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Abstract

The recently proposed additive noise model has advantages over previous
directed structure learning approaches since it (i) does not assume linearity
or Gaussianity and (ii) can discover a unique DAG rather than its Markov
equivalence class. However, for certain distributions, e.g. linear Gaussians,
the additive noise model is invertible and thus not useful for structure
learning, and it was originally proposed for the two variable case with a
multivariate extension which requires enumerating all possible DAGs. We
introduce weakly additive noise models, which extends this framework to
cases where the additive noise model is invertible and when additive noise
is not present. We then provide an algorithm that learns an equivalence
class for such models from data, by combining a PC style search using recent
advances in kernel measures of conditional dependence with local searches
for additive noise models in substructures of the Markov equivalence class.
This results in a more computationally efficient approach that is useful for
arbitrary distributions even when additive noise models are invertible.

1 Introduction

Learning probabilistic graphical models from data serves two primary purposes: (i) find-
ing compact representations of probability distributions to make inference efficient and (ii)
modeling unknown data generating mechanisms and predicting causal relationships. Until
recently, most constraint-based and score-based algorithms for learning directed graphical
models from continuous data required assuming relationships between variables are linear
with Gaussian noise. While this assumption may be appropriate in many contexts, there are
well known contexts, such as fMRI images, where variables have nonlinear dependencies and
data do not tend towards Gaussianity. A second major limitation of the traditional algo-
rithms is they cannot identify a unique structure; they reduce the set of possible structures
to an equivalence class which entail the same Markov properties. The recently proposed ad-
ditive noise model [1] for structure learning addresses both limitations; by taking advantage
of observed nonlinearity and non-Gaussianity, a unique directed acyclic structure can be
identified in many contexts. However, it too suffers from limitations: (i) for certain distri-
butions, e.g. linear Gaussians, the model is invertible and not useful for structure learning;
(ii) it was originally proposed for two variables with a multivariate extension that requires
enumerating all possible DAGs, which is super-exponential in the number of variables.

In this paper, we address the limitations of the additive noise model. We introduce weakly
additive noise models, which have the advantages of additive noise models, but are still
useful when the additive noise model is invertible and in most cases when additive noise is
not present. Weakly additive noise models allow us to express greater uncertainty about the



data generating mechanism, but can still identify a unique structure or a smaller equivalence
class in most cases. We also provide an algorithm for learning an equivalence class for such
models from data that is more computationally efficient in the more than two variables case.
Section 2 reviews the appropriate background; section 3 introduces weakly additive noise
models; section 4 describes our learning algorithm; section 5 discusses some related research;
section 6 presents some experimental results; finally, section 7 offers conclusions..

2 Background

Let G = (V, &) be a directed acyclic graph (DAG), where V denotes the set of vertices and
E;; € £ denotes a directed edge V; — V;. V; is a parent of V; and V} is a child of V;. For
Viev, Pa‘g/i denotes the parents of V; and Ch‘g/" denotes the children of V;. The degree of V;

is the number of edges with an endpoint at V;. A v-structure is a triple (V;, V;, Vi) C V such

that {V;, Vi } C Pa‘g/j. A v-structure is immoral, or an immorality, if E;, ¢ € and Ey; ¢ £.
A joint distribution P over variables corresponding to nodes in V is Markov with respect to

GifPp(V) = H Pp (Vi \ Pa‘g/"'). P is faithful to G if every conditional independence true
Viey

in P is entailed by the above factorization. A partially directed acyclic graph (PDAG) H for
G is a mized graph, i.e. consisting of directed and undirected edges, representing all DAGs
Markov equivalent to G, i.e. DAGs entailing exactly the same conditional independencies.
If V; — Vj is a directed edge in H, then all DAGs Markov equivalent to G have this directed
edge; if V; — V; is an undirected edge in H, then some DAGs that are Markov equivalent to
G have the directed edge V; — V; while others have the directed edge V; « V.

