Supplementary Document for “Submodularity Cuts and Applications”

In this supplementary material, we give the detail of a way to compeetensions in Sect. A and
an outline of the submodular maximization algorithm by Nemhauser and Wolsey [16] in Sect. B.

A Details of the computation ofy-extensions

Here, we describe a way to compute thextensions of the directiond , . . . , d,, chosen in Sect. 3.1
of our manuscript. Lef be a set with S| = k, and let:* andj* are specified elements i and
V'\ S, respectively, and suppose that= {iy, ..., it} with iy = andV' \ S = {jr+1, - -+, Jn}
with j,, = j*. Remember that we chose the directiohs. .., d,, as

ej-—e;, ifle{l, ... k}
dl:{ejl—ej* ifle{k:+1,...,n—1} (8)
—ej- if ]l =n,

and gave the following lemma (Lemma 6 in Sect. 3.1):

Lemma 6 For the directionsd, ..., d, defined in Eqs(8), a cone
K(IS;d17-~-7dn) = {IS+t1d1 +Ftndy it 2> 0}
contains the polytop®) = {z e R" : 0 < 2; <1 (I =1,---,n), Y, 21 < k}.
Proof LetT C V be an arbitrary fixed set witfil'| < k. We have thaf’ € S(D,) and I €

V(Dy). To show the assertion, it suffices to shdw € K(Ig;d,,...,d,) because of the one-
to-one correspondence betwe®fD,) andV (Dy). Let us partition the sef into tree partsS; =

{i, s tlgar b S2 = {ilsapy11s - -5 B} @ndSs = {ilp 1y, .., i3}, where
Si=SnNT and SQUS3=S\T.

In addition, we partition the sef” into two partsTy = T NS = Sy andTy, = T\ S =
{Jlsar|+10 -+ Jip }- Then, we have

Ir=Is—Is\r+1Ir\s
=Is+ I, —1Is,)—Is,
=Is+ Z}£‘|30T|+1(ej; —ey)+ Efz\T\+1(_ei{)
= Is + X gnr i {(es — €5) + (e =€)} + i rpaa (e — i) + (—e5)}-
Therefore, we obtaiffir € {Is +t;dy + -+ tpd, : t; > 0}, [ ]

Suppose thal s is a vertex of a polytop#” C D, and~ is a constant number such th&tS) < ~
and f(S, ;)) < ~ for any neighboiS(; ;) of S. For the directionsl,, ..., d, defined in Egs. (8),
the submodularity cuts algorithm requires thextensiony;, = Is + 6,d; (I = 1, ..., n) with
respect to the Lasz extensiorf : R® — R. To obtain these-extensions, it suffices to consider
the following three cases.

e Fori € Sandj* € V'\ S, compute ay-extensiony!) = Is + 0 (e;- — e;).

e For two distinctj, j* € V' \ S, compute ay-extensiony?) = I's + 0 (e; — e;-).

e Forj* € V'\ S, compute ay-extensiony®) = I's + 0©)(—e;-).

Let us give explicit representations @f), §(2) andd®).

A.1 Computation of (1)

We haved) = max{t > 0 : f(y(t)) < ~}, wherey(t) := Is + t(e;- — ;). Note that
f(S) = f(y(0)) < yandf(Sy, ;) = f(y(1)) < 7. The convexity off implies§™) > 1. Thus,
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Figure 1: Determination of in computing
thev-extension through Ladsz extension for
le{l,...,k} (cf. Eq. (8)).

we consider a parametee> 1. The different components af(¢) are ordered as> 1> 0> 1 —¢,
andy(t) can be represented as

yt) =t —1) Iy +1-Is, .+ (E—1) Ty\y +(1—t)- Iy.
In view of the definition of the Loftsz extension, the value ¢fy(t)) is given by
Fly®)) = =1 FHD +1- f(Sa o)+ E=1) - FVA\{H + (1 =) F(V)
= F(Sesm) + ¢ = DLW + 1) = F(n) )

So,0) is bounded if and only il f(y(t)) = f({7*}) + F(V\ {i}) — f(V) > 0. As aresult, we
have the following (see also Fig. 1):

FAF*D + VAL = F(V)

otherwise

9<1>:{ it (SR R + 7\ (D) - F(V) >0,
+00

A.2 Computation of §(2)

We haved® = max{t > 0 : f(y(t)) < v}, wherey(t) := Is + t(e; — e;-). Note that

f(S) = f(y(0)) < ~. First, we suppose thate [0, 1]. The different components aj(t) are
orderedad > ¢ > —t andy(t) can be represented as

0>
y() (1715)'I5+t~ISU{j}+t~IV\{j*}+(*t)~Iv.
Thus, the value of (y(t)) is given by
fly) =1 —1)- f(S) +t- F(SU{G}) +1- f(V\{J })+( t)- f(V)
= (8) + - {FSUGH + FV NG = F(8) = F(V) | = g™t

