp(8m) pairs in N × N , and then moving
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from N ×N to Sm−1 × Sm−1 (losing at most a factor of 4) gives

PR|Ũ,V,Ω

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
ÛRV̂ ∗

]∥∥∥∥∥
2,2

>
256 τ

3β(m, r)
+ 4γ(m)

 < 2 exp (−24m) . (62)

And so,

PŨ,V,Ω

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
Û V̂ ∗

]∥∥∥∥∥
2,2

>
256 τ

3β(m, r)
+ 4γ(m)


= PR|Ũ,V,Ω

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
ÛRV̂ ∗

]∥∥∥∥∥
2,2

>
256 τ

3β(m, r)
+ 4γ(m)


≤ 2 exp (−24m) + P [EcΩΘ] ≤ exp (−Cm+O(logm)) .

An identical argument, this time randomizing over R̃ .=
[
I 0
0 R

]
shows that

PŨ,V,Ω

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)k
[
Ũ Ṽ ∗

]∥∥∥∥∥
2,2

>
256 τ

3β(m, r)
+ 4γ(m)

 ≤ exp (−Cm+O(logm)) . (63)

Combining terms yields the bound.

2.2.4 Effect of the error signs

We next consider the effect of the error signs. As in the previous proposition, we handle the k = 0 and
k = 1 . . .∞ parts of the representation in Lemma 2.6 separately.
Lemma 2.8. There exists a function φ(ρs) satisfying limρs↘0 φ(ρs) = 0, such that if E0 is distributed
according to the Bernoulli sign and support model with error probability ρs.

PΩ,Σ

[
‖sign(E0)‖2,2 ≥ φ(ρs)

√
m
]
≤ exp (−Cm) . (64)

Proof. We first provide a bound on the moment-generating-function for the iid random variables Yij
.=

sign(E0ij) of the form E[exp(tY )] ≤ exp(αt2). The moments of Y are

E[Y k] =

{ 1 k = 0,
0 k odd,
ρs k > 0, k even,

so E[exp(tY )] = 1 +
∑∞
k=1

ρst
2k

(2k)! . Since exp(αt2) = 1 +
∑∞
k=1

αkt2k

k! , it suffices to choose α such that

ρs ≤
(2k)!
k!

αk ∀ k = 1, 2, . . . .

Since (2k)!
k! ≥ kk, α ≥ maxk=1,2,...

1
kρ

1
k
s suffices. Consider the function ψ : [1,∞) × [0, 1] → R defined

by ψ(x, y) = 1
xy

1
x . ψ(1, y) = y, and for all y limx→∞ ψ(x, y) = 0. The only stationary point occurs at

x? = log(1/y), and hence for y > 0 its maximum on [1,∞) is ψ(x?(y), y) = max
(
y, 1

log(y−1)y
1

log(y−1)

)
.

Notice that limy↘0 ψ(x?(y), y) = 0, and that

E[exp(tY )] ≤ exp(ψ(x?(ρs), ρs)t2). (65)

Now, for any fixed pair x,y ∈ N , let Z .= x∗ sign(E0) y. Then

E[exp(tZ)] =
∏
ij

E[exp(txiyjYij)]

≤
∏
ij

exp(ψ(x?(ρs), ρs)t2(xiyj)2) = exp(ψ(x?(ρs), ρs)t2).
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Applying a Chernoff bound (and optimizing the exponent) gives

P [x∗ sign(E0)y > t] < exp
(
− t2

4ψ(x?(ρs), ρs)

)
. (66)

Union bounding (and recognizing that moving from N ×N to Sm−1 loses at most a factor of 4) gives

P
[
‖sign(E0)‖2,2 ≥ 4t

√
m
]
≤ exp

(
8m−m t2

4ψ(x?(ρs), ρs)

)
. (67)

If we set, e.g., t(ρs) = 8ψ1/2(x?(ρs), ρs), the probability of failure will be bounded by exp(−8m). Further
setting φ(ρs) = 4t(ρs) gives the statement of the lemma.

The above lemma goes part of the way to controlling the component of the initial dual vector induced by the
errors, H†[λ sign(E0)]. A straightforward Martingale argument, detailed in the following lemma, completes
the proof.

Lemma 2.9. Consider (U, V,Ω,Σ) drawn from the random orthogonal model of rank r < m with Bernoulli
error probability ρs and random signs, and suppose that r and ρs satisfy

τ (r/m, ρs) ≤ 1
4 . (68)

Then with probability at least 1−exp(−Cm+O(logm)) in (U, V,Ω,Σ), the solutionWE
0 to the optimization

problem
min ‖W‖F subj U∗W = 0, WV = 0, πΩ[W ] = −πΩ[λ sign(E0)] (69)

is unique, and satisfies ∥∥WE
0

∥∥
2,2
≤ φ(ρs) +

128τ(r/m, ρs)
3

, (70)

where φ(·) is the function defined in Lemma 2.8.