The PC algorithm is a well known constraint-based, or conditional independence based,
structure learning algorithm. It is an improved greedy version of the SGS [2] and IC [3]
algorithms, shown below. Instead of searching all subsets of V\{V;,V;} for an S such

Input : Observed data for variables in V
Output: PDAG G over nodes V

G «— the complete undirected graph over the variables in V

For {V;,V;} CV, if 3S C V\{V;,V;}, such that V; L V; | S, remove the V; — V; edge
For {V;,V}, Vi,} CV such that V; — V; and V; — V}, remain as edges, but V; — V;, does
not remain, if S C V\{V;, Vj, Vi }, such that V; L V;, | {SUV;}, orient V; — V; — Vj,
4 Orient edges to prevent additional immoralities and cycles using the Meek rules [4]

Algorithm 1: SGS/IC algorithm

W N =

that V; L V; | S, PC (i) initially sets S = ) for all {V;, V;} pairs, (ii) checks to see if any
edges can be removed based on the results of conditional independence tests with these S
sets, and (iii) iteratively increases the cardinality of S considered until AV}, € V with degree
greater than |S|. S is only considered if it is a subset of nodes connected to V; or V; at the
current iteration. PC learns the correct PDAG in the large sample limit when the Markov,
faithfulness, and causal sufficiency (that there are no unmeasured common causes of two
or more measured variables) assumptions hold [2]. The partial correlation based Fisher
Z-transformation test, which assumes linear Gaussian distributions, is used for conditional
independence testing with continuous variables. The statistical advantage of PC is it limits
the number of tests performed, particularly those with large conditioning sets. This also
yields a computational advantage since the number of possible tests is exponential in V).

The recently proposed additive noise model approach to structure learning [1] assumes only

that each variable can be represented as a (possibly nonlinear) function f of its parents

plus additive noise € with some arbitrary distribution, and that the noise components are
n

mutually independent, i.e. P(ey,...,€,) = H P(¢;). Consider the two variable case where
i=1

X — Y is the true DAG, X = ex, Y = sin(nX) + ey, ex ~ Unif(-1,1), and ey ~

Unif(—1,1). If we regress Y on X (nonparametrically), the forward model, figure la, and
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Figure 1: Nonparametric regressions with data overlayed for (a) Y regressed on X, (b) X
regressed on Y, (¢) Z regressed on X, and (d) X regressed on Z

regress X on Y, the backward model, figure 1b, we observe the residuals éy 1 X and
éx L Y. This provides a criterion for distinguishing X — Y from X <« Y in many cases,
but there are counterexamples such as the linear Gaussian case, where the forward model
is invertible so we find éy L X and éx L Y. [1, 5] show, however, that whenever f is
nonlinear, the forward model is noninvertible, and when f is linear, the forward model
is only invertible when ¢ is Gaussian and a few other special cases. Another limitation
of this approach is that it is not closed under marginalization of intermediary variables
when f is nonlinear, eg. for X - Y — Z with X =ex, Y = X2 4 ey, Z = Y3 4+ ¢4,
ex ~ Unif(—1,1), ey ~ Unif(—1,1), and ez ~ Unif(0,1), observing only X and Z,
figures 1c and 1d, causes us to reject both the forward and backward models. [5] shows this
method can be generalized to more variables. To test whether a DAG is compatible with
the data, we regress each variable on its parents and test whether the resulting residuals are
mutually independent. This procedure is impractical even for a few variables, however, since
the number of possible DAGs grows super-exponentially with the number of variables, e.g.
there are ~ 4.2 x 10'® DAGs with 10 nodes. Since we do not assume linearity or Gaussianity
in this framework, a sufficiently powerful nonparametric independence test must be used.
Typically, the Hilbert Schmidt Independence Criterion [6] is used, which we now define.

