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Abstract

We study minimax rates for estimating high-dimensional nonparametric regression mod-
els with sparse additive structure and smoothness constraints. More precisely, our goal
is to estimate a functionf∗ : R

p → R that has an additive decomposition of the form
f∗(X1, . . . ,Xp) =

∑
j∈S h∗

j (Xj), where each component functionh∗
j lies in some class

H of “smooth” functions, andS ⊂ {1, . . . , p} is an unknown subset with cardinalitys = |S|.
Givenn i.i.d. observations off∗(X) corrupted with additive white Gaussian noise where the
covariate vectors(X1,X2,X3, ...,Xp) are drawn with i.i.d. components from some distribu-
tion P, we determine lower bounds on the minimax rate for estimating the regression function
with respect to squared-L2(P) error. Our main result is a lower bound on the minimax rate
that scales asmax

( s log(p/s)
n , s ǫ2n(H)

)
. The first term reflects the sample size required for

performingsubset selection, and is independent of the function classH. The second term
s ǫ2n(H) is ans-dimensional estimationterm corresponding to the sample size required for
estimating a sum ofs univariate functions, each chosen from the function classH. It depends
linearly on the sparsity indexs but is independent of the global dimensionp. As a special case,
if H corresponds to functions that arem-times differentiable (anmth-order Sobolev space),
then thes-dimensional estimation term takes the formsǫ2n(H) ≍ s n−2m/(2m+1). Either of
the two terms may be dominant in different regimes, depending on the relation between the
sparsity and smoothness of the additive decomposition.

1 Introduction

Many problems in modern science and engineering involve high-dimensional data, by which we mean that the
ambient dimensionp in which the data lies is of the same order or larger than the sample sizen. A simple
example is parametric linear regression under high-dimensional scaling, in which the goal is to estimate a
regression vectorβ∗ ∈ R

p based onn samples. In the absence of additional structure, it is impossible to
obtain consistent estimators unless the ratiop/n converges to zero which precludes the regimep ≫ n. In
many applications, it is natural to impose sparsity conditions, such as requiring thatβ∗ have at mosts non-zero
parameters for somes ≪ p. The method ofℓ1-regularized least squares, also known as the Lasso algorithm [14],
has been shown to have a number of attractive theoretical properties for such high-dimensional sparse models
(e.g., [1, 19, 10]).

Of course, the assumption of a parametric linear model may betoo restrictive for some applications. Accord-
ingly, a natural extension is the non-parametric regression modely = f∗(x1, . . . , xp)+w, wherew ∼ N(0, σ2)
is additive observation noise. Unfortunately, this general non-parametric model is known to suffer severely from
the “curse of dimensionality”, in that for most natural function classes, the sample sizen required to achieve
a given estimation accuracy grows exponentially in the dimension. This challenge motivates the use of addi-
tive non-parametric models (see the book [6] and referencestherein), in which the functionf∗ is decomposed
additively as a sumf∗(x1, x2, ..., xp) =

∑p
j=1 h∗

j (xj) of univariate functionsh∗
j . A natural sub-class of these

1



models are thesparse additive models, studied by Ravikumar et. al [12], in which

f∗(x1, x2, ..., xp) =
∑

j∈S

h∗
j (xj), (1)

whereS ⊂ {1, 2, . . . , p} is someunknownsubset of cardinality|S| = s.

A line of past work has proposed and analyzed computationally efficient algorithms for estimating regression
functions of this form. Just asℓ1-based relaxations such as the Lasso have desirable properties for sparse
parametric models, similarℓ1-based approaches have proven to be successful. Ravikumar et al. [12] propose a
back-fitting algorithm to recover the component functionshj and prove consistency in both subset recovery and
consistency in empiricalL2(Pn) norm. Meier et al. [9] propose a method that involves a sparsity-smoothness
penalty term, and also demonstrate consistency inL2(P) norm. In the special case thatH is a reproducing
kernel Hilbert space (RKHS), Koltchinskii and Yuan [7] analyze a least-squares estimator based on imposing
an ℓ1 − ℓH-penalty. The analysis in these paper demonstrates that under certain conditions on the covariates,
such regularized procedures can yield estimators that are consistent in theL2(P)-norm even whenn ≪ p.