Proof. On event EΩΘ, the minimizer is unique, and can be expressed as

WE
0 = πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[λ sign(E0)].

Since πΘ⊥ is a contraction in the (2, 2) norm,

‖WE
0 ‖2,2 ≤

∥∥∥∥∥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[λ sign(E0)]

∥∥∥∥∥
2,2

≤ ‖πΩ[λ sign[E0]]‖2,2 +

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)kπΩ[λ sign(E0)]

∥∥∥∥∥
2,2

.

Lemma 2.8 controls the first term below φ(ρs) with overwhelming probability. For the second term, it is
convenient to treat sign(E0) as the projection of an m ×m iid Rademacher matrix Σ onto Ω: sign(E0) =
πΩ[Σ]. Fix x,y ∈ N , and notice that

x∗
∞∑
k=1

(πΩπΘπΩ)kπΩ[λ sign(E0)]y =

〈
λ

∞∑
k=1

(πΩπΘπΩ)k[xy∗],Σ

〉
.

.= 〈M,Σ〉.

On the event EΩΘ, M ∈ Rm×m has Frobenius norm at most 1√
m

4τ2

1−4τ2 ≤ 4τ
3
√
m

. Order the indices
(i, j) 1 ≤ i, j ≤ m arbitrarily, and consider the Martingale Z defined by Z0 = 0, Zk = Zk−1+Mik,jkΣik,jk .
The k-th Martingale difference is bounded by |Mik,jk |, and the overall squared `2-norm of the differences is
bounded by ‖M‖2F . Hence, by Azuma’s inequality,

P [〈M,Σ〉 > t] < exp
(
−9mt2

32τ2

)
. (71)
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Set t = 32τ
3 . A union bound over the ≤ exp(8m) elements in N ×N shows that on the event EΩΘ,

PΣ|U,V,Ω

∥∥∥∥∥
∞∑
k=1

(πΩπΘπΩ)kπΩ[λ sign(E0)]

∥∥∥∥∥
2,2

>
128τ

3

 ≤ exp (−24m) . (72)

Hence, PU,V,Ω,Σ
[∥∥∑∞

k=1(πΩπΘπΩ)kπΩ[λ sign(E0)]
∥∥

2,2
> 128τ

3

]
is bounded by

exp (−24m) + P[EcΩΘ] ≤ exp (−Cm+O(logm)) .

2.3 Controlled feedback for sparse matrices

We next bound the operator norm of the projection πΓ, restricted to row- and column-sparse matrices Ψc.

Lemma 2.10 (Representation of iterates). Let Θ,Γ,Ω be defined as above. Suppose that ‖πΩπΘ‖F,F < 1.
Then for all M ∈ Ω⊥,

πΓ[M ] = πΩ⊥πΘ

∞∑
k=0

(πΘπΩπΘ)kπΘ[M ]. (73)

Proof. For M ∈ Ω⊥,

vec[πΓM ] = [Q∗ | I•,Ω]
[

I P
P ∗ I

]−1 [
Q
IΩ,•

]
vec[M ]

= [Q∗ | I•,Ω]
[

I P
P ∗ I

]−1 [
Q vec[M ]

0

]
.

Under the condition of the lemma, ‖P‖2,2 < 1 so the above inverse is indeed well-defined, and can be
expressed via the Schur complement formula:

vec[πΓM ] = Q∗(I− PP ∗)−1Qvec[M ]− I•,ΩP
∗(I− PP ∗)−1Qvec[M ]

= πΩ⊥Q
∗(I− PP ∗)−1Qvec[M ]

= πΩ⊥Q
∗
∞∑
k=0

(PP ∗)kQvec[M ].

Recognizing that

Q∗
∞∑
k=0

(PP ∗)kQvec[M ] = vec

[
πΘ

∞∑
k=0

(πΘπΩπΘ)kπΘ[M ]

]
completes the proof.

Lemma 2.11. Fix any c ∈ (0, 1). Consider (U, V,Ω) drawn from the random orthogonal model of rank
r < m, with Bernoulli error probability ρs. Further suppose that r and ρs satisfy

τ
(
r
m , ρs

)
≤ 1

4
. (74)

Then with probability at least 1− exp (−Cm+O(logm)),

ξc ≤
32
9

(√
r
m +

√
c+ 2

√
H(c)

)
, (75)

where H(c) is the base-e binary entropy function.
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Proof. From the above representation, whenever ‖πΩπΘ‖F,F < 1,

ξc = sup
M ∈ Ψc

‖M‖F ≤ 1

∥∥∥∥∥πΩ⊥πΘ

∞∑
k=0

(πΘπΩπΘ)kπΘ[M ]

∥∥∥∥∥
F

≤

∥∥∥∥∥
∞∑
k=0

(πΘπΩπΘ)k
∥∥∥∥∥
F,F

sup
M ∈ Ψc

‖M‖F ≤ 1

‖πΘ[M ]‖F

≤ 1
1− ‖πΘπΩπΘ‖F,F

sup
M ∈ Ψc

‖M‖F ≤ 1

‖πΘ[M ]‖F .