Let X be a random variable with domain X. A Hilbert space Hy of functions from X to R
is a reproducing kernel Hilbert space (RKHS) if for some kernel k(-, -) (the reproducing kernel
for Hx), for every f(-) € Hx and z € X, the inner product (f(-), k(z, )1, = f(x). We may
treat k(x,-) as a mapping of x to the feature space Hy. For x,2" € X, (k(x,-), k(z', ) n, =
k(x,2'), so we can compute inner products efficiently in this high dimensional space. The
Moore-Aronszajn theorem shows that all symmetric positive definite kernels (most popular
kernels) are reproducing kernels that uniquely define corresponding RKHSs [7]. Let Y be
a random variable with domain Y and (-, -) the reproducing kernel for Hy. We define the
mean map px and cross covariance Cxy as follows, using ® to denote the tensor product.

px =Ex[k(z,)]  Cxy = ([k(x,") — px] @ [(y,-) — py])

If the kernels are characteristic, e.g. Gaussian and Laplace kernels, the mean map is injective
[8, 9, 10] so distinct probability distributions have different mean maps. The Hilbert Schmidt
Independence Criteria (HSIC) Hyy = ||Cxy|%g measures the dependence of X and Y,
where || - |ps denotes the Hilbert Schmidt norm. [9] shows Hxy =0 if and only if X 1 Y
for characteristic kernels. For m paired i.i.d. samples, let K and L be Gram matrices for
k() and I(-,), i.e. ki = k(z;,2;). For H=1Iy — £1y1%,let K = HKH and L = HLH

be centered Gram matrices. Hyy = —tr (f( E), where tr denotes the trace, is an empirical

estimator for Hxy [6]. To determine the threshold of a level-a statistical test, we can use

the permutation approach (where we compute Hyy for multiple random assignments of the
Y samples to X, and use the 1 — a quantile of the resulting empirical distribution over
Hyy), or a Gamma approximation to the null distribution of mHxy (see [6] for details).

3 Weakly additive noise models

We now extend the additive noise model framework to account for cases where additive
noise models are invertible and cases where additive noise may not be present.



Definition 3.1. ¢ = <Vi, Pag"> is a local additive noise model for a distribution P over V
that is Markov to a DAG G = (V, &) if V, = f (Pag‘{f‘) + € is an additive noise model.
Definition 3.2. A weakly additive noise model M = (G, ¥) for a distribution P over V is a

DAG G = (V, &) and set of local additive noise models ¥, such that P is Markov to G, ) € ¥
if and only if ¢ is a local additive noise model for P, and V<Vi,Pagi> e v, iﬂVJ € Pagi

such that there exists some graph G’ (not necessarily related to P) such that V; € Pa‘g/{ and
<Vj, Pa‘g/”j> is a local additive noise model for P.

When we assume a data generating process has a weakly additive noise model representation,
we assume only that there are no cases where X — Y can be written X = f(Y) + ex, but
not ¥ = f(X) + ey. In other words, the data cannot appear as though it admits an
additive noise model representation, but only in the incorrect direction. This representation
is still appropriate when additive noise models are invertible, and when additive noise is
not present: such cases only lead to weakly additive noise models which express greater
underdetermination of the true data generating process.

We now define the notion of distribution-equivalence for weakly additive noise models.
Definition 3.3. A weakly additive noise model M = (G, W) is distribution-equivalent to
N = (@', ¥') if and only if G and G’ are Markov equivalent and ¢ € ¥ if and only if ¢ € ¥'.

Distribution-equivalence defines what can be discovered about the true data generating
mechanism using observational data. We now define a new structure to partition data
generating processes which instantiate distribution-equivalent weakly additive noise models.

Definition 3.4. A weakly additive noise partially directed acyclic graph (WAN-PDAG) for
M = (G, ¥) is a mixed graph H = (V, £) such that for {V;,V;} CV,

1. V; — Vj is a directed edge in H if and only if V; — V; is a directed edge in G and
in all G’ such that ' = (G’, ¥’} is distribution-equivalent to M

2. V; —V; is an undirected edge in H if and only if V; — Vj is a directed edge in G and
there exists a G" and N = (G', ') distribution-equivalent to M such that V; < V;
is a directed edge in G’

We now get the following results.

