
Fast Graph Laplacian Regularized Kernel Learning
via Semidefinite–Quadratic–Linear Programming

Xiao-Ming Wu
Dept. of IE

The Chinese University of Hong Kong
wxm007@ie.cuhk.edu.hk

Anthony Man-Cho So
Dept. of SE&EM

The Chinese University of Hong Kong
manchoso@se.cuhk.edu.hk

Zhenguo Li
Dept. of IE

The Chinese University of Hong Kong
zgli@ie.cuhk.edu.hk

Shuo-Yen Robert Li
Dept. of IE

The Chinese University of Hong Kong
bobli@ie.cuhk.edu.hk

Abstract

Kernel learning is a powerful framework for nonlinear data modeling. Using the
kernel trick, a number of problems have been formulated as semidefinite programs
(SDPs). These include Maximum Variance Unfolding (MVU) (Weinberger et al.,
2004) in nonlinear dimensionality reduction, and Pairwise Constraint Propagation
(PCP) (Li et al., 2008) in constrained clustering. Although in theory SDPs can
be efficiently solved, the high computational complexity incurred in numerically
processing the huge linear matrix inequality constraints has rendered the SDP
approach unscalable. In this paper, we show that a large class of kernel learning
problems can be reformulated as semidefinite-quadratic-linear programs (SQLPs),
which only contain a simple positive semidefinite constraint, a second-order cone
constraint and a number of linear constraints. These constraints are much easier to
process numerically, and the gain in speedup over previous approaches is at least
of the order m2.5, where m is the matrix dimension. Experimental results are also
presented to show the superb computational efficiency of our approach.

1 Introduction

Kernel methods provide a principled framework for nonlinear data modeling, where the inference
in the input space can be transferred intactly to any feature space by simply treating the associ-
ated kernel as inner products, or more generally, as nonlinear mappings on the data (Schölkopf &
Smola, 2002). Some well-known kernel methods include support vector machines (SVMs) (Vap-
nik, 2000), kernel principal component analysis (kernel PCA) (Schölkopf et al., 1998), and kernel
k-means (Shawe-Taylor & Cristianini, 2004). Naturally, an important issue in kernel methods is
kernel design. Indeed, the performance of a kernel method depends crucially on the kernel used,
where different choices of kernels often lead to quite different results. Therefore, substantial efforts
have been made to design appropriate kernels for the problems at hand. For instance, in (Chapelle
& Vapnik, 2000), parametric kernel functions are proposed, where the focus is on model selection
(Chapelle & Vapnik, 2000). The modeling capability of parametric kernels, however, is limited. A
more natural idea is to learn specialized nonparametric kernels for specific problems. For instance,
in cases where only inner products of the input data are involved, kernel learning is equivalent to the
learning of a kernel matrix. This is the main focus of recent kernel methods.

Currently, many different kernel learning frameworks have been proposed. These include spectral
kernel learning (Li & Liu, 2009), multiple kernel learning (Lanckriet et al., 2004), and the Breg-

1

man divergence-based kernel learning (Kulis et al., 2009). Typically, a kernel learning framework
consists of two main components: the problem formulation in terms of the kernel matrix, and an
optimization procedure for finding the kernel matrix that has certain desirable properties. As seen
in, e.g., the Maximum Variance Unfolding (MVU) method (Weinberger et al., 2004) for nonlinear
dimensionality reduction (see (So, 2007) for related discussion) and Pairwise Constraint Propaga-
tion (PCP) (Li et al., 2008) for constrained clustering, a nice feature of such a framework is that
the problem formulation often becomes straightforward. Thus, the major challenge in optimization-
based kernel learning lies in the second component, where the key is to find an efficient procedure
to obtain a positive semidefinite kernel matrix that satisfies certain properties.