Of complementary interest to the rates achievable by practical methods are the fundamental limits of the esti-
mating sparse additive models, meaning lower bounds that apply to any algorithm. Although such lower bounds
are well-known under classical scaling (wherep remains fixed independent ofn), to the best of our knowledge,
lower bounds for minimax rates on sparse additive models have not been determined. In this paper, our main
result is to establish a lower bound on the minimax rate inL2(P) norm that scales asmax

( s log(p/s)
n , sǫ2n(H)

)
.

The first terms log(p/s)
n is a subset selection term, independent of the univariate function spaceH in which

the additive components lie, that reflects the difficulty of finding the subsetS. The second termsǫ2n(H) in an
s-dimensional estimation term, which depends on the low dimensions but not the ambient dimensionp, and
reflects the difficulty of estimating the sum ofs univariate functions, each drawn from function classH. Either
the subset selection ors-dimensional estimation term dominates, depending on the relative sizes ofn, p, and
s as well asH. Importantly, our analysis applies both in the low-dimensional setting (n ≫ p) and the high-
dimensional setting (p ≫ n) provided thatn, p ands are going to∞. Our analysis is based on information-
theoretic techniques centered around the use of metric entropy, mutual information and Fano’s inequality in
order to obtain lower bounds. Such techniques are standard in the analysis of non-parametric procedures under
classical scaling [5, 2, 17], and have also been used more recently to develop lower bounds for high-dimensional
inference problems [16, 11].

The remainder of the paper is organized as follows. In the next section, the results are stated including appropri-
ate preliminary concepts, notation and assumptions. In Section 3, we state the main results, and provide some
comparisons to the rates achieved by existing algorithms. In Section 4, we provide an overview of the proof.
We discuss and summarize the main consequences in Section 5.

2 Background and problem formulation

In this paper, we consider a non-parametric regression model with random design, meaning that we maken
observations of the form

y(i) = f∗(X(i)) + w(i), for i = 1, 2, . . . , n. (2)

Here the random vectorsX(i) ∈ R
p are the covariates, and have elementsX

(i)
j drawn i.i.d. from some un-

derlying distributionP. We assume that the noise variablesw(i) ∼ N (0, σ2) are drawn independently, and
independent of allX(i)’s. Given a base classH of univariate functions with norm‖ · ‖H, consider the class of
functionsf : R

p → R that have an additive decomposition:

F : =
{
f : R

p → R | f(x1, x2, ..., xp) =

p∑

j=1

hj(xj), and ‖hj‖H ≤ 1 ∀j = 1, . . . , p
}
.

Given some integers ∈ {1, . . . , p}, we define the function classF0(s), which is a union of
(
p
s

)
s-dimensional

subspaces ofF , given by

F0(s) :=
{
f ∈ F |

p∑

j=1

I(hj 6= 0) ≤ s
}
. (3)

Theminimax rateof estimation overF0(s) is defined by the quantitymin bf maxf∗∈F0(s) E‖f̂−f∗‖2
L2(P), where

the expectation is taken over the noisew, and randomness in the sampling, andf̂ ranges over all (measurable)
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functions of the observations{(y(i),X(i))}n
i=1. The goal of this paper is to determine lower bounds on this

minimax rate.

2.1 Inner products and norms

Given a univariate functionhj ∈ H, we define the usualL2(P) inner product

〈hj , h
′
j〉L2(P) : =

∫

R

hj(x)h′
j(x) dP(x).

(With a slight abuse of notation, we useP to refer to the measure overR
p as well as the induced marginal

measure in each direction defined overR). Without loss of generality (re-centering the functions as needed), we
may assume

E[hj(X)] =

∫

R

hj(x) dP(x) = 0,

for all hj ∈ H. As a consequence, we haveE[f(X1, . . . ,Xp)] = 0 for all functionsf ∈ F0(s). Given our
assumption that the covariate vectorX = (X1, . . . ,Xp) has independent components, theL2(P) inner product
onF has the additive decomposition〈f, f ′〉L2(P) =

∑p
j=1 〈hj , h

′
j〉L2(P). (Note that if independence were not

assumed theL2(P) inner product overF would involve cross-terms.)