Lemma 3.1. Let M = (G, V) be a weakly additive noise model, <V},Pagf’> € ¥, and
N = (G’ ¥') be distribution equivalent to M. Then Pa‘g/i = Pag? and Chgi = Ch‘g/i.

Proof. Since M and N are distribution-equivalent, Pa‘g/" = Pa‘g/’}. Thus, Ch‘g/i = Ch‘g/i O

Theorem 3.1. The WAN-PDAG for M = (G, ¥) is constructed by (i) adding all directed
and undirected edges in the PDAG instantiated by M, (ii) V <Vi, Pa‘g/"> € U, directing all

V; € Pa‘g/" as V; — Vi and all V, € Ch‘g/"’ as V; — Vi, and (iii) applying the extended Meek
rules [4], treating orientions made using ¥ as background knowledge.

Proof. (1) This is correct because of Markov equivalence [2]. (ii) This is correct by lemma
3.1. (iii) These rules are correct and complete [4]. O

WAN-PDAGSs can used to identify the same information about the data generating mech-
anism as additive noise models, when additive noise models are identifiable, but provide
a more powerful representation of uncertainty and can be used to discover more informa-
tion when additive noise models are unidentifiable. The next section describes an efficient
algorithm for learning WAN-PDAGs from data.



4 The Kernel PC (kPC) algorithm

We now describe the Kernel PC (kPC) algorithm!, which consists of two stages: (i) a
constraint-based search using the PC algorithm with a nonparametric conditional inde-
pendence test (the Fisher Z test is inappropriate since we want to allow nonlinearity and
non-Gaussianity) to identify the Markov equivalence class and (ii) a “PC-style” search for
noninvertible additive noise models in submodels of the Markov equivalence class.

In the first stage, we use a kernel-based conditional dependence measure similar to HSIC
[9] (see also [11, Section 2.2] for a related quantity with a different normalization). For
a conditioning variable Z with centered Gram matrix M for a reproducing kernel m(-,-),
we define the conditional cross covariance Cxy|z = CXZCEECZY’ where X = (X,Z) and

Y = (Y,Z). Let Hyy|z = HCXy|Z||%,S. It follows from [9, Theorem 3] that Hxy |z = 0 if
and only if X I Y|Z when kernels are characteristic. [9] provides the empirical estimator:

N 1 - S o ]
Hy|z = —5tr(KL = 2KM(M +ely) ML+ KM(M + eIy) > MLM(M + elv) M)

The null distribution of HXy| 7z is unknown and difficult to derive so we must use the
permutation approach described in section 2. This is not straightforward since permuting
X or Y while leaving Z fixed changes the marginal distribution of X given Z or Y given Z.
We thus (making analogy to the discrete case) must cluster Z and then permute elements
only within clusters for the permutation test, as in [12].

This first stage is not computational efficient, however, since each evaluation of Hxy |z is

naively O (N 3) and we need to evaluate ny‘ 2z approximately 1000 times for each per-
mutation test. Fortunately, we see from [13, Appendix C] that the eigenspectra of Gram
matrices for Gaussian kernels decay very rapidly, so low rank approximations of these ma-
trices can be obtained even when using a very conservative threshold. We implemented the
incomplete Cholesky factorization [14], which can be used to obtain an m X p matrix G,
where p < m, and an m x m permutation matrix P such that K ~ PGGT P, where K is
an m x m Gram matrix. A clever implementation after replacing Gram matrices in H XY|Z
with their incomplete Cholesky factorizations and using an appropriate equivalence to invert

G'G +el, (for M) instead of GG T + €l,,, results in a straightforward O (mp3) operation.

Unfortunately, this is not numerically stable unless a relatively large regularizer € is chosen
or only a small number of columns are used in the incomplete Cholesky factorizations.