Now,

sup
M ∈ Ψc

‖M‖F ≤ 1

‖πΘ[M ]‖F ≤ sup
M ∈ Ψc

‖M‖F ≤ 1

‖πUM‖F + ‖MπV ‖F

≤ sup
|I|≤cm

‖UI,•‖2,2 + sup
|J|≤cm

‖VJ,•‖2,2.

Identify U with the orthogonalization Z(Z∗Z)−1/2 of an m × r iid N (0, 1
m ) matrix Z. Then for any given

I ⊂ [m] of size cm, ‖UI,•‖2,2 ≤ ‖ZI,•‖2,2σmin(Z) . Now,

P
[
σmin(Z) > 1−

√
r/m− t1

]
< exp

(
−mt

2
1

2

)
. (76)

Meanwhile, for each I of size cm, again

P
[
‖ZI,•‖2,2 >

√
r/m+

√
c+ t2

]
< exp

(
−mt

2
2

2

)
. (77)

There are at most exp (mH(c) +O(logm)) such subsets I , where H(·) denotes the base-e binary entropy
function, so

P

[
max
I∈([m]

cm)
‖ZI,•‖2,2 >

√
r/m+

√
c+ t2

]
< exp

(
−m(t22/2−H(c)) +O(logm)

)
. (78)

Choosing t1 = 1
2 −

1
2

√
r
m , and set t2 = 2

√
H(c) and combining bounds gives

ξc ≤ 2

√
r/m+

√
c+ 2

√
H(c)

(1− 4τ(r/m, ρs)2)(1−
√
r/m)

. (79)

Noticing that
√
r/m < τ and applying the bound τ < 1/4 to the terms in the denominator completes the

proof.

2.4 Controlling the initial violations

In this section, we analyze the initial dual vector W0 given by the minimum Frobenius norm solution to the
equality constraints of the optimality condition (11), and show that for any constant β, the probability that
‖S 5

6
√
m

[UV ∗+W0]‖F > 3β approaches zero. We will treat the parts of UV ∗+W0 = UV ∗+H†[−UV ∗] +

H†[λ sign(E0)] separately, and use the following simple lemma to combine the bounds:

Lemma 2.12. For all matrices A,B, and α ∈ (0, 1),

‖SΩc

γ [A+B]‖F ≤ ‖SΩc

αγ [A]‖F + ‖SΩc

(1−α)γ [B]‖F . (80)
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Proof. Notice that for scalars x, |Sγ [x]| is a convex nonnegative function. Hence, for matrices X ∈ Rm×m,
‖SΩc

γ [X]‖F is again convex (see, e.g, [1] Example 3.14), and so

‖SΩc

γ [A+B]‖F =
∥∥∥SΩc

γ

[
αAα + (1− α) B

1−α

]∥∥∥
F

≤ α
∥∥∥SΩc

γ

[
A
α

]∥∥∥
F

+ (1− α)
∥∥∥SΩc

γ

[
B

1−α

]∥∥∥
F

= ‖SΩc

αγ [A]‖F + ‖SΩc

(1−α)γ [B]‖F .

The strategy, then, is to bound the expectation of ‖SΩc

λ/3[·]‖F for each of the three terms, using the following
lemma. It will turn out that for any prespecified p, we can chooseC0 such if r < C0

m
logm , the expected Frobe-

nius norm of the violations is O(m−p); an application of the Markov inequality then bounds the probability
that the value deviates above any fixed constant β.

Lemma 2.13. Let X be a symmetric random variable satisfying the (subgaussian) tail bound

P [X ≥ t] ≤ exp(−Ct2).

Let Y .= Sγ(X). Then

E
[
Y 2
]
≤ 2

C
exp

(
−Cγ2

)
. (81)

Proof. Since X is symmetric, Y is also symmetric, so

E[Y 2] = 4
∫ ∞

0

tP[Y ≥ t]dt ≤ 4
∫ ∞

0

t exp(−C(t+ γ)2)dt

≤ 4
∫ ∞
γ

(s− γ) exp(−Cs2)ds ≤ 4
∫ ∞
γ

s exp(−Cs2)ds.