2.2 Kullback-Leibler divergence

Since we are using information theoretic techniques, we will be using the Kullback-Leibler (KL) divergence as a
measure of “distance” between distributions. For a given pair of functionsf andf̃ , consider then-dimensional

vectorsf(X) =
(
f(X(1)), f(X(2)), . . . , f(X(n))

)T
andf̃(X) =

(
f̃(X(1)), f̃(X(2)), . . . , f̃(X(n))

)T
. Since

Y |f(X) ∼ N (f(X), σ2In×n) andY |f̃(X) ∼ N (f̃(X), σ2In×n),

D(Y |f(X) ‖Y |f̃(X)) =
1

2σ2
‖f(X) − f̃(X)‖2

2. (4)

We also use the notationD(f ‖ f̃) to mean the average K-L divergence between the distributions ofY induced
by the functionsf andf̃ respectively. Therefore we have the relation

D(f ‖ f̃) = EX

[
D(Y |f(X) ‖Y |f̃(X))

]

=
n

2σ2
‖f − f̃‖2

L2(P). (5)

This relation between average K-L divergence and squaredL2(P) distance plays an important role in our proof.

2.3 Metric entropy for function classes

In this section, we define the notion of metric entropy, whichprovides a way in which to measure the relative
sizes of different function classes with respect to some metric ρ. More specifically, central to our results is the
metric entropy ofF0(s) with respect to theL2(P) norm.

Definition 1 (Covering and packing numbers). Consider a metric space consisting of a setS and a metric
ρ : S × S → R+.

(a) An ǫ-covering ofS in the metricρ is a collection{f1, . . . , fN} ⊂ S such that for allf ∈ S, there
exists somei ∈ {1, . . . , N} with ρ(f, f i) ≤ ǫ. Theǫ-covering numberNρ(ǫ) is the cardinality of the
smallestǫ-covering.

(b) An ǫ-packing ofS in the metricρ is a collection{f1, . . . , fM} ⊂ S such thatρ(f i, f j) ≥ ǫ for all
i 6= j. Theǫ-packing numberMρ(ǫ) is the cardinality of the largestǫ-packing.

The covering and packing entropy (denoted bylog Nρ(ǫ) andlog Mρ(ǫ) respectively) are simply the logarithms
of the covering and packing numbers, respectively. It can beshown that for any convex set, the quantities
log Nρ(ǫ) andlog Mρ(ǫ) are of the same order (within constant factors independent of ǫ).
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In this paper, we are interested in packing (and covering) subsets of the function classF0(s) in theL2(P) metric,
and so drop the subscriptρ from here onwards. En route to characterizing the metric entropy ofF0(s), we need
to understand the metric entropy of the unit balls of our univariate function classH—namely, the sets

BH(1) := {h ∈ H | ‖h‖H ≤ 1}.
The metric entropy (both covering and packing entropy) for many classes of functions are known. We provide
some concrete examples here:

(i) Consider the classH = {hβ : R → R | hβ(x) = βx} of all univariate linear functions with the norm
‖hβ‖H = |β|. Then it is known [15] that the metric entropy ofBH(1) scales aslog M(ǫ;H) ∼ log(1/ǫ).

(ii) Consider the classH = {h : [0, 1] → [0, 1] | |h(x) − h(y)| ≤ |x − y|} of all 1-Lipschitz func-
tions on[0, 1] with the norm‖h‖H = supx∈[0,1] |h(x)|. In this case, it is known [15] that the metric entropy
scales aslog MH(ǫ;H) ∼ 1/ǫ. Compared to the previous example of linear models, note that the metric
entropy grows much faster asǫ → 0, indicating that the class of Lipschitz functions is much richer.

(iii) Consider the class of Sobolev spacesWm for m ≥ 1, consisting of all functions that havem derivatives,
and themth derivative is bounded inL2(P) norm. In this case, it is known thatlog M(ǫ;H) ∼ ǫ−

1
m (e.g., [3]).

Clearly, increasing the smoothness constraintm leads to smaller classes. Such Sobolev spaces are a particular
class of functions whose packing/covering entropy grows ata rate polynomial in1ǫ .

In our analysis, we require that the metric entropy ofBH(1) satisfy the following technical condition:

Assumption 1. Using log M(ǫ;H) to denote the packing entropy of the unit ballBH(1) in theL2(P)-norm,
assume that there exists someα ∈ (0, 1) such that

lim
ǫ→0

log M(αǫ;H)

log M(ǫ;H)
> 1.

The condition is required to ensure thatlog M(cǫ)/ log M(ǫ) can be made arbitrarily small or large uniformly
over smallǫ by changingc, so that a bound due to Yang and Barron [17] can be applied. It is satisfied for most
non-parametric classes, including (for instance) the Lipschitz and Sobolev classes defined in Examples (ii) and
(iii) above. It may fail to hold for certain parametric classes, such as the set of linear functions considered
in Example (i); however, we can use an alternative techniqueto derive bounds for the parametric case (see
Corollary 2).