Using the kernel trick, most kernel learning problems (Graepel, 2002; Weinberger et al., 2004;
Globerson & Roweis, 2007; Song et al., 2008; Li et al., 2008) can naturally be formulated as
semidefinite programs (SDPs). Although in theory SDPs can be efficiently solved, the high computa-
tional complexity has rendered the SDP approach unscalable. An effective and widely used heuristic
for speedup is to perform low-rank kernel approximation and matrix factorization (Weinberger et al.,
2005; Weinberger et al., 2007; Li et al., 2009). In this paper, we investigate the possibility of further
speedup by studying a class of convex quadratic semidefinite programs (QSDPs). These QSDPs
arise in many contexts, such as graph Laplacian regularized low-rank kernel learning in nonlinear
dimensionality reduction (Sha & Saul, 2005; Weinberger et al., 2007; Globerson & Roweis, 2007;
Song et al., 2008; Singer, 2008) and constrained clustering (Li et al., 2009). In the aforementioned
papers, a QSDP is reformulated as an SDP with O(m2) variables and a linear matrix inequality of
size O(m2) × O(m2). Such a reformulation is highly inefficient and unscalable, as it has an order
of m9 time complexity (Ben-Tal & Nemirovski, 2001, Lecture 6). In this paper, we propose a novel
reformulation that exploits the structure of the QSDP and leads to a semidefinite-quadratic-linear
program (SQLP) that can be solved by the standard software SDPT3 (Tütüncü et al., 2003). Such a
reformulation has the advantage that it only has one positive semidefinite constraint on a matrix of
size m×m, one second-order cone constraint of size O(m2) and a number of linear constraints on
O(m2) variables. As a result, our reformulation is much easier to process numerically. Moreover,
a simple complexity analysis shows that the gain in speedup over previous approaches is at least
of the order m2.5. Experimental results show that our formulation is indeed far more efficient than
previous ones.

The rest of the paper is organized as follows. We review related kernel learning problems in Section
2 and present our formulation in Section 3. Experiment results are reported in Section 4. Section 5
concludes the paper.

2 The Problems

In this section, we briefly review some kernel learning problems that arise in dimensionality re-
duction and constrained clustering. They include MVU (Weinberger et al., 2004), Colored MVU
(Song et al., 2008), (Singer, 2008), Pairwise Semidefinite Embedding (PSDE) (Globerson & Roweis,
2007), and PCP (Li et al., 2008). MVU maximizes the variance of the embedding while preserving
local distances of the input data. Colored MVU generalizes MVU with side information such as
class labels. PSDE derives an embedding that strictly respects known similarities, in the sense that
objects known to be similar are always closer in the embedding than those known to be dissimilar.
PCP is designed for constrained clustering, which embeds the data on the unit hypersphere such that
two objects that are known to be from the same cluster are embedded to the same point, while two
objects that are known to be from different clusters are embedded orthogonally. In particular, PCP
seeks the smoothest mapping for such an embedding, thereby propagating pairwise constraints.

Initially, each of the above problems is formulated as an SDP, whose kernel matrix K is of size n×n,
where n denotes the number of objects. Since such an SDP is computationally expensive, one can
try to reduce the problem size by using graph Laplacian regularization. In other words, one takes
K = QY QT , where Q ∈ Rn×m consists of the smoothest m eigenvectors of the graph Laplacian
(m ¿ n), and Y is of size m ×m (Sha & Saul, 2005; Weinberger et al., 2007; Song et al., 2008;
Globerson & Roweis, 2007; Singer, 2008; Li et al., 2009). The learning of K is then reduced to
the learning of Y , leading to a quadratic semidefinite program (QSDP) that is similar to a standard
quadratic program (QP), except that the feasible set of a QSDP resides in the positive semidefinite
cone as well. The intuition behind this low-rank kernel approximation is that a kernel matrix of the

2

form K = QY QT actually, to some degree, preserves the proximity of objects in the feature space.
Detailed justification can be found in the related work mentioned above.

Next, we use MVU and PCP as representatives to demonstrate how the SDP formulations emerge
from nonlinear dimensionality reduction and constrained clustering.

