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Abstract

Object detection and multi-class image segmentation are two closely related tasks
that can be greatly improved when solved jointly by feeding information from
one task to the other [10, 11]. However, current state-of-the-art models use a
separate representation for each task making joint inference clumsy and leaving
the classification of many parts of the scene ambiguous.
In this work, we propose a hierarchical region-based approach to joint object
detection and image segmentation. Our approach simultaneously reasons about
pixels, regions and objects in a coherent probabilistic model. Pixel appearance
features allow us to perform well on classifying amorphous background classes,
while the explicit representation of regions facilitate the computation of more so-
phisticated features necessary for object detection. Importantly, our model gives
a single unified description of the scene—we explainevery pixel in the image and
enforce global consistency between all random variables in our model.
We run experiments on the challenging Street Scene dataset [2] and show signifi-
cant improvement over state-of-the-art results for object detection accuracy.

1 Introduction

Object detection is one of the great challenges of computer vision, having received continuous
attention since the birth of the field. The most common modern approaches scan the image for
candidate objects and score each one. This is typified by the sliding-window object detection ap-
proach [22, 20, 4], but is also true of most other detection schemes (such as centroid-based meth-
ods [13] or boundary edge methods [5]). The most successful approaches combine cues from
inside the object boundary (local features) with cues from outside the object (contextual cues),
e.g., [9, 20, 6]. Recent works are adopting a more holistic approach by combining the output of mul-
tiple vision tasks [10, 11] and are reminiscent of some of the earliest work in computer vision [1].
However, these recent works use a different representation for each subtask, forcing information
sharing to be done through awkward feature mappings. Another difficulty with these approaches
is that the subtask representations can be inconsistent. For example, a bounding-box based object
detector includes many pixels within each candidate detection window that are not part of the ob-
ject itself. Furthermore, multiple overlapping candidate detections contain many pixels in common.
How these pixels should be treated is ambiguous in such approaches. A model that uniquely iden-
tifies each pixel is not only more elegant, but is also more likely to produce reliable results since it
encodes a bias of the true world (i.e., a visible pixel belongs to only one object).

In this work, we propose a more integrated region-based approach that combines multi-class im-
age segmentation with object detection. Specifically, we propose a hierarchical model that reasons
simultaneously about pixels, regions and objects in the image, rather than scanning arbitrary win-
dows. At the region level we label pixels as belonging to one of a number of background classes
(currentlysky, tree, road, grass, water, building, mountain) or a single foreground class. The fore-
ground class is then further classified, at the object level, into one of our known object classes
(currentlycar andpedestrian) or unknown.
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Our model builds on the scene decomposition model of Gould et al. [7] which aims to decompose
an image into coherent regions by dynamically moving pixel between regions and evaluating these
moves relative to a global energy objective. These bottom-up pixel moves result in regions with co-
herent appearance. Unfortunately, complex objects such as people or cars are composed of several
dissimilar regions which will not be combined by this bottom-up approach. Our new hierarchi-
cal approach facilitates both bottom-up and top-down reasoning about the scene. For example, we
can propose an entire object comprised of multiple regions and evaluate this joint move against our
global objective. Thus, our hierarchical model enjoys the best of two worlds: Like multi-class image
segmentation, our model uniquely explains every pixel in the image and groups these into seman-
tically coherent regions. Like object detection, our model uses sophisticated shape and appearance
features computed over candidate object locations with precise boundaries. Furthermore, our joint
model over regions and objects allows context to be encoded through direct semantic relationships
(e.g., “car” is usually found on “road”).

2 Background and Related Work

Our method inherits features from the sliding-window object detector works, such as Torralba et al.
[19] and Dalal and Triggs [4], and the multi-class image segmentation work of Shotton et al. [16].
We further incorporate into our model many novel ideas for improving object detection via scene
context. The innovative works that inspire ours include predicting camera viewpoint for estimat-
ing the real world size of object candidates [12], relating “things” (objects) to nearby “stuff” (re-
gions) [9], co-occurrence of object classes [15], and general scene “gist” [18].