Lemma 2.14. Let X be a random variable satisfying a tail bound of the form

P [|X| ≥ a+ t] ≤ C1 exp(−C2t
2).

Suppose γ > a and let Y .= Sγ(X). Then

E
[
Y 2
]
≤ C1

C2
exp

(
−C2(γ − a)2

)
. (82)

Proof.

E[Y 2] = 2
∫ ∞

0

tP[|Y | ≥ t]dt = 2
∫ ∞

0

tP[|X| ≥ γ + t]dt

= 2
∫ ∞
γ

(s− γ)P[|X| ≥ s]ds ≤ 2C1

∫ ∞
γ

(s− γ) exp
(
−C2(s− a)2

)
ds

= 2C1

∫ ∞
γ−a

(q + a− γ) exp(−C2q
2)dq ≤ C1

C2
exp

(
−C2(γ − a)2

)
.

In the previous section, we were interested in controlling the quadratic products x∗W0y involving the initial
dual vector W0 and arbitrary unit vectors. Here, because the soft thresholding operator Sγ acts elementwise,
in this section, we require tighter control over e∗iW0ej . Because there are only m2 pairs (ei, ej), much
tighter control can be established, as is formalized in the following lemma:
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Lemma 2.15. Consider U, V drawn from the random orthogonal model of rank r. For any κ > 0, define the
events

EU (κ) : max
i
‖Ui,•‖2 ≤

√
1

κ logm
,

EV (κ) : max
i
‖Vi,•‖2 ≤

√
1

κ logm
.

Then if r < C0m
log(m) for some C0 <

1
4κ ,

PU,V [EU (κ) ∩ EV (κ)] ≥ 1− 2m exp
(
− (κ−1/2 − 2

√
C0)2m

8 logm

)
. (83)

On these good events,

max
i,j

∥∥πΘ[eie∗j ]
∥∥
F
≤ 2√

κ logm
. (84)

Proof. Notice that f(U) .= ‖Ui,•‖2 is a 1-Lipschitz function of U . Since
∑
i ‖Ui,•‖22 = ‖U‖2F = r, by

symmetry E[‖Ui,•‖22] = r
m . By the Markov inequality, f has a median no larger than 2E[f ] ≤ 2

√
E[f2] =

2
√

r
m . Invoking Lipschitz concentration on Wm

r and union bounding over the m choices of i,

P
[
max
i
‖Ui,•‖2 >

√
1

κ logm

]
≤ m exp

(
−m

8

(√
1

κ logm
− 2
√

r

m

)2
)
. (85)

An identical calculation applies to EV (κ). Summing the two probabilities of failure completes the proof.

Lemma 2.16. Let (U, V ) be distributed according to the random orthogonal model of rank r < m. For any
fixed Ω ⊆ [m]× [m] and κ > 0, on the good event EU (κ)

EV |U

∥∥∥∥∥SΩc

1
3
√
m

[UV ∗]

∥∥∥∥∥
F

≤ 4√
κ logm

m(
1
2−

κ
144 ). (86)

Proof. Fix U and consider [UV ∗]i,j = Ui,•V
∗
j,• as a ‖Ui,•‖2-Lipschitz function of V . On EU (κ), the Lips-

chitz constant is bounded by (κ logm)−1/2, and

PV |U [[UV ∗]ij > t] < exp
(
−κt

2m logm
8

)
. (87)

By Lemma 2.13, on EU ,

EV |U
[(
S 1

3
√
m

[[UV ∗]ij ]
)2
]
≤ 16
κm logm

exp
(
− κ

72
log(m)

)
. (88)

Hence, summing over ≤ m2 pairs (i, j) ∈ Ωc

EV |U
[∥∥∥SΩc

1
3
√
m

[UV ∗]
∥∥∥2

F

]
≤ 16
κ logm

m(1− κ
72 ). (89)

Applying the Cauchy-Schwarz inequality completes the proof.

Lemma 2.17. Fix any β > 0, κ > 0. Consider (U, V,Ω) drawn from the random orthogonal model of rank
r, with Bernoulli error probability ρs, and suppose that r, ρs satisfy

r < C0
m

logm
, C0 <

1
4κ
, τ

(
r
m , ρs

)
<

1
4
. (90)

Then there exists m0, C1, C2 > 0 such that for all m > m0,

PU,V,Ω
[∥∥∥SΩc

1
3
√
m

[
H† [UV ∗]

]∥∥∥
F
> β

]
≤ C1m

1
2−

κ
2048

β
√
κ logm

+ PU,V,Ω [EU (κ)c ∪ EV (κ)c ∪ EcΩΘ] .
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Proof. We use a similar splitting trick to that in Lemma 2.7. Again let Ũ and Ṽ be uniformly distributed
on Wm

m−1. Identify U and V with their first r columns, and let Û and V̂ denote the remaining m − r − 1
columns. Write∥∥∥SΩc

1
3
√
m

[
H†[UV ∗]

]∥∥∥
F

=
∥∥∥SΩc

1
3
√
m

[
H†
[
Ũ Ṽ ∗ − Û V̂ ∗

]]∥∥∥
F

≤
∥∥∥SΩc

1
6
√
m

[
H†
[
Ũ Ṽ ∗

]]∥∥∥
F

+
∥∥∥SΩc

1
6
√
m

[
H†
[
Û V̂ ∗

]]∥∥∥
F
.