3 Main result and some consequences

In this section, we state our main result and then develop some of its consequences. We begin with a theorem
that covers the function classF0(s) in which the univariate function classesH have metric entropy that satisfies
Assumption 1. We state a corollary for the special cases of univariate classesH with metric entropy growing
polynomial in(1/ǫ), and also a corollary for the special case of sparse linear regression.

Consider the observation model (2) where the covariate vectors have i.i.d. elementsXj ∼ P, and the regression
functionf∗ ∈ F0(s). Suppose that the univariate function classH that underliesF0(s) satisfies Assumption 1.
Under these conditions, we have the following result:

Theorem 1. Givenn i.i.d. samples from the sparse additive model(2), the minimax risk in squared-L2(P)
norm is lower bounded as

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ max

[
σ2s log(p/s)

32n
,

s

16
ǫ2n(H)

]
, (6)

where, for a fixed constantc, the quantityǫn(H) = ǫn > 0 is largest positive number satisfying the inequality

nǫ2n
2σ2

≤ log M
(
c ǫn

)
. (7)

For the case whereH has an entropy that is growing to∞ at a polynomial rate asǫ → 0—saylog M(ǫ;H) =
Θ(ǫ−1/m) for somem > 1

2 , we can compute the rate for thes-dimensional estimation term explicitly.
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Corollary 1. For the sparse additive model(2) with univariate function spaceH such that such that
log M(ǫ;H) = Θ(ǫ−1/m), we have

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ max

[
σ2s log(p/s)

32n
,C s

(σ2

n

) 2m

2m+1

]
, (8)

for someC > 0.

3.1 Some consequences

In this section, we discuss some consequences of our results.

Effect of smoothness:Focusing on Corollary 1, for spaces withm bounded derivatives (i.e., functions in the
Sobolev spaceWm), the minimax rate isn− 2m

2m+1 (for details, see e.g. Stone [13]). Clearly, faster rates are
obtained for larger smoothness indicesm, and asm → ∞, the rate approaches the parametric rate ofn−1.
Since we are estimating over ans-dimensional space (under the assumption of independence), we are effectively
estimatings univariate functions, each lying within the function spaceH. Therefore the uni-dimensional rate is
multiplied bys.

Smoothness versus sparsity:It is worth noting that depending on the relative scalings ofs, n andp and the metric
entropy ofH, it is possible for either the subset selection term ors-dimensional estimation term to dominate
the lower bound. In general, iflog(p/s)

n = o(ǫ2n(H)), thes-dimensional estimation term dominates, and vice
versa (at the boundary, either term determines the minimax rate). In the case of a univariate function classH
with polynomial entropy as in Corollary 1, it can be seen thatfor n = o((log(p/s))2m+1), thes-dimensional
estimation term dominates while forn = Ω((log(p/s))2m+1), the subset selection term dominates.

Rates for linear models:Using an alternative proof technique (not the one used in this paper), it is possible [11]
to derive the exact minimax rate for estimation in thesparse linear regression model, in which we observe

y(i) =
∑

j∈S

βjX
(i)
j + w(i), for i = 1, 2, ..., n. (9)

Note that this is a special case of the general model (2) in whichH corresponds to the class of univariate linear
functions (see Example (i)).

Corollary 2. For sparse linear regression model(9), the the minimax rate scales asmax
( s log(p/s)

n , s
n

)
.

In this case, we see clearly the subset selection term dominates for p → ∞, meaning the subset selection
problem is always “harder” (in a statistical sense) than thes-dimensional estimation problem. As shown
by Bickel et al. [1], the rate achieved byℓ1-regularized methods iss log p

n under suitable conditions on the
covariatesX.

Upper bounds:To show that the lower bounds are tight, upper bounds that arematching need to be derived.
Upper bounds (matching up to constant factors) can be derived via a classical information-theoretic approach
(e.g., [5, 2]), which involves constructing an estimator based on a covering set and bounding the covering
entropy ofF0(s). While this estimation approach does not lead to an implementable algorithm, it is a simple
theoretical device to demonstrate that lower bounds are tight. We turn our focus on implementable algorithms
in the next point.