Recent works go beyond simple appearance-based context and show that holistic scene under-
standing (both geometric [11] and more general [10]) can significantly improve performance by
combining related tasks. These works use the output of one task (e.g., object detection) to provide
features for other related tasks (e.g., depth perception). While they are appealing in their simplic-
ity, current models are not tightly coupled and may result in incoherent outputs (e.g., the pixels in
a bounding box identified as “car” by the object detector, may be labeled as “sky” by an image
segmentation task). In our method, all tasks use the same region-based representation which forces
consistency between variables. Intuitively this leads to more robust predictions.

The decomposition of a scene into regions to provide the basis for vision tasks exists in some
scene parsing works. Notably, Tu et al. [21] describe an approach for identifying regions in the
scene. Their approach has only be shown to be effective on text and faces, leaving much of the
image unexplained. Sudderth et al. [17] relate scenes, objects and parts in a single hierarchical
framework, but do not provide an exact segmentation of the image. Gould et al. [7] provides a com-
plete description of the scene using dynamically evolving decompositions that explain every pixel
(both semantically and geometrically). However, the method cannot distinguish between between
foreground objects and often leaves them segmented into multiple dissimilar pieces. Our work builds
on this approach with the aim of classifying objects.

Other works attempt to integrate tasks such as object detection and multi-class image segmenta-
tion into a single CRF model. However, these models either use a different representation for object
and non-object regions [23] or rely on a pixel-level representation [16]. The former does not enforce
label consistency between object bounding boxes and the underlying pixels while the latter does not
distinguish between adjacent objects of the same class.

Recent work by Gu et al. [8] also use regions for object detection instead of the traditional sliding-
window approach. However, unlike our method, they use a single over-segmentation of the image
and make the strong assumption that each segment represents a (probabilistically) recognizable ob-
ject part. Our method, on the other hand, assembles objects (and background regions) using seg-
ments from multiple different over-segmentations. The multiple over-segmentations avoids errors
made by any one segmentation. Furthermore, we incorporate background regions which allows us to
eliminate large portions of the image thereby reducing the number of component regions that need
to be considered for each object.

Liu et al. [14] use a non-parametric approach to image labeling by warping a given image onto a
large set of labeled images and then combining the results. This is a very effective approach since it
scales easily to a large number of classes. However, the method does not attempt to understand the
scene semantics. In particular, their method is unable to break the scene into separate objects (e.g., a
row of cars will be parsed as a single region) and cannot capture combinations of classes not present
in the training set. As a result, the approach performs poorly on most foreground object classes.
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3 Region-based Model for Object Detection
We now present an overview of our joint object detection and scene segmentation model. This model
combines scene structure and semantics in a coherent energy function.

3.1 Energy Function
Our model builds on the work of Gould et al. [7] which aims to decompose a scene into a number (K)
of semantically consistent regions. In that work, each pixelp in the imageI belongs to exactly one
region, identified by its region-correspondence variableRp ∈ {1, . . . ,K}. Ther-th region is then
simply the set of pixelsPr whose region-correspondence variable equalsr, i.e.,Pr = {p : Rp = r}.
In our notation we will always usep andq to denote pixels,r ands to denote regions, ando to denote
objects. Double indices indicate pairwise terms between adjacent entities (e.g.,pq or rs).

Regions, while visually coherent, may not encompass entire objects. Indeed, in the work of Gould
et al. [7] foreground objects tended to be over-segmented into multiple regions. We address this defi-
ciency by allowing an object to be composed of many regions (rather than trying to force dissimilar
regions to merge). The object to which a region belongs is denoted by its object-correspondence
variableOr ∈ {∅, 1, . . . , N}. Some regions, such as background, do not belong to any object
which we denote byOr = ∅. Like regions, the set of pixels that comprise theo-th object is de-
noted byPo =

⋃

r:Or=o Pr. Currently, we do not allow a single region or object to be composed of
multiple disconnected components.