2.1 MVU

The SDP of MVU (Weinberger et al., 2004) is as follows:

max
K

tr(K) = I •K (1)

s.t.
n∑

i,j=1

kij = 0, (2)

kii + kjj − 2kij = d2
ij , ∀(i, j) ∈ N , (3)

K º 0, (4)

where K = (kij) denotes the kernel matrix to be learned, I denotes the identity matrix, tr(·) denotes
the trace of a square matrix, • denotes the element-wise dot product between matrices, dij denotes
the Euclidean distance between the i-th and j-th objects, and N denotes the set of neighbor pairs,
whose distances are to be preserved in the embedding.

The constraint in (2) centers the embedding at the origin, thus removing the translation freedom.
The constraints in (3) preserve local distances. The constraint K º 0 in (4) specifies that K must
be symmetric and positive semidefinite, which is necessary since K is taken as the inner product
matrix of the embedding. Note that given the constraint in (2), the variance of the embedding
is characterized by V(K) = 1

2n

∑
i,j(kii + kjj − 2kij) = tr(K) (Weinberger et al., 2004) (see

related discussion in (So, 2007), Chapter 4). Thus, the SDP in (1-4) maximizes the variance of the
embedding while keeping local distances unchanged. After K is obtained, kernel PCA is applied to
K to compute the low-dimensional embedding.

2.2 PCP

The SDP of PCP (Li et al., 2008) is:

min
K

L̄ •K (5)

s.t. kii = 1, i = 1, 2, . . . , n, (6)
kij = 1, ∀(i, j) ∈M, (7)
kij = 0, ∀(i, j) ∈ C, (8)
K º 0, (9)

where L̄ denotes the normalized graph Laplacian, M denotes the set of object pairs that are known
to be from the same cluster, and C denotes those that are known to be from different clusters.

The constraints in (6) map the objects to the unit hypersphere. The constraints in (7) map two objects
that are known to be from the same cluster to the same vector. The constraints in (8) map two objects
that are known to be from different clusters to vectors that are orthogonal. Let X = {xi}n

i=1 be the
data set, F be the feature space, and φ : X → F be the associated feature map of K. Then, the
degree of smoothness of φ on the data graph can be captured by (Zhou et al., 2004):

S(φ) =
1
2

n∑

i,j=1

wij

∥∥∥∥∥
φ(xi)√

dii

− φ(xj)√
djj

∥∥∥∥∥

2

F
= L̄ •K, (10)

where wij is the similarity of xi and xj , dii =
∑n

j=1 wij , and ‖ · ‖F is the distance metric in F .
The smaller the value S(φ), the smoother is the feature map φ. Thus, the SDP in (5-9) seeks the
smoothest feature map that embeds the data on the unit hypersphere and at the same time respects the
pairwise constraints. After K is solved, kernel k-means is then applied to K to obtain the clusters.

3

2.3 Low-Rank Approximation: from SDP to QSDP

The SDPs in MVU and PCP are difficult to solve efficiently because their computational complexity
scales at least cubically in the size of the matrix variable and the number of constraints (Borchers,
1999). A useful heuristic is to use low-rank kernel approximation, which is motivated by the obser-
vation that the degree of freedom in the data is often much smaller than the number of parameters
in a fully nonparametric kernel matrix K. For instance, it may be equal to or slightly larger than
the intrinsic dimension of the data manifold (for dimensionality reduction) or the number of clusters
(for clustering). Another more specific observation is that it is often desirable to have nearby objects
mapped to nearby points, as is done in MVU or PCP.

Based on these observations, instead of learning a fully nonparametric K, one learns a K of the
form K = QY QT , where Q and Y are of sizes n×m and m×m, respectively, where m ¿ n. The
matrix Q should be smooth in the sense that nearby objects in the input space are mapped to nearby
points (the i-th row of Q is taken as a new representation of xi). Q is computed prior to the learning
of K. In this way, the learning of a kernel matrix K is reduced to the learning of a much smaller
Y , subject to the constraint that Y º 0. This idea is used in (Weinberger et al., 2007) and (Li et al.,
2009) to speed up MVU and PCP, respectively, and is also adopted in Colored MVU (Song et al.,
2008) and PSDE (Globerson & Roweis, 2007) for efficient computation.