Comparison to existing bounds:We now provide a brief comparison of the minimax lower boundswith upper
bounds on rates achieved by existing implementable algorithms provided by past work [12, 7, 9]. Ravikumar
et al. [12] propose a back-fitting algorithm to minimize the least-squares objective with a sparsity constraint on
the the functionf . The rates derived in Koltchinskii and Yuan [7] do not match the lower bounds derived in
Theorem 1. Further, it is difficult to directly compare the rates in Ravikumar et al. [12] and Meier et al. [9] with
our minimax lower bounds since their analysis does not explicitly track the sparsity indexs. We are currently
in the process of conducting a thorough comparison with the above-mentionedℓ1-based methods.

4 Proof outline

In this section, we provide an outline of the proof of Theorem1; due to space constraints, we defer some of
the technical details to the full-length version. The proofis based on a combination of information-theoretic
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techniques and the concepts of packing and covering entropy, as defined previously in Section 2.3. First, we
provide a high-level overview of the proof. The basic idea isto carefully choose two subsetsT1 andT2 of the
function classF0(s) and lower bound the minimax rates over these two subsets. In Section 4.1, application of
the generalized Fano method—a technique based on Fano’s inequality—to the setT1 defined in equation (10)
yields a lower bound on the subset selection term. In Section4.2, we apply an alternative method for obtaining
lower bounds over a second setT2 defined in equation (11) that captures the difficulty of estimating the sum
of s univariate functions.. The second technique also exploitsFano’s inequality but uses a more refined upper
bound on the mutual information developed by Yang and Barron[17].

Before procedding, we first note that for anyT ⊂ F0(s), we have

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ min

bf
max
f∗∈T

E‖f̂ − f∗‖2
L2(P).

Moreover, for any subsetsT1, T2 ⊂ F0(s), we have

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ max

(
min

bf
max
f∗∈T1

E‖f̂ − f∗‖2
L2(P),min

bf
max
f∗∈T2

E‖f̂ − f∗‖2
L2(P)

)
,

since the bound holds for each of the two terms. We apply this lower bound using the subsetsT1 andT2 defined
in equations (10) and (11).

4.1 Bounding the complexity of subset selection

For part of the proof, we use the generalized Fano’s method [4], which we state below without proof. Given
some parameter space, we letd be a metric on it.
Lemma 1. (Generalized Fano Method)For a given integerr ≥ 2, consider a collectionMr = {P1, . . . , Pr}
of r probability distributions such that

d(θ(Pi), θ(Pj)) ≥ αr for all i 6= j,

and the pairwise KL divergence satisfies

D(Pi ‖Pj) ≤ βr for all i, j = 1, . . . , r.

Then the minimax risk over the family is lower bounded as

max
j

Ejd(θ(Pj), θ̂) ≥
αr

2

(
1 − βr + log 2

log r

)
.

The proof of Lemma 1 involves applying Fano’s inequality over the discrete set of parametersθ ∈ Θ indexed
by the set of distributionsMr. Now we construct the setT1 which creates the set of probability distributions
Mr.

Let g be an arbitrary function inH such that‖g‖L2(P) = σ
4

√
log (p/s)

n . The setT1 is defined as

T1 : =

{
f : f(X1,X2, ...,Xp) =

p∑

j=1

cjg(Xj), cj ∈ {−1, 0, 1} | ‖c‖0 = s

}
. (10)

T1 may be viewed as a hypercube ofF0(s) and will lead to the lower bound for the ’subset selection’ term. This
hypercube construction is often used to prove lower bounds (see Yu [18]). Next, we require a further reduction
of the setT1 to a setA (defined in Lemma 2) to ensure that elements ofA are well-separated inL2(P) norm.
The construction ofA is as follows:
Lemma 2. There exists a subsetA ⊂ T1 such that:
(i) log |A| ≥ 1

2s log(p/s),

(ii) ‖f − f ′‖2
L2(P) ≥

σ2s log(p/s)
16n ∀ f, f ′ ∈ A, and

(iii) D(f ‖ f ′) ≤ 1
8s log(p/s) ∀f, f ′ ∈ A.

The proof involves using a combinatoric argument to construct the setA. For an argument on how the set is
constructed, see K̈uhn [8]. Fors log p

s ≥ 8 log 2, applying the Generalized Fano Method (Lemma 1) together
with Lemma 2 yields the bound

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ min

bf
max
f∗∈A

E‖f̂ − f∗‖2
L2(P) ≥

σ2s log(p/s)

32n
.

This completes the proof for the subset selection term (s log(p/s)
n ) in Theorem 1.