Random variables are associated with the various entities (pixels, regions and objects) in our
model. Each pixel has a local appearance feature vectorαp ∈ R

n (see [7]). Each region has an
appearance variableAr that summarizes the appearance of the region as a whole, a semantic class
labelSr (such as “road” or “foreground object”), and an object-correspondence variableOr. Each
object, in turn, has an associated object class labelCo (such as “car” or “pedestrian”). The final
component in our model is the horizon which captures global geometry information. We assume
that the image was taken by a camera with horizontal axis parallel to the ground and model the
horizonvhz ∈ [0, 1] as the normalized row in the image corresponding to its location. We quantize
vhz into the same number of rows as the image.

We combine the variables in our model into a single coherent energy function that captures the
structure and semantics of the scene. The energy function includes terms for modeling the location
of the horizon, region label preferences, region boundary quality, object labels, and contextual re-
lationships between objects and regions. These terms are described in detail below. The combined
energy functionE(R,S,O,C, vhz | I,θ) has the form:

E = ψhz(vhz) +
∑

r

ψreg
r (Sr, v

hz) +
∑

r,s

ψbdry
rs +

∑

o

ψobj
o (Co, v

hz) +
∑

o,r

ψctxt
or (Co, Sr) (1)

where for notational clarity the subscripts on the factors indicate that they are functions of the pixels
(appearance and shape) belonging to the regions, i.e.,ψ

reg
r is also a function ofPr, etc. It is assumed

that all terms are conditioned on the observed imageI and model parametersθ. The summation
over context terms includes all ordered pairs of adjacent objects and regions, while the summation
over boundary terms is over unordered pairs of regions. An il lustration of the variables in the energy
function is shown in Figure 1.

The first three energy terms are adapted from the model of [7]. We briefly review them here:
Horizon term. Theψhz term captures the a priori location of the horizon in the scene and, in our

model, is implemented as a log-gaussianψhz(vhz) = − logN (vhz;µ, σ2) with parametersµ andσ
learned from labeled training images.

Knowing the location of the horizon allows us to compute the world height of an object in the
scene. Using the derivation from Hoiem et al. [12], it can be shown that the heightyk of an object
(or region) in the scene can be approximated asyk ≈ h vt−vb

vhz−vb
whereh is the height of the camera

origin above the ground, andvt andvb are the row of the top-most and bottom-most pixels in the
object/region, respectively. In our current work, we assume that all images were taken from the
same height above the ground, allowing us to usevt−vb

vhz−vb
as a feature in our region and object terms.

Region term. The region termψreg in our energy function captures the preference for a region
to be assigned different semantic labels (currentlysky, tree, road, grass, water, building, mountain,
foreground). For convenience we include thevhz variable in this term to provide rough geometry
information. If a region is associated with an object, then we constrain the assignment of its class
label toforeground (e.g., a “sky” region cannot be part of a “car” object).
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ProcedureSceneInference
Generate over-segmentation dictionaryΩ
Initialize Rp using any of the over-segmentations
Repeat until convergence

Phase 1:
Propose a pixel move{Rp : p ∈ ω} ← r

Update region and boundary features
Run inference over regionsS andvhz

Phase 2:
Propose a pixel{Rp} ← r or region move{Or} ← o

Update region, boundary and object features
Run inference over regions and objects(S, C) andvhz

Compute total energyE
If (E < Emin) then

Accept move and setEmin = E

Else reject move

Figure 1: Illustration of the entities in our model (left) and inference algorithm (right). See text for details.