The choice of Q can be different for MVU and PCP. In (Weinberger et al., 2007), Q =
(v2, . . . ,vm+1), where {vi} are the eigenvectors of the graph Laplacian. In (Li et al., 2009),
Q = (u1, . . . ,um), where {ui} are the eigenvectors of the normalized graph Laplacian. Since
such Q’s are obtained from graph Laplacians, we call the learning of K of the form K = QY QT

the Graph Laplacian Regularized Kernel Learning problem, and denote the methods in (Weinberger
et al., 2007) and (Li et al., 2009) by RegMVU and RegPCP, respectively.

With K = QY QT , RegMVU and RegPCP become:

RegMVU : max
Yº0

tr(Y)− ν
∑

(i,j)∈N
((QY QT)ii − 2(QY QT)ij + (QY QT)jj − d2

ij)
2, (11)

RegPCP : min
Yº0

∑

(i,j,tij)∈S
((QY QT)ij − tij)2, (12)

where ν > 0 is a regularization parameter and S = {(i, j, tij) | (i, j) ∈ M ∪ C, or i = j, tij =
1 if (i, j) ∈ M or i = j, tij = 0 if (i, j) ∈ C}. Both RegMVU and RegPCP can be succinctly
rewritten in the unified form:

min
y

yT Ay + bT y (13)

s.t. Y º 0, (14)

where y = vec(Y) ∈ Rm2
denotes the vector obtained by concatenating all the columns of Y , and

A º 0 (Weinberger et al., 2007; Li et al., 2009). Note that this problem is convex since both the
objective function and the feasible set are convex.

Problem (13-14) is an instance of the so-called convex quadratic semidefinite program (QSDP),
where the objective is a quadratic function in the matrix variable Y . Note that similar QSDPs arise
in Colored MVU, PSDE, Conformal Eigenmaps (Sha & Saul, 2005), Locally Rigid Embedding
(Singer, 2008), and Kernel Matrix Completion (Graepel, 2002). Before we present our approach for
tackling the QSDP (13-14), let us briefly review existing approaches in the literature.

2.4 Previous Approach: from QSDP to SDP

Currently, a typical approach for tackling a QSDP is to use the Schur complement (Boyd & Vanden-
berghe, 2004) to rewrite it as an SDP (Sha & Saul, 2005; Weinberger et al., 2007; Li et al., 2009;
Song et al., 2008; Globerson & Roweis, 2007; Singer, 2008; Graepel, 2002), and then solve it using
an SDP solver such as CSDP1 (Borchers, 1999) or SDPT32 (Toh et al., 2006). In this paper, we call

1https://projects.coin-or.org/Csdp/
2http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html

4

this approach the Schur Complement Based SDP (SCSDP) formulation. For the QSDP in (13-14),
the equivalent SDP takes the form:

min
y,ν

ν + bT y (15)

s.t. Y º 0 and
[

Im2 A
1
2 y

(A
1
2 y)T ν

]
º 0, (16)

where A
1
2 is the matrix square root of A, Im2 is the identity matrix of size m2×m2, and ν is a slack

variable serving as an upper bound of yT Ay. The second semidefinite cone constraint is equivalent
to (A

1
2 y)T (A

1
2 y) ≤ ν by the Schur complement.

Although the SDP in (15-16) has only m(m + 1)/2 + 1 variables, it has two semidefinite cone
constraints, of sizes m×m and (m2+1)×(m2+1), respectively. Such an SDP not only scales poorly,
but is also difficult to process numerically. Indeed, by considering Problem (15-16) as an SDP in
the standard dual form, the number of iterations required by standard interior-point algorithms is of
the order m, and the total number of arithmetic operations required is of the order m9 (Ben-Tal &
Nemirovski, 2001, Lecture 6). In practice, it takes only a few seconds to solve the aforementioned
SDP when m = 10, but can take more than 1 day when m = 40 (see Section 4 for details). Thus,
it is not surprising that m is set to a very small value in the related methods—for example, m = 10
in (Weinberger et al., 2007) and m = 15 in (Li et al., 2009). However, as noted by the authors in
(Weinberger et al., 2007), a larger m does lead to better performance. In (Li et al., 2009), the authors
suggest that m should be larger than the number of clusters.