We first address the second term. On the event EΩΘ,∥∥∥SΩc
1

6
√
m

[
H†
[
Û V̂ ∗

]]∥∥∥
F

=

∥∥∥∥∥SΩc
1

6
√
m

[
πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ

[
Û V̂ ∗

]]∥∥∥∥∥
F

=

∥∥∥∥∥SΩc
1

6
√
m

[
πΩ⊥πΘ⊥πΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ

[
Û V̂ ∗

]]∥∥∥∥∥
F

=

∥∥∥∥∥SΩc
1

6
√
m

[
πΘπΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ

[
Û V̂ ∗

]]∥∥∥∥∥
F

.

Here, we have used that πΩ⊥πΘ⊥πΩ = πΩ⊥(I− πΘ)πΩ = −πΩ⊥πΘπΩ. Now, since for any R ∈ SO(m−
r − 1), the joint distribution of (Ũ , Ṽ ,Ω) is invariant under the map

Ũ 7→ Ũ

[
I 0
0 R

]
. (91)

Moreover, this map preserves U and V , and therefore H†. Hence, if R is distributed accord-

ing to the invariant measure on SO(m − r − 1),
∥∥∥∥SΩc

1
6
√
m

[
H†[Û V̂ ∗]

]∥∥∥∥
F

is equal in distribution to∥∥∥∥SΩc
1

6
√
m

[
πΘπΩ

∑∞
k=0(πΩπΘπΩ)kπΩ[ÛRV̂ ∗]

]∥∥∥∥
F

. Consider the i, j element of this matrix,

e∗i πΘπΩ

∞∑
k=0

(πΩπΘπΩ)kπΩ[ÛRV̂ ∗]ej =

〈
Û∗

( ∞∑
k=0

(πΩπΘπΩ)kπΩπΘ[eie∗j ]

)
V̂ , R

〉
.= 〈M,R〉 .

This is a ‖M‖F -Lipschitz function of R. On EU (κ) ∩ EV (κ) ∩ EΩΘ,

‖M‖F ≤ ‖πΩπΘ‖F,F
1− ‖πΩπΘπΩ‖F,F

‖πΘ[eie∗j ]‖F ≤
4τ

1− 4τ2

1√
κ log(m)

≤ 4
3
√
κ logm

.

Let δ .=
√

m−r−1
m . Since ER [〈M,R〉] = 0, the tail bound (45) implies that

PR|M [〈M,R〉 > q(m) + t] < 2 exp
(
−9κδ2m log(m)t2

32

)
, (92)

where

q(m) =
4
3δ

√
8π

κm logm
. (93)

By Lemma 2.14, ER|Ũ,Ṽ ,Ω
[
S 1

6
√
m

[〈M,R〉]2
]

≤ 64
9κδ2m log(m)

exp

−κδ2 log(m)
32

(
1
2
− 4
δ

√
8π

κ log(m)

)2
 . (94)

For compactness, let

ζ(r/m, ρs,m) .= 1− κδ2

32

(
1
2
− 4
δ

√
8π

κ log(m)

)2

. (95)
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Then summing over the ≤ m2 elements in Ωc gives that on the event EU (κ) ∩ EV (κ) ∩ EΩΘ,

ER|Ũ,Ṽ ,Ω

[∥∥∥SΩc
1

6
√
m

[
H†
[
ÛRV̂ ∗

]]∥∥∥2

F

]
≤ 64

9κδ2 logm
mζ . (96)

By the Markov inequality, on EU (κ) ∩ EV (κ) ∩ EΩΘ,

PR|Ũ,Ṽ ,Ω

[∥∥∥SΩc
1

6
√
m

[
H†
[
ÛRV̂ ∗

]]∥∥∥
F
>
β

2

]
<

16mζ/2

3βδ
√
κ log(m)

. (97)

An identical calculation shows that if we set R̃ =
[
I 0
0 R

]
∈ SO(m− 1), on EU (κ) ∩ EV (κ) ∩ EΩΘ

PR|Ũ,Ṽ ,Ω

[∥∥∥SΩc
1

6
√
m

[
H†
[
Ũ R̃Ṽ ∗

]]∥∥∥
F
>
β

2

]
<

16mζ/2

3βδ
√
κ log(m)

. (98)

So,

PU,V,Ω
[∥∥∥SΩc

1
3
√
m

[
H† [UV ∗]

]∥∥∥
F
> β

]
<

32mζ/2

3βδ
√
κ log(m)

+ P[(EU (κ) ∩ EV (κ))c] + P[EcΩΘ].