More formally, letNr be the number of pixels in regionr, i.e.,Nr =
∑

p 1{Rp = r}, and let
φr :

(

Pr, v
hz, I

)

7→ R
n denote the features for ther-th region. The region term is then

ψreg
r (Sr, v

hz) =

{

∞ if Or 6= ∅ andSr 6= foreground
−ηregNr log σ (Sr | φr; θ

reg) otherwise (2)

whereσ(·) is the multi-class logitσ(y | x; θ) =
exp{θT

y x}
P

y′ exp
n

θT
y′

x
o andηreg is the relative weight of the

region term versus the other terms in the model.
Boundary term. The termψbdry penalizes two adjacent regions with similar appearance or lack

of boundary contrast. This helps to merge coherent pixels into a single region. We combine two
metrics in this term: the first captures region similarity as a whole, the second captures contrast along
the common boundary between the regions. Specifically, letd (x, y;S) =

√

(x− y)TS−1(x− y)
denote the Mahalanobis distance between vectorsx andy, andErs be the set of pixels along the
boundary. Then the boundary term is

ψbdry
rs = η

bdry
A · |Ers| · e

− 1

2
d(Ar,As;ΣA)2 + ηbdry

α

∑

(p,q)∈Ers

e−
1

2
d(αp,αq ;Σα)2 (3)

where theΣA andΣα are the image-specific pixel appearance covariance matrix computed over all
pixels and neighboring pixels, respectively. In our experiments we restrictΣA to be diagonal and set
Σα = βI with β = E

[

‖αp − αq‖
2
]

as in Shotton et al. [16]. The parametersηbdry
A andηbdry

α encode
the trade-off between the region similarity and boundary contrast terms and weight them against the
other terms in the energy function (Equation 1).

Note that the boundary term does not include semantic class or object information. The term
purely captures segmentation coherence in terms of appearance.

Object term. Going beyond the model in [7], we include object termsψobj in our energy function
that score the likelihood of a group of regions being assigned a given object label. We currently
classify objects as eithercar, pedestrian or unknown. Theunknown class includes objects like trash
cans, street signs, telegraph poles, traffic cones, bicycles, etc. Like the region term, the object term
is defined by a logistic function that maps object featuresφo :

(

Po, v
hz, I

)

7→ R
n to probability of

each object class. However, since our region layer already identifies foreground regions, we would
like our energy to improve only when we recognize known object classes. We therefore bias the
object term to give zero contribution to the energy for the classunknown.1 Formally we have

ψobj
n (Co, v

hz) = −ηobjNo

(

log σ
(

Co | φo; θ
obj

)

− log σ
(

unknown | φo; θ
obj

))

(4)

whereNo is the number of pixels belonging to the object.
Context term. Intuitively, contextual information which relates objects to their local background

can improve object detection. For example, Heitz and Koller [9] showed that detection rates im-
prove by relating “things” (objects) to “stuff” (background). Our model has a very natural way of

1This results in the technical condition of allowingOr to take the value∅ for unknown foreground regions
without affecting the energy.
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encoding such relationships through pairwise energy terms between objectsCo and regionsSr. We
do not encode contextual relationships between region classes (i.e.,Sr andSs) since these rarely
help.2 Contextual relationships between foreground objects (i.e.,Co andCm) may be beneficial
(e.g., people found on bicycles), but are not considered in this work. Formally, the context term is

ψctxt
or (Co, Sr) = −ηctxt log σ

(

Co × Sr | φor; θ
ctxt

)

(5)

whereφor : (Po,Pr, I) 7→ R
n is a pairwise feature vector for objecto and regionr, σ(·) is the

multi-class logit, andηctxt weights the strength of the context term relative to other terms in the
energy function. Since the pairwise context term is between objects and (background) regions it
grows linearly with the number of object classes. This has a distinct advantage over approaches
which include a pairwise term between all classes resulting in quadratic growth.

3.2 Object Detectors
Performing well at object detection requires more than simple region appearance features. Indeed,
the power of state-of-the-art object detectors is their ability to model localized appearance and gen-
eral shape characteristics of an object class. Thus, in addition to raw appearance features, we append
to our object feature vectorφo features derived from such object detection models. We discuss two
methods for adapting state-of-the-art object detector technologies for this purpose.