Is this formulation from QSDP to SDP the best we can have? The answer is no. In the next section,
we present a novel formulation that leads to a semidefinite-quadratic-linear program (SQLP), which
is much more efficient and scalable than the one above. For instance, it takes about 15 seconds when
m = 30, 2 minutes when m = 40, and 1 hour when m = 100, as reported in Section 4.

3 Our Formulation: from QSDP to SQLP

In this section, we formulate the QSDP in (13-14) as an SQLP. Though our focus here is on the
QSDP in (13-14), we should point out that our method applies to any convex QSDP.

Recall that the size of A is m2 ×m2. Let r be the rank of A. With Cholesky factorization, we can
obtain an r×m2 matrix B such that A = BT B, as A is symmetric positive semidefinite and of rank
r (Golub & Loan, 1996). Now, let z = By. Then, the QSDP in (13-14) is equivalent to:

min
y,z,µ

µ + bT y (17)

s.t. z = By, (18)

zT z ≤ µ, (19)
Y º 0. (20)

Next, we show that the constraint in (19) is equivalent to a second-order cone constraint. Let Kn be
the second-order cone of dimension n, i.e.,

Kn = {(x0;x) ∈ Rn : x0 ≥ ‖x‖},
where ‖ · ‖ denotes the standard Euclidean norm. Let u = (1+µ

2 , 1−µ
2 , zT)T . Then, the following

holds.

Theorem 3.1. zT z ≤ µ if and only if u ∈ Kr+2.

Proof. Note that u ∈ Rr+2, since z ∈ Rr. Also, note that µ = (1+µ
2)2 − (1−µ

2)2. If zT z ≤ µ,
then (1+µ

2)2 − (1−µ
2)2 = µ ≥ zT z, which means that 1+µ

2 ≥ ‖(1−µ
2 , zT)T ‖. In particular, we have

u ∈ Kr+2. Conversely, if u ∈ Kr+2, then (1+µ
2)2 ≥ (1−µ

2)2 + zT z, thus implying zT z ≤ µ.

Let ei (where i = 1, 2, . . . , r + 2) be the i-th basis vector, and let C = (0r×2, Ir×r). Then, we have
(e1 − e2)T u = µ, (e1 + e2)T u = 1, and z = Cu. Hence, by Theorem 3.1, the problem in (17-20)

5

swiss roll sample (n=2000)

(a) (b)

Figure 1: Swiss Roll. (a) The true manifold. (b) A set of 2000 points sampled from the manifold.

is equivalent to:

min
y,u

(e1 − e2)T u + bT y (21)

s.t. (e1 + e2)T u = 1, (22)
By − Cu = 0, (23)
u ∈ Kr+2, (24)
Y º 0, (25)

which is an instance of the SQLP problem (Tütüncü et al., 2003). Note that in this formulation,
we have traded the semidefinite cone constraint of size (m2 + 1) × (m2 + 1) in (16) with one
second-order cone constraint of size r + 2 and r + 1 linear constraints. As it turns out, such a
formulation is much easier to process numerically and can be solved much more efficiently. Indeed,
using standard interior-point algorithms, the number of iterations required is of the order

√
m (Ben-

Tal & Nemirovski, 2001, Lecture 6), and the total number of arithmetic operations required is of the
order m6.5 (Tütüncü et al., 2003). This compares very favorably with the m9 arithmetic complexity
of the SCSDP approach, and our experimental results indicate that the speedup in computation is
quite substantial. Moreover, in contrast with the SCSDP formulation, which does not take advantage
of the low rank structure of A, our formulation does take advantage of such a structure.