Under the assumptions of the Lemma, δ =
√

m−r−1
m ≥

√
1− C0

logm −m−1. Hence, ∃mδ > 0 such that for

all m > mδ , δ(m, r) > 1√
2

and so ζ ≤ 1− κ
64

(
1
2 − 16

√
π

κ logm

)2

. Furthermore, for any κ, ∃mκ such that

for m > mκ, 16
√

8π
κ logm < 1

4 . For m > max(mδ,mκ), ζ < 1 − κ
1024 . For such sufficiently large m, the

multiplier 32
3δ ≤

32
√

2
3 . Choosing this value for C1 and setting m0 = max(mδ,mκ) gives the statement of

the lemma.

Lemma 2.18 (Box violations induced by error). Fix any α ∈ (0, 1). Let (U, V,Ω,Σ) be distributed according
to the random orthogonal model of rank r and with error probability ρs, with r and ρs satisfying

τ(r/m, ρs) < 1/4. (99)

Then on the good event EU (κ) ∩ EV (κ) ∩ EΩΘ,

EΣ|U,V,Ω

∥∥∥SΩc
α√
m

[
H† [λ sign(E0)]

]∥∥∥
F
≤ 2√

κ log(m)
m

1
2−

ακ
4 . (100)

Proof. We can exploit independence of Ω and Σ by writing sign(E0) = πΩ[Σ]. From the representation in
the previous lemma, ∥∥∥SΩc

α√
m

[
H† [λ sign(E0)]

]∥∥∥
F

=

∥∥∥∥∥S α√
m

[ ∞∑
k=1

(πΘπΩ)k [λΣ]

]∥∥∥∥∥
F

.

The i, j element of the matrix of interest is

e∗i

∞∑
k=1

(πΘπΩ)k [λΣ] ej =

〈
λ

∞∑
k=1

(πΩπΘ)kπΘ[eie∗j ],Σ

〉
.= 〈M,Σ〉.

On EU (κ) ∩ EV (κ), ‖πΘ[eie∗j ]‖F ≤
√

1
κ logm . On EΩΘ,

∥∥∑∞
k=1(πΘπΩ)k

∥∥
F,F
≤ 2τ

1−2τ ≤ 1, and so

‖M‖F ≤ 1√
κm logm

. The same Martingale argument as in Lemma 2.9 shows that

PΣ [〈M,Σ〉 > t] < exp
(
− t2

2‖M‖2F

)
= exp

(
−κm log(m)t2

2

)
. (101)

Then by Lemma 2.13,

EΣ|U,V,Ω

[(
S α√

m
[〈M,Σ〉]

)2
]
≤ 2
κm log(m)

exp
(
−ακ log(m)

2

)
. (102)

Summing over the≤ m2 elements in Ωc to bound E[‖·‖2F ] and then applying the Cauchy-Schwarz inequality
establishes the result.

19



The three lemmas in this section combine to yield the following bound on the Frobenius norm of the viola-
tions.
Corollary 2.19 (Control of box violations). Fix any β > 0, p > 0. There exist constants C0(p) > 0,
ρ?s > 0, m0 with the following property: if m > m0 and (U, V,Ω,Σ) are distributed according to the
random orthogonal model of rank

r < C0(p)
m

logm
, (103)

with Bernoulli error probability ρs ≤ ρ?s and random signs, then

PU,V,Ω,Σ
[∥∥∥SΩc

5
6
√
m

[UV ∗ +W0]
∥∥∥
F
≤ 3β

]
≥ 1 − C

β
m−p.

Proof. By Lemma 2.12,∥∥∥SΩc
5

6
√
m

[UV ∗ +W0]
∥∥∥
F

≤
∥∥∥SΩc

1
3
√
m

[UV ∗]
∥∥∥
F

+
∥∥∥SΩc

1
3
√
m

[H† [UV ∗]]
∥∥∥
F

+
∥∥∥SΩc

1
6
√
m

[
H†[λ sign(E0)]

]∥∥∥
F
.

We use the three previous lemmas to estimate each of these terms. Set κ = 2048p + 1024, and C0 = 1
16κ .