In the first approach, we treat the object detector as a black-box that returns a score per (rectan-
gular) candidate window. However, recall that an object in our model is defined by a contiguous
set of pixelsPo, not a rectangular window. In the black-box approach, we naively place a bounding
box (at the correct aspect ratio) around these pixels and classify the entire contents of the box. To
make classification more robust we search candidate windows in a small neighborhood (defined over
scale and position) around this bounding box, and take as our feature the output of highest scoring
window. In our experiments we test this approach using the HOG detector of Dalal and Triggs [4]
which learns a linear SVM classifier over feature vectors constructed by computing histograms of
gradient orientations in fixed-size overlapping cells within the candidate window.

Note that in the above black-box approach many of the pixels within the bounding box are not
actually part of the object (consider, for example, an L-shaped region). A better approach is to mask
out all pixels not belonging to the object. In our implementation, we use a soft mask that attenuates
the intensity of pixels outside the object based on their distance to the object boundary (see Figure 2).
This has the dual advantage of preventing hard edge artifacts and being less sensitive to segmentation
errors. The masked window is used at both training and test time. In our experiments we test this
more integrated approach using the patch-based features of Torralbaet al. [19, 20]. Here features
are extracted by matching small rectangular patches at various locations within the masked window
and combining these weak responses using boosting. Object appearance and shape are captured by
operating on both the original (intensity) image and the edge-filtered image.

For both approaches, we append the score (for each object) from the object detection classifiers—
linear SVM or boosted decision trees—to the object feature vectorφo.

(a) full window (b) hard region mask (c) hard window (d) soft region mask (e) soft window

Figure 2: Illustration of soft mask for proposed object regions.

An important parameter for sliding-window detectors is the base scale at which features are ex-
tracted. Scale-invariance is achieved by successively down-sampling the image. Below the base-
scale, feature matching becomes inaccurate, so most detectors will only find objects above some
minimum size. Clearly there exists a trade-off between the desire to detect small objects, feature
quality, and computational cost. To reduce the computational burden of running our model on
high-resolution images while still being able to identify small objects, we employ a multi-scale ap-
proach. Here we run our scene decomposition algorithm on a low-resolution (320 × 240) version
of the scene, but extract features from the original high-resolution version. That is, when we extract
object-detector features we map the object pixelsPo onto the original image and extract our features
at the higher resolution.

2The most informative region-to-region relationship is thatsky tends to be above ground (road, grass, or
water). This information is already captured by including the horizon in our region term.
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4 Inference and Learning
We now describe how we perform inference and learn the parameters of our energy function.

4.1 Inference

We use a modified version of the hill-climbing inference algorithm described in Gould et al. [7],
which uses multiple over-segmentations to propose large moves in the energy space. An overview
of this procedure is shown in the right of Figure 1. We initialize the scene by segmenting the
image using an off-the-shelf unsupervised segmentation algorithm (in our experiments we use mean-
shift [3]). We then run inference using a two-phased approach.

In the first phase, we want to build up a good set of initial regions before trying to classify them as
objects. Thus we remove the object variablesO andC from the model and artificially increase the
boundary term weights (ηbdry

α andηbdry
A ) to promote merging. In this phase, the algorithm behaves

exactly as in [7] by iteratively proposing re-assignments of pixels to regions (variablesR) and re-
computes the optimal assignment to the remaining variables (Sandvhz). If the overall energy for the
new configuration is lower, the move is accepted, otherwise the previous configuration is restored
and the algorithm proposes a different move. The algorithm proceeds until no further reduction in
energy can be found after exhausting all proposal moves from a pre-defined set (see Section 4.2).

In the second phase, we anneal the boundary term weights and introduce object variables over
all foreground regions. We then iteratively propose merges and splits of objects (variablesO) as
well as high-level proposals (see Section 4.2 below) of new regions generated from sliding-window
object candidates (affecting bothR andO). After a move is proposed, we recompute the optimal
assignment to the remaining variables (S, C andvhz). Again, this process repeats until the energy
cannot be reduced by any of the proposal moves.