4 Experimental Results

In this section, we perform several experiments to demonstrate the viability of our SQLP formulation
and its superior computational performance. Since both the SQLP formulation and the previous
SCSDP formulation can be solved by standard softwares to a satisfying gap tolerance, the focus in
this comparison is not on the accuracy aspect but on the computational efficiency aspect.

We set the relative gap tolerance for both algorithms to be 1e-08. We use SDPT3 (Toh et al., 2006;
Tütüncü et al., 2003) to solve the SQLP. We follow (Weinberger et al., 2007; Li et al., 2009) and
use CSDP 6.0.1 (Borchers, 1999) to solve the SCSDP. All experiments are conducted in Matlab
7.6.0(R2008a) on a PC with 2.5GHz CPU and 4GB RAM.

Two benchmark databases, Swiss Roll3 and USPS4 are used in our experiments. Swiss Roll (Fig-
ure 1(a)) is a standard manifold model used for manifold learning and nonlinear dimensionality
reduction. In the experiments, we use the data set shown in Figure 1(b), which consists of 2000
points sampled from the Swiss Roll manifold. USPS is a handwritten digits database widely used
for clustering and classification. It contains images of handwritten digits from 0 to 9 of size 16×16,
and has 7291 training examples and 2007 test examples. In the experiments, we use a subset of
USPS with 2000 images, containing the first 200 examples of each digit from 0-9 in the training
data. The feature to represent each image is a vector formed by concatenating all the columns of the
image intensities. In the sequel, we shall refer to the two subsets used in the experiments simply as
Swiss Roll and USPS.

3http://www.cs.toronto.edu/˜roweis/lle/code.html
4http://www-stat.stanford.edu/˜tibs/ElemStatLearn/

6

Table 1: Computational Results on Swiss Roll (Time: second; # Iter: number of iterations)
SCSDP SQLP

m Time # Iter Time per Iter Time # Iter Time per Iter rank(A)
10 3.84 29 0.13 0.96 32 0.03 64
15 60.36 30 2.01 1.75 31 0.06 153
20 557.79 32 17.43 4.48 35 0.13 264
25 2821.76 34 82.99 7.84 37 0.21 403
30 13039.30 37 352.41 13.39 35 0.38 537
35 38559.50 33 1168.50 29.74 35 0.85 670
40 > 1 day — — 74.01 35 2.12 852
50 — — — 213.26 35 6.09 1152
60 — — — 467.90 35 13.37 1451
80 — — — 1729.65 39 44.35 2062

100 — — — 3988.31 36 110.79 2623

Table 2: Computational Results on USPS (Time: second; # Iter: number of iterations)
SCSDP SQLP

m Time # Iter Time per Iter Time # Iter Time per Iter rank(A)
10 2.84 21 0.14 0.47 16 0.03 100
15 42.96 22 1.95 1.26 17 0.07 225
20 461.38 27 17.09 3.35 17 0.20 400
25 2572.72 31 82.99 5.97 14 0.43 625
30 10576.01 30 352.53 15.72 19 0.83 900
35 35173.60 30 1172.50 44.53 17 2.62 1225
40 > 1 day — — 133.58 20 6.68 1600
50 — — — 362.24 16 22.64 2379
60 — — — 936.58 19 49.29 2938
80 — — — 1784.12 17 104.95 3112

100 — — — 2900.44 17 170.61 3111

The Swiss Roll (resp. USPS) is used to derive the QSDP in RegMVU (resp. RegPCP). For RegMVU,
the 4NN graph is used, i.e., wij = 1 if xi is within the 4NN of xj or vice versa, and wij = 0
otherwise. We verified that the 4NN graph derived from our Swiss Roll data is connected. For
RegPCP, we construct the graph following the approach suggested in (Li et al., 2009). Specifically,
we have wij = exp(−d2

ij/(2σ2)) if xi is within 20NN of xj or vice versa, and wij = 0 otherwise.
Here, σ is the averaged distance from each object to its 20-th nearest neighbor. For the pairwise
constraints used in RegPCP, we randomly generate 20 similarity constraints for each class, and 20
dissimilarity constraints for every two classes, yielding a total of 1100 constraints. For each data set,
m ranges over {10, 15, 20, 25, 30, 35, 40, 50, 60, 80, 100}. In summary, for each data set, 11 QSDPs
are formed. Each QSDP gives rise to one SQLP and one SCSDP. Therefore, for each data set, 11
SQLPs and 11 SCSDPs are derived.