From Lemma 2.16 and the Markov inequality, for any Ω, on EU ,

PV |U
[∥∥∥SΩc

1
3
√
m

[UV ∗]
∥∥∥
F
≥ β

]
≤ 4

β
√
κ log(m)

m1/2−κ/144,

and so

PU,V,Ω,Σ
[∥∥∥SΩc

1
3
√
m

[UV ∗]
∥∥∥
F
≥ β

]
≤ 4
β
√
κ log(m)

m1/2−κ/144 + P[EU (κ)c] = o
(
m−p

)
.

From Lemma 2.18, PU,V,Ω,Σ
[∥∥∥∥SΩc

1
6
√
m

[
H†[λ sign(E0)]

]∥∥∥∥
F

≥ β
]

≤ 2√
κ log(m)

m1/2−κ/24 + P [(EU (κ) ∩ EV (κ))c] + P [EcΩΘ] = o
(
m−p

)
.

Finally, by Lemma 2.17 PU,V,Ω,Σ
[∥∥∥∥SΩc

1
3
√
m

[
H†[UV ∗]

]∥∥∥∥
F

≥ β
]

≤ C1

β
√
κ log(m)

m1/2−κ/2048 + P [(EU (κ) ∩ EV (κ))c] + P [EcΩΘ]

=
C1m

−p

β
√
κ log(m)

+ o
(
m−p

)
.

Summing the three failure probabilities completes the proof.

2.5 Pulling it all together

We close by fitting the probabilistic lemmas in the previous three sections together to give a proof of our main
result, Theorem 1.

Proof. We show that C0 and m0 can be selected such that with high probability the conditions of Lemma
1.3 are satisfied. Set ε = 1

6
√
m

. Fix m0 large enough and c? > 0 small enough that on the good event from
Lemma 2.11, as long as C0 ≤ 1,

ξc? ≤
32
9

(√
1

logm0
+
√
c? + 2

√
H(c?)

)
≤ 1

2 . (104)

We then must show that

‖UV ∗ +W0‖1,2 + 2
∥∥∥SΩc

5
6
√
m

[UV ∗ +W0]
∥∥∥
F
≤ 5

6

√
c?. (105)
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Notice that
‖UV ∗ +W0‖1,2 ≤ ‖UV ∗‖1,2 + ‖W0‖1,2 ≤ max

i
‖Vi,•‖2 + ‖W0‖2,2. (106)

From Lemmas 2.7 and 2.9, for any choice of C0, ‖W0‖2,2 is with overwhelming probability bounded by a
linear function of τ . For any fixed C0, limm→∞ τ(r/m, ρs) = 2

√
ρs. Hence, by choosing m0 large and ρs

small, we can bound

‖W0‖2,2 ≤
5
18

√
c? (107)

with overwhelming probability. Meanwhile, on the overwhelmingly likely good event EV ,

‖Vi,•‖2 ≤
5
18

√
c? (108)

for m sufficiently large. Finally, fix β = 5
36

√
c? and choose C0 small enough and m0 large enough that the

conditions of Corollary 2.19 are satisfied. Then, with probability at least 1 − Cm−p, (17) is satisfied. The
same calculations apply to (18).

Finally, on these good events,

‖W0‖2,2 +
1

1− ξc

∥∥∥SΩc
5

6
√
m

[UV ∗ +W0]
∥∥∥
F
≤ 5

18

√
c? + 2× 5

36

√
c? < 1, (109)

so (19) holds. By Lemma 1.3, then, there exists a certifying dual vector, and the proof is complete.

3 Implications on Low-Rank Matrix Completion

Our result has strong implications for the low-rank matrix completion problem studied in [3, 4, 2]. In matrix
completion, the goal is to recover a low rank matrix A0 from an observation consisting of a known subset
Υ .= [m] × [m] \ Ω of its entries.1 [3] and [4] studied the following convex programming heuristic for the
matrix completion problem

A0 = arg min ‖A‖∗ subj A(i, j) = A0(i, j) ∀ (i, j) ∈ Υ. (110)

Duality considerations in [3] give the following characterization ofA0 that can be recovered by solving (110):

Lemma 3.1 ([3], Lemma 3.1). Let A0 ∈ Rm×m be a rank-r matrix with reduced singular value
decomposition USV ∗. As above, let

Θ
.
= span

(
{UM∗ |M ∈ Rm×r} ∪ {MV ∗ |M ∈ Rm×r}

)
⊂ Rm×m. (111)

Suppose that2

Θ ∩ {M ∈ Rm×m | πΥ[M ] = 0} = {0} (112)

and that there exists a matrix Y such that

{ πΘ[Y ] = UV ∗, πΥ⊥ [Y ] = 0, ‖πΘ⊥ [Y ]‖2,2 < 1 } . (113)