Since only part of the scene is changing during any iteration we only need to recompute the
features and energy terms for the regions affected by a move. However, inference is still slow given
the sophisticated features that need to be computed and the large number of moves considered.
To improve running time, we leave the context termsψctxt out of the model until the last iteration
through the proposal moves. This allows us to maximize each region term independently during
each proposal step—we use an iterated conditional modes (ICM) update to optimizevhz after the
region labels have been inferred. After introducing the context term, we use max-product belief
propagation to infer the optimal joint assignment toS andC. Using this approach we can process
an image in under five minutes.

4.2 Proposal Moves

We now describe the set of pixel and region proposal moves considered by our algorithm. These
moves are relative to the current best scene decomposition and are designed to take large steps in
the energy space to avoid local minima. As discussed above, each move is accepted if it results in a
lower overall energy after inferring the optimal assignment for the remaining variables.

The main set of pixel moves are described in [7] but briefly repeated here for completeness.
The most basic move is to merge two adjacent regions. More sophisticated moves involve local
re-assignment of pixels to neighboring regions. These moves are proposed from a pre-computed
dictionary of image segmentsΩ. The dictionary is generated by varying the parameters of an un-
supervised over-segmentation algorithm (in our case mean-shift [3]) and adding each segmentω to
the dictionary. During inference, these segments are used to propose a re-assignment of all pixels
in the segment to a neighboring region or creation of new region. These bottom-up proposal moves
work well for background classes, but tend to result in over-segmented foreground classes which
have heterogeneous appearance, for example, one would not expect the wheels and body of a car to
be grouped together by a bottom-up approach.

An analogous set of moves can be used for merging two adjacent objects or assigning regions
to objects. However, if an object is decomposed into multiple regions, this bottom-up approach is
problematic as multiple such moves may be required to produce a complete object. When performed
independently, these moves are unlikely to improve the energy. We get around this difficulty by
introducing a new set of powerful top-down proposal moves based on object detection candidates.
Here we use pre-computed candidates from a sliding-window detector to propose new foreground
regions with corresponding object variable. Instead of proposing the entire bounding-box from the
detector, we propose the set of intersecting segments (from our segmentation dictionaryΩ) that are
fully contained within the bounding-box in a single move.
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EXPERIMENT CARS PED.
Patch baseline 0.40 0.15
HOG baseline 0.35 0.37
Patch RB(w/o cntxt) 0.55 0.22
Patch RB(full model) 0.56 0.21
HOG RB(w/o cntxt) 0.58 0.35
HOG RB(full model) 0.57 0.35

Figure 3: PR curves for car (left) and pedestrian (right) detection on the Street Scene dataset [2]. The table
shows 11-pt average precision for variants of the baseline sliding-window and our region-based (RB) approach.

4.3 Learning
We learn the parameters of our model from labeled training data in a piecewise fashion. First, the
individual terms are learned using the maximum-likelihood objective for the subset of variables
within each term. The relative weights (ηreg, ηobj, etc.) between the terms are learned through cross-
validation on a subset of the training data. Boosted pixel appearance features (see [7]) and object
detectors are learned separately and their output provided as input features to the combined model.

For both the base object detectors and the parameters of the region and object terms, we use a
closed-loop learning technique where we first learn an initial set of parameters from training data.
We then run inference on our training set and record mistakes made by the algorithm (false-positives
for object detection and incorrect moves for the full algorithm). We augment the training data with
these mistakes and re-train. This process gives a significant improvement to the final results.

5 Experiments
We conduct experiments on the challenging Street Scene dataset [2]. This is a dataset consisting of
3547 high-resolution images of urban environments. We rescaled the images to320 × 240 before
running our algorithm. The dataset comes with hand-annotated region labels and object boundaries.
However, the annotations use rough overlapping polygons, so we used Amazon’s Mechanical Turk
to improve the labeling of the background classes only. We kept the original object polygons to be
consistent with other results on this dataset.