4.1 The Results

The computational results of the programs are shown in Tables 1 and 2. For each program, we
report the total computation time, the number of iterations needed to achieve the required tolerance,
and the average time per iteration in solving the program. A dash (—) in the box indicates that the
corresponding program takes too much time to solve. We choose to stop the program if it fails to
converge within 1 day. This happens for the SCSDP with m = 40 on both data sets.

¿From the tables, we see that solving an SQLP is consistently much more faster than solving an
SCSDP. To see the scalability, we plot the solution time (Time) against the problem size (m) in
Figure 2. It can be seen that the solution time of the SCSDP grows much faster than that of the
SQLP. This demonstrates the superiority of our proposed approach.

7

10 15 20 25 30 35 40 50 60 80 100

0.5

1

1.5

2

2.5

3

3.5

x 10
4

m

T
im

e
(s

ec
on

d)

Swiss Roll

SCSDP
SQLP

10 15 20 25 30 35 40 50 60 80 100

0.5

1

1.5

2

2.5

3

3.5
x 10

4

m

T
im

e
(s

ec
on

d)

USPS

SCSDP
SQLP

(a) (b)

Figure 2: Curves on computational cost: Solution Time vs. Problem Scale.

We also note that the per-iteration computational costs of SCSDP and SQLP are drastically different.
Indeed, for the same problem size m, it takes much less time per iteration for the SQLP than that for
the SCSDP. This is not very surprising, as the SQLP formulation takes advantage of the low rank
structure of the data matrix A.

5 Conclusions

We have studied a class of convex optimization programs called convex Quadratic Semidefinite
Programs (QSDPs), which arise naturally from graph Laplacian regularized kernel learning (Sha &
Saul, 2005; Weinberger et al., 2007; Li et al., 2009; Song et al., 2008; Globerson & Roweis, 2007;
Singer, 2008). A QSDP is similar to a QP, except that it is subject to a semidefinite cone constraint
as well. To tackle the QSDP, one typically uses the Schur complement to rewrite it as an SDP
(SCSDP), thus resulting in a large linear matrix inequality constraint. In this paper, we argue that
this formulation is not computationally optimal and have proposed a novel formulation that leads to
a semidefinite-quadratic-linear program (SQLP). Our formulation introduces one positive semidef-
inite constraint, one second-order cone constraint and a set of linear constraints. This should be
contrasted with the two large semidefinite cone constraints in the SCSDP. Our complexity analysis
and experimental results have shown that the proposed SQLP formulation scales far better than the
SCSDP formulation.

Acknowledgements

The authors would like to thank Professor Kim-Chuan Toh for his valuable comments. This re-
search work was supported in part by GRF grants CUHK 2150603, CUHK 414307 and CRF grant
CUHK2/06C from the Research Grants Council of the Hong Kong SAR, China, as well as the
NSFC-RGC joint research grant N CUHK411/07.

References
Ben-Tal, A., & Nemirovski, A. (2001). Lectures on Modern Convex Optimization: Analysis, Algorithms, and

Engineering Applications. MPS–SIAM Series on Optimization. Philadelphia, Pennsylvania: Society for
Industrial and Applied Mathematics.

Borchers, B. (1999). CSDP, a C Library for Semidefinite Programming. Optimization Methods and Software,
11/12, 613–623.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press. Avail-
able online at http://www.stanford.edu/˜boyd/cvxbook/.

Chapelle, O., & Vapnik, V. (2000). Model Selection for Support Vector Machines. In S. A. Solla, T. K. Leen
and K.-R. Müller (Eds.), Advances in Neural Information Processing Systems 12: Proceedings of the 1999
Conference, 230–236. Cambridge, Massachusetts: The MIT Press.