6



4.2 Bounding the complexity ofs-dimensional estimation

Next we derive a bound for thes-dimensional estimation term by determining a lower bound overT2. Let S be
an arbitrary subset ofs integers in{1, 2, .., p}, and define the setFS as

T2 : = FS : =
{
f ∈ F : f(X) =

∑

j∈S

hj(Xj)
}
. (11)

ClearlyFS ⊂ F0(s) meaning that

min
bf

max
f∗∈F0(s)

E‖f̂ − f∗‖2
L2(P) ≥ min

bf
max

f∗∈FS

E‖f̂ − f∗‖2
L2(P).

We use a technique used in Yang and Barron [17] to lower bound the minimax rate overFS . The idea is to
construct a maximalδn-packing set forFS and a minimalǫn-covering set forFS , and then to apply Fano’s
inequality to a carefully chosen mixture distribution involving the covering and packing sets (see the full-length
version for details). Following these steps yields the following result:

Lemma 3.

min
bf

max
f∗∈FS

E‖f̂ − f∗‖2
L2(P) ≥

δ2
n

4

(
1 − log N(ǫn;FS) + nǫ2n/2σ2 + log 2

log M(δn;FS)

)
.

Now we have a bound with expressions involving the covering and packing entropies of thes-dimensional space
FS . The following Lemma allows bounds onlog M(ǫ;FS) andlog N(ǫ;FS) in terms of the unidimensional
packing and covering entropies respectively:

Lemma 4. LetH be function space with a packing entropylog M(ǫ;H) that satisfies Assumption 1. Then we
have the bounds

log M(ǫ;FS) ≥ s log M(ǫ/
√

s;H), and log N(ǫ;FS) ≤ s log N(ǫ/
√

s;H).

The proof involves constructingǫ√
s
- packing set and covering sets in each of thes dimensions and displaying

that these areǫ-packing and coverings sets inFS (respectively). Combining Lemmas 3 and 4 leads to the
inequality

min
bf

max
f∗∈FS

E‖f̂ − f∗‖2
L2(P) ≥

δ2
n

4

(
1 − s log N(ǫn/

√
s;H) + nǫ2n/2σ2 + log 2

s log M(δn/
√

s;H)

)
. (12)

Now we chooseǫn andδn to meet the following constraints:
n

2σ2
ǫ2n ≤ s log N(

ǫn√
s
;H), and (13a)

4 log N(
ǫn√
s
;H) ≤ log M(

δn√
s
;H). (13b)

Combining Assumption 1 with the well-known relationslog M(2ǫ;H) ≤ log N(2ǫ;H) ≤ log M(ǫ;H), we
conclude that in order to satisfy inequalities (13a) and (13b), it is sufficient to chooseǫn = cδn for a constantc,

and then require thats log M( cδn√
s
;H) ≥ nδ2

n

2σ2 . Furthermore, if we defineδn/
√

s = δ̃n, then this inequality can

be re-expressed aslog M(cδ̃n) ≥ nfδn

2

2σ2 . For n
2σ2 ǫ2n ≥ log 2, using inequalities (13a) and (13b) together with

equation (12) yields the desired rate

min
bf

max
f∗∈FS

E‖f̂ − f∗‖2
L2(P) ≥

sδ̃n

2

16
,

thereby completing the proof.

5 Discussion

In this paper, we have derived lower bounds for the minimax risk in squaredL2(P) error for estimating sparse
additive models based on the sum of univariate functions from a function classH. The rates show that the
estimation problem effectively decomposes into asubset selection problemand ans-dimensional estimation
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problem, and the “harder” of the two problems (in a statistical sense) determines the rate of convergence.
More concretely, we demonstrated that the subset selectionterm scales ass log(p/s)

n , depending linearly on
the number of componentss and only logarithmically in the ambient dimensionp. This subset selection term is
independent of the univariate function spaceH. On the other hand, thes-dimensional estimation term depends
on the “richness” of the univariate function class, measured by its metric entropy; it scales linearly withs and is
independent ofp. Ongoing work suggests that our lower bounds are tight in many cases, meaning that the rates
derived in Theorem 1 are minimax optimal for many function classes.

There are a number of ways in which the work can be extended. One implicit and strong assumption in our
analysis was that the covariatesXj , j = 1, 2, ..., p are independent. It would be interesting to investigate thecase
when the random variables are endowed with some correlationstructure. One would expect the rates to change,
particularly if many of the variables are collinear. It would also be interesting to develop a more complete
understanding of whether computationally efficient algorithms [7, 12, 9] based on regularization achieve the
lower bounds on the minimax rate derived in this paper.
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