A more stable (and faster) approach is to obtain incomplete Cholesky factorizations Gx, Gy,
and GGz with permutation matrices Px, Py, and Pz, and then obtain the thin SVDs for
HPxGx,HPyGy, and HPzGz, e.g HPG = USV, where U is m X p, S is the p X p
diagonal matrix of singular values, and V is p x p. Now define matrices SX,SY, and 5%
and GX,GY, and G? as follows:

Z 2

X x\2 v \2 .z (s7)
Sii = (Su) Sii = (3 ) Sii = Z+

(s“) +e€

GX —puXgXyX' ay _pyYsvyy' GZ —uyzgiyz’
. 1 Y e o
We can compute Hxy|z = —tr (GXGY —2GXGZGY + GXGZGYGZ) stably and effi-
m

ciently in O (mp3) by choosing an appropriate associative ordering of matrix multiplications.
Figure 2 shows that this method leads to a significant increase in speed when used with a

permutation test for conditional independence without significantly affecting the empirically
observed type I error rate for a level-.05 test.

In the second stage, we look for additive noise models in submodels of the Markov equiv-
alence class because (i) it may be more efficient to do so and require fewer tests since
orientations implied by an additive noise model may imply further orientations and (ii) we

'MATLAB code may be obtained from http://www.andrew.cmu.edu/~rtillman /kpc
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Figure 2: Runtime and Empirical Type I Error Rate. Results are over the generation of 20
3-node DAGs for which X I Y|Z and the generating distribution was Gaussian.

may find more orientations by considering submodels, e.g. if all relations are linear and only
one variable has a non-Gaussian noise term. The basic strategy used is a“PC-style” greedy
search where we look for undirected edges in the current mixed graph (starting with the
PDAG resulting from the first stage) adjacent to the fewest other undirected edges. If these
edges can be oriented using additive noise models, we make the implied orientations, apply
the extended Meek rules, and then iterate until no more edges can be oriented. Algorithm
2 provides pseudocode. Let G = (V, £) be the resulting PDAG and VV; € V, let U‘g/i denote
the nodes connected to V; in G by an undirected edge. We get the following results.

Input : PDAG G = (V,§)
Output: WAN-PDAG G = (V,€)

151

> s do

while max ‘ U‘g/i
2 Viey

3 foreach V; € V such that ’U‘g/ =s or ‘ U‘g/i < s and U‘g/i was updated do

4 s —s

5 while s’ > 0 do

6 foreach S C Ug’i such that |S| = s’ and VSy € S, orienting Sy, — V;, does
not create an immorality do

7 Nonparametrically regress V; on Pa‘g/"' US and compute the residual é;5

8 if ;¢ 1L S and ﬂVJ €S and 8 C U‘g/j such that. regressing V; on

Pa% U S UV; results in the residual é;g01v;y L S U{V;} then

9 VS € S, orient S, — V;, and YU, € U‘g/i\S orient V; — U

10 Apply the extended Meek rules

11 VYV € V, update U‘g/m, set s’ = 1, and break

12 end

13 end

14 s —s —1;

15 end

16 end

17 s—s+1

18 end

Algorithm 2: Second Stage of kPC

Lemma 4.1. If an edge is oriented in the second stage of kPC, it is implied by a noninvertible
local additive noise model.

Proof. If the condition at line 8 is true then <Vi, Pag‘{i U S> is a noninvertible local additive
noise model. All U; € Ug"\S must be children of V; by lemma 3.1. O
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Figure 3: Precision and Recall

Lemma 4.2. Suppose ¢y = (V;, W) is a noninvertible local additive noise model. Then kPC
will make all orientations implied by .

Proof. Let S = W\Pa‘g/i for Pa‘g,i at the current iteration. kPC must terminate with s > |S|
since [S| < |Ug

additive noise model, line 8 is satisfied so all edges connected to V; are oriented. O

so S = S at some iteration. Since <VZ-, Pa‘g/"' U S> is a noninvertible local

Theorem 4.1. Assume data is generated according to some weakly additive noise model
M = (G, ¥). Then kPC will return the WAN-PDAG instantiated by M assuming perfect
conditional independence information, Markov, faithfulness, and causal sufficiency.