8

Globerson, A., & Roweis, S. (2007). Visualizing Pairwise Similarity via Semidefinite Programming. Proceed-
ings of the 11th International Conference on Artificial Intelligence and Statistics (pp. 139–146).

Golub, G. H., & Loan, C. F. V. (1996). Matrix Computations. Baltimore, Maryland: The Johns Hopkins
University Press. Third edition.

Graepel, T. (2002). Kernel Matrix Completion by Semidefinite Programming. Proceedings of the 12th Inter-
national Conference on Artificial Neural Networks (pp. 694–699). Springer–Verlag.

Kulis, B., Sustik, M. A., & Dhillon, I. S. (2009). Low–Rank Kernel Learning with Bregman Matrix Diver-
gences. The Journal of Machine Learning Research, 10, 341–376.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the Kernel
Matrix with Semidefinite Programming. The Journal of Machine Learning Research, 5, 27–72.

Li, Z., & Liu, J. (2009). Constrained Clustering by Spectral Kernel Learning. To appear in the Proceedings of
the 12th IEEE International Conference on Computer Vision.

Li, Z., Liu, J., & Tang, X. (2008). Pairwise Constraint Propagation by Semidefinite Programming for Semi–
Supervised Classification. Proceedings of the 25th International Conference on Machine Learning (pp.
576–583).

Li, Z., Liu, J., & Tang, X. (2009). Constrained Clustering via Spectral Regularization. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2009 (pp. 421–428).

Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Cambridge, Massachusetts: The MIT Press.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1998). Nonlinear Component Analysis as a Kernel Eigenvalue
Problem. Neural Computation, 10, 1299–1319.

Sha, F., & Saul, L. K. (2005). Analysis and Extension of Spectral Methods for Nonlinear Dimensionality
Reduction. Proceedings of the 22nd International Conference on Machine Learning (pp. 784–791).

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge: Cambridge
University Press.

Singer, A. (2008). A Remark on Global Positioning from Local Distances. Proceedings of the National
Academy of Sciences, 105, 9507–9511.

So, A. M.-C. (2007). A Semidefinite Programming Approach to the Graph Realization Problem: Theory,
Applications and Extensions. Doctoral dissertation, Stanford University.

Song, L., Smola, A., Borgwardt, K., & Gretton, A. (2008). Colored Maximum Variance Unfolding. In J. C.
Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in Neural Information Processing Systems 20:
Proceedings of the 2007 Conference, 1385–1392. Cambridge, Massachusetts: The MIT Press.

Toh, K. C., Tütüncü, R. H., & Todd, M. J. (2006). On the Implementation and Usage of SDPT3 — A MATLAB
Software Package for Semidefinite–Quadratic–Linear Programming, Version 4.0. User’s Guide.

Tütüncü, R. H., Toh, K. C., & Todd, M. J. (2003). Solving Semidefinite–Quadratic–Linear Programs using
SDPT3. Mathematical Programming, 95, 189–217.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Statistics for Engineering and Information
Science. New York: Springer–Verlag. Second edition.

Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005). Nonlinear Dimensionality Reduction by Semidefinite
Programming and Kernel Matrix Factorization. Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (pp. 381–388).

Weinberger, K. Q., Sha, F., & Saul, L. K. (2004). Learning a Kernel Matrix for Nonlinear Dimensionality
Reduction. Proceedings of the 21st International Conference on Machine Learning (pp. 85–92).

Weinberger, K. Q., Sha, F., Zhu, Q., & Saul, L. K. (2007). Graph Laplacian Regularization for Large–Scale
Semidefinite Programming. Advances in Neural Information Processing Systems 19: Proceedings of the
2006 Conference (pp. 1489–1496). Cambridge, Massachusetts: The MIT Press.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with Local and Global
Consistency. Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference
(pp. 595–602). Cambridge, Massachusetts: The MIT Press.

9