If v < g'(1), we obtamc‘l‘tg"’w( )= FSU{H) + f(V\ {y }) f(S) — f(V) > 0 and thus
62 = Otherwise, we havé(® > 1.

f(SU{j})+f(V\{j })—f(S)—f(V)

Next, we suppose that®¥(1) < v and1 < t. The different components af(t) are ordered as
t >1> 0> —tandy(t) can be represented as

y(t) =t —1) Iy +1-Tsugyy +t- Iy + (1) - Iv.
Thus, the value of (y(t)) is given by
Fly@) = =1 fH+1-fSUEH +t- FVNGD + (=) - f(V)

= (SUED — SN+t { UGN+ FVAGD = (V)] = ).

On the assumption thgt®(1) < ~, 6 is bounded if and only if& g""(t) = f({j}) + f(V \
{7*})) = f(V)>0.Asa result, we obtain

v — f(5) low
FEUGY IO G 1) ) e
+00 if v > ¢'(1) and §;¢"9"(t) < 0.

Note thatg®(1) = g"oh(1), L glow(z) < d ghion() and f(y(t)) = min{g™(t), g"9N(¢)} for all
t > 0.



Algorithm 3 Description of the algorithm by Nemhauser and Wolsey.

1 Let@, ={T1, ..., T.,} be a set of distinct subsets Bt
2: Setstop « false andi « 1.

3: while stop = false do

4:  Solve the MIP problem (S1) with respectdh, and let(n;, Is,) be an optimal solution.
5. if f(S;) =, then

6 stop « true (5; is an optimal solution ang; the optimal value).

7: else
8

9

0:

SetQiH — Q; U {Sl} andi «—i+1
end if

10: end while

Remark: If f(S) = v, thend can be equal t6. In such a case, we choose a snsatt 0 and
replaced® by § so that the resulting submodularity ditsatisfies Lemma 4.

A.3 Computation of #(3)

We haved® = max{t > 0 : f(y(t)) < ~}, wherey(t) := Is —t - e;-. Note thatf(S) =
f(y(0)) < ~. Consider a parameter > 0. The different components aj(t) are ordered as
1> 0 > —t andy(t¢) can be represented as

y(t) =1-Is+t- Iy +(—t) - Iy.
Thus, the value of (y(t)) is given by

F(®) =1-1(8) +t- SV AL D + (=0) - (V) = £S) + {5\ D) = F() }.
S0,0® is bounded if and only ifl f(y(t)) = f(V'\ {i}) — f(V) > 0. Thus, we have

v = f(S) - .
o =] Fongn-gon IV S0

400 otherwise

In particular, if f is nondecreasing, it holds thatV \ {i}) < f(V) and thus we havé® = +oo.

B Outline of the algorithm by Nemhauser & Wolsey

Throughout this section, we assume tfiat2¥ — R is nondecreasing. Nemhauser and Wolsey [16]
showed that the submodular maximization problem

.t <
max f(S) S.LIS|<k (1)
can be reformulated as

max 7

mY v

st < f(S)+ X e sni(S)ys, VS €2V, (10)

ZjeVyj = k’ Yj € {071}7 v.] S V7

wherep;(S) = f(SU{j}) — f(S). Specifically,(n, y) = (f(S), Is) is an optimal solution to
(10) if and only if S is an optimal solution to (1). Let us denote the optimal value of (10)*hyrhe
problem (10) is a mixed integer program (MIP) with2™) inequalities, and it would be intractable
because of the number of constraints.

We describe the algorithm of Nemhauser and Wolsey [16] for the submodular maximization problem
(1). Initially, we let@, = {71, ..., T,,} be a set of distinct subsets&bf and set — 1. In iteration
1 > 1, solve the following (relatively small) MIP

max 1
Y
s.t. TISf(S)+Z]ev\sPJ(S)yJa \V/SGQi:{Th "'7va Sla "'aSi—l}v (Sl)

dYjevyi =k, y; €{0,1}, Vi€V,

3



and let(n;, Is,) be an optimal solution to (S1). Since the feasible region of (S1) is larger than or
equal to that of (10)y; is an upper bound on*. Thus, we have/(S;) < n* < n;. Therefore, if
f(S;) = n;, S; is an optimal solution to the submodular maximization probleny.(H;) < n;, set

Qir1 — Q; U{S;}, i — i+ 1 and execute the next iteration. The description of the algorithm is
given in Alg. 3. It terminates after at mo§}) iterations.

Note thatn; > n, > --- > n*. Thus, Alg. 3 can also be regarded as a subroutine just for the
nonincreasing upper boumngl.