Then A0 is the unique solution to the semidefinite program

min ‖A‖∗ subj πΥ[A] = πΥ[A0]. (114)

Candes and collaborators then consider the minimum Frobenius solution Y0 to the system of equations (113)
and show that if the number of observations |Υ| is large enough, ‖Y0‖2,2 is bounded below one with high
probability. Recall that in Section 2, we analyzed the operator norm of the minimum Frobenius norm solution
to a similar system of equations. In fact, we will see that Y0 is exactly equal to UV ∗+WUV

0 , where WUV
0 is

the part of the initial (RPCA) dual vector that was induced by the singular vectors of A0. Using Lemma 2.7,
the operator norm of WUV

0 can be bounded below one with overwhelming probability, even in a proportional
growth setting. This yields Theorem 2, which we formally prove below:

1In [3], Ω denotes this set.
2The first condition is equivalent to assuming that the sampling operator πΥ is injective when restricted to the subspace

Θ. We thank Yaniv Plan of Caltech for pointing out that this condition was omitted from an early version of this work.
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Proof. Notice that (113) is feasible if and only if the system

{ πΘ[W ] = 0, πΥ⊥ [W ] = πΥ⊥ [−UV ∗], ‖W‖2,2 < 1 } (115)

is feasible in W .= Y − UV ∗. Here, Υ⊥ is the set of missing elements from the matrix to be completed;
we can identify this set with the set of corrupted entries Ω in the low-rank recovery problem that is the main
focus of this paper. This is again a random subset of [m]× [m] in which the inclusion of each pair (i, j) is an
independent Bernoulli(ρs) random variable. Hence, if we can show that the matrix WUV

0 defined in Lemma
2.7 as the minimum Frobenius norm solution to the equality constraints πΘ[W ] = 0, πΩ[W ] = πΩ[−UV ]
has operator norm bounded below 1, we will have further established that A0 uniquely solves (110), and
hence can be efficiently recovered by nuclear norm minimization. Lemma 2.7 immediately implies Theorem
2 as follows.

First, notice that max(ρr, ρs) < 1
289 =⇒ τ(ρr, ρs) < 1

4 . Under this condition, with probability at least
1− exp (Cm+O(logm)), the minimizer WUV

0 is uniquely defined and satisfies

‖WUV
0 ‖2,2 ≤ 64τ(ρr, ρs)

(
1 + 8

3

√
1

1− ρr −m−1

)
+ 8

3

√
2π

(1− ρr)m− 1
. (116)

Choose m0 large enough that the second term is < 1
2 and 1 + 8

3

√
1

1−ρr−m−1 ≤ 4. Then on the above good

event, ‖WUV
0 ‖2,2 < 256τ(ρr, ρs) + 1

2 . For ρr, ρs sufficiently small, this is bounded below one: for example,
max(ρr, ρs) < 1

20492 suffices.3

Under this condition, a dual vector Y satisfying (113) exists with high probability. By Lemma 2.2, the in-
jectivity condition (113) is also satisfied with overwhelming probability, and A0 is indeed the unique optimal
solution to the nuclear norm minimization problem (114).

Thus, matrices A0 distributed according to the random orthogonal model of rank as large as r = Cm can
be recovered from incomplete subsets Υ of size ≤ (1 − ρs)m2. This is the first result to suggest that matrix
completion should succeed in such a proportional growth scenario. The previous best result forA0 distributed
according to the random orthogonal model, due to [4], showed that

|Υ| = Cmr log8(m) (117)

observations suffice. When r ≥ m
C log8(m)

, this result becomes empty, since in this case the prescribed number
of measurements exceeds m2.

The fact that our result holds in proportional growth may seem surprising in light of discussions in [4] – as
discussed there, if all one assumes is that the singular spaces of A0 are incoherent with the standard basis,
then |Υ| = O(mr logm) measurements are necessary. It is important to note, though, that the singular
spaces of matrices A0 distributed according to the random orthogonal model satisfy rich regularity properties
in addition to incoherence. In particular, the submatrix norm considerations used in bounding ‖πΘπΩ‖F,F
in our proof of Theorem 1 can be viewed as a kind of restricted isometry property for the singular vectors U
and V . Furthermore, our proofs make heavy use of the independence of U and V in the random orthogonal
model. Independence and orthogonal invariance allow us to introduce an auxiliary randomization R over the
choice of basis for U , decoupling H† (which only depends on the subspace spanned by U and not on any
choice of basis for the space) from UV ∗, which very clearly does depend on the choice of basis. Finally, one
should also note that our Theorem 2 only supersedes (117) for relatively large rank r. For smaller (say fixed)
rank r, (117) remains the strongest available result for matrix completion in the random orthogonal model.
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