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Abstract

We provide a clustering algorithm that approximately optimizes the k-means ob-
jective, in the one-pass streaming setting. We make no assumptions about the
data, and our algorithm is very light-weight in terms of memory, and computa-
tion. This setting is applicable to unsupervised learning on massive data sets, or
resource-constrained devices. The two main ingredients of our theoretical work
are: a derivation of an extremely simple pseudo-approximation batch algorithm
for k-means (based on the recent k-means++), in which the algorithm is allowed
to output more than k centers, and a streaming clustering algorithm in which batch
clustering algorithms are performed on small inputs (fitting in memory) and com-
bined in a hierarchical manner. Empirical evaluations on real and simulated data
reveal the practical utility of our method.

1 Introduction

As commercial, social, and scientific data sources continue to grow at an unprecedented rate, it is
increasingly important that algorithms to process and analyze this data operate in online, or one-pass
streaming settings. The goal is to design light-weight algorithms that make only one pass over the
data. Clustering techniques are widely used in machine learning applications, as a way to summarize
large quantities of high-dimensional data, by partitioning them into “clusters” that are useful for
the specific application. The problem with many heuristics designed to implement some notion of
clustering is that their outputs can be hard to evaluate. Approximation guarantees, with respect to
some reasonable objective, are therefore useful. The k-means objective is a simple, intuitive, and
widely-cited clustering objective for data in Euclidean space. However, although many clustering
algorithms have been designed with the k-means objective in mind, very few have approximation
guarantees with respect to this objective.

In this work, we give a one-pass streaming algorithm for the k-means problem. We are not aware
of previous approximation guarantees with respect to the k-means objective that have been shown
for simple clustering algorithms that operate in either online or streaming settings. We extend work
of Arthur and Vassilvitskii [AV07] to provide a bi-criterion approximation algorithm for k-means,
in the batch setting. They define a seeding procedure which chooses a subset of k points from a
batch of points, and they show that this subset gives an expected O(log (k))-approximation to the k-
means objective. This seeding procedure is followed by Lloyd’s algorithm1 which works very well
in practice with the seeding. The combined algorithm is called k-means++, and is an O(log (k))-
approximation algorithm, in expectation.2 We modify k-means++ to obtain a new algorithm, k-
means#, which chooses a subset of O(k log (k)) points, and we show that the chosen subset of

∗Department of Computer Science. Research supported by DARPA award HR0011-08-1-0069.
†Center for Computational Learning Systems
1Lloyd’s algorithm is popularly known as the k-means algorithm
2Since the approximation guarantee is proven based on the seeding procedure alone, for the purposes of this

exposition we denote the seeding procedure as k-means++.
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points gives a constant approximation to the k-means objective. Apart from giving us a bi-criterion
approximation algorithm, our modified seeding procedure is very simple to analyze.

[GMMM+03] defines a divide-and-conquer strategy to combine multiple bi-criterion approximation
algorithms for the k-medoid problem to yield a one-pass streaming approximation algorithm for
k-median. We extend their analysis to the k-means problem and then use k-means++ and k-means#
in the divide-and-conquer strategy, yielding an extremely efficient single pass streaming algorithm
with an O(cα log (k))-approximation guarantee, where α ≈ log n/ log M , n is the number of input
points in the stream and M is the amount of work memory available to the algorithm. Empirical
evaluations, on simulated and real data, demonstrate the practical utility of our techniques.

1.1 Related work

There is much literature on both clustering algorithms [Gon85, Ind99, VW02, GMMM+03,
KMNP+04, ORSS06, AV07, CR08, BBG09, AL09], and streaming algorithms [Ind99, GMMM+03,
M05, McG07].3 There has also been work on combining these settings: designing clustering algo-
rithms that operate in the streaming setting [Ind99, GMMM+03, CCP03]. Our work is inspired by
that of Arthur and Vassilvitskii [AV07], and Guha et al. [GMMM+03], which we mentioned above
and will discuss in further detail. k-means++, the seeding procedure in [AV07], had previously been
analyzed by [ORSS06], under special assumptions on the input data.