We divided the dataset into five folds—the first fold (710 images) was used for testing and the
remaining four used for training. The multi-class image segmentation component of our model
achieves an overall pixel-level accuracy of 84.2% across the eight semantic classes compared to
83.0% for the pixel-based baseline method described in [7]. More interesting was our object detec-
tion performance. The test set contained 1183 cars and 293 pedestrians with average size of86× 48
and22 × 49 pixels, respectively. Many objects are occluded making this a very difficult dataset.

Since our algorithm produces MAP estimation for the scene we cannot simply generate a
precision-recall curve by varying the object classifier threshold as is usual for reporting object detec-
tion results. Instead we take the max-marginals for eachCn variable at convergence of our algorithm
and sweep over thresholds for each object separately to generate a curve. An attractive aspect of this
approach is that our method does not have overlapping candidates and hence does not require arbi-
trary post-processing such as non-maximal suppression of sliding-window detections.

Our results are shown in Figure 3. We also include a comparison to two baseline sliding-window
approaches. Our method significantly improves over the baselines for car detection. For pedestrian
detection, our method shows comparable performance to the HOG baseline which has been specif-
ically engineered for this task. Notice that our method does not achieve 100% recall (even at low
precision) due to the curves being generated from the MAP assignment in which pixels have already
been grouped into regions. Unlike the baselines, this forces only one candidate object per region.
However, by trading-off the strength (and hence operating point) of the energy terms in our model
we can increase the maximum recall for a given object class (e.g., by increasing the weight of the
object term by a factor of 30 we were able to increase pedestrian recall from 0.556 to 0.673).

Removing the pairwise context term does not have a significant affect on our results. This is
due to the encoding of semantic context through the region term and the fact that all images were
of urban scenes. However, we believe that on a dataset with more varied backgrounds (e.g., rural
scenes) context would play a more important role.

We show some example output from our algorithm in Figure 4. The first row shows the original
image (left) together with annotated regions and objects (middle-left), regions (middle-right) and
predicted horizon (right). Notice how multiple regions get grouped together into a single object.
The remaining rows show a selection of results (image and annotated output) from our method.
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Figure 4: Qualitative results from our experiments. Top row shows original image, annotated regions and
objects, region boundaries, and predicted horizon. Other examples show original image (left) and overlay
colored by semantic class and detected objects (right).

6 Discussion
In this paper we have presented a hierarchical model for joint object detection and image segmenta-
tion. Our novel approach overcomes many of the problems associated with trying to combine related
vision tasks. Importantly, our method explains every pixel in the image and enforces consistency be-
tween random variables from different tasks. Furthermore, our model is encapsulated in a modular
energy function which can be easily analyzed and improved as new computer vision technologies
become available.

One of the difficulties in our model is learning the trade-off between energy terms—too strong a
boundary penalty and all regions will be merged together, while too weak a penalty and the scene
will be split into too many segments. We found that a closed-loop learning regime where mistakes
from running inference on the training set are used to increase the diversity of training examples
made a big difference to performance.

Our work suggests a number of interesting directions for future work. First, our greedy inference
procedure can be replaced with a more sophisticated approach that makes more global steps. More
importantly, our region-based model has the potential for providing holistic unified understanding
of an entire scene. This has the benefit of eliminating many of the implausible hypotheses that
plague current computer vision algorithms. Furthermore, by clearly delineating what is recognized,
our framework directly present hypotheses for objects that are currently unknown providing the
potential for increasing our library of characterized objects using a combination of supervised and
unsupervised techniques.

Acknowledgments. This work was supported by the NSF under grant IIS 0917151, MURI contract
N000140710747, and The Boeing Company. We thank Pawan Kumar and Ben Packer for helpful discussions.
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