Proof. The PC algorithm is correct and complete with respect to conditional independence
[2]. Orientations made with respect to additive noise models are correct by lemma 4.1 and
all such orientations that can be made are made by lemma 4.2. The Meek rules, which are
correct and complete [4], are invoked after each orientation made with respect to additive
noise models so they are invoked after all such orientations are made. O

5 Related research

kPC is similar in spirit to the PC-LINGAM structure learning algorithm [15], which assumes
dependencies are linear with either Gaussian or non-Gaussian noise. PC-LINGAM combines
the PC algorithm with LINGAM to learn structures referred to as ngDAGs. KCL [11] is
a heuristic search for a mixed graph that uses the same kernel-based dependence measures
as kPC (while not determining significance threhsholds via a hypothesis test), but does
not take advantage of additive noise models. [16] provides a more efficient algorithm for
learning additive noise models, by first finding a causal ordering after doing a series of
high dimensional regressions and HSIC independence tests and then pruning the resulting
DAG implied by this ordering. Finally, [17] proposes a two-stage procedure for learning
additive noise models from data that is similar to kPC, but requires the additive noise
model assumptions in the first stage where the Markov equivalence class is identified.

6 Experimental results

To evaluate kPC, we generated 20 random 7-nodes DAGs using the MCMC algorithm in [18]
and sampled 1000 data points from each DAG under three conditions: linear dependencies
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with Gaussian noise, linear dependencies with non-Gaussian noise, and nonlinear dependen-
cies with non-Gaussian noise. We generated non-Gaussian noise using the same procedure
as [19] and used polynomial and trigonometric functions for nonlinear dependencies.

We compared kPC to PC, the score-based GES with the BIC-score [20], and the ICA-based
LiNGAM [19], which assumes linear dependencies and non-Gaussian noise. We applied two
metrics in measuring performance vs sample size: precision, i.e. proportion of directed edges
in the resulting graph that are in the true DAG, and recall, i.e. proportion of directed edges
in the true DAG that are in the resulting graph. Figure 3 reports the results. In the linear
Gaussian case, we see PC shows slightly better performance than kPC in precision, which is
unsurprising since PC assumes linear Gaussian distributions. Only LINGAM shows better
recall, but worse precision. LINGAM performs significantly better than the other algorithms
in the linear non-Gaussian case. kPC performs about the same as PC in precision and recall,
which again is unsurprising since previous simulation results have shown that nonlinearity,
but not non-Gaussianity can significantly affect the performance of PC. In the nonlinear
non-Gaussian case, kPC performs slightly better than PC in precision. We note, however,
that in some of these cases the performance of kPC was significantly better.?

We also ran kPC on data from an fMRI experiment that is analyzed in [21] where nonlinear
dependencies can be observed. Figure 4 shows the structure that kPC learned, where each
of the nodes corresponds to a particular brain region. This structure is the same as the one
learned by the (GES-style) iMAGES algorithm in [21] except for the absence of one edge.
However, iMAGES required background knowledge to direct the edges. kPC successfully
found the same directed edges without using any background knowledge. Domain experts
in neuroscience have confirmed the plausibility of the observed relationships.

7 Conclusion

We introduced weakly additive noise models, which extend the additive noise model frame-
work to cases such as the linear Gaussian, where the additive noise model is invertible and
thus unidentifiable, as well as cases where additive noise is not present. The weakly additive
noise framework allows us to identify a unique DAG when the additive noise model assump-
tions hold, and a structure that is at least as specific as a PDAG (possibly still a unique
DAG) when some additive noise assumptions fail. We defined equivalence classes for such
models and introduced the kPC algorithm for learning these equivalence classes from data.
Finally, we found that the algorithm performed well on both synthetic and real data.
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2When simulating nonlinear data, we must be careful to ensure that variances do not blow up
and result in data for which no finite sample method can show adequate performance. This has the
unfortunate side effect that the nonlinear data generated may be well approximated using linear
methods. Future research will consider more sophisticated methods for simulating data that is more
appropriate when comparing kPC to linear methods.
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