In order to be useful in machine learning applications, we are concerned with designing algorithms
that are extremely light-weight and practical. k-means++ is efficient, very simple, and performs
well in practice. There do exist constant approximations to the k-means objective, in the non-
streaming setting, such as a local search technique due to [KMNP+04].4 A number of works
[LV92, CG99, Ind99, CMTS02, AGKM+04] give constant approximation algorithms for the re-
lated k-median problem in which the objective is to minimize the sum of distances of the points to
their nearest centers (rather than the square of the distances as in k-means), and the centers must be
a subset of the input points. It is popularly believed that most of these algorithms can be extended to
work for the k-means problem without too much degredation of the approximation, however there
is no formal evidence for this yet. Moreover, the running times of most of these algorithms depend
worse than linearly on the parameters (n, k, and d) which makes these algorithms less useful in prac-
tice. As future work, we propose analyzing variants of these algorithms in our streaming clustering
algorithm, with the goal of yielding a streaming clustering algorithm with a constant approximation
to the k-means objective.

Finally, it is important to make a distinction from some lines of clustering research which involve
assumptions on the data to be clustered. Common assumptions include i.i.d. data, e.g. [BL08], and
data that admits a clustering with well separated means e.g. in [VW02, ORSS06, CR08]. Recent
work [BBG09] assumes a “target” clustering for the specific application and data set, that is close
to any constant approximation of the clustering objective. In contrast, we prove approximation
guarantees with respect to the optimal k-means clustering, with no assumptions on the input data.5
As in [AV07], our probabilistic guarantees are only with respect to randomness in the algorithm.

1.1.1 Preliminaries

The k-means clustering problem is defined as follows: Given n points X ⊂ Rd and a weight
function w : X → R , the goal is to find a subset C ⊆ Rd, |C| = k such that the following quantity is
minimized:6 φC =

∑
x∈X w(x)·D(x, C)2, where D(x, C) denotes the #2 distance of x to the nearest

point in C. When the subset C is clear from the context, we denote this distance by D(x). Also,
for two points x, y, D(x, y) denotes the #2 distance between x and y. The subset C is alternatively
called a clustering of X and φC is called the potential function corresponding to the clustering. We
will use the term “center” to refer to any c ∈ C.

3For a comprehensive survey of streaming results and literature, refer to [M05].
4In recent, independent work, Aggarwal, Deshpande, and Kannan [ADK09] extend the seeding procedure of

k-means++ to obtain a constant factor approximation algorithm which outputs O(k) centers. They use similar
techniques to ours, but reduce the number of centers by using a stronger concentration property.

5It may be interesting future work to analyze our algorithm in special cases, such as well-separated clusters.
6For the unweighted case, we can assume that w(x) = 1 for all x.
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Definition 1.1 (Competitive ratio, b-approximation). Given an algorithm B for the k-means prob-
lems, let φC be the potential of the clustering C returned by B (on some input set which is implicit)
and let φCOP T denote the potential of the optimal clustering COPT . Then the competitive ratio is
defined to be the worst case ratio φC

φCOP T
. The algorithm B is said to be b-approximation algorithm

if φC
φCOP T

≤ b.

The previous definition might be too strong for an approximation algorithm for some purposes. For
example, the clustering algorithm performs poorly when it is constrained to output k centers but it
might become competitive when it is allowed to output more centers.
Definition 1.2 ((a, b)-approximation). We call an algorithm B, (a, b)-approximation for the k-
means problem if it outputs a clustering C with ak centers with potential φC such that φC

φCOP T
≤ b in

the worst case. Where a > 1, b > 1.
Note that for simplicity, we measure the memory in terms of the words which essentially means that
we assume a point in Rd can be stored in O(1) space.

2 k-means#: The advantages of careful and liberal seeding

The k-means++ algorithm is an expected Θ(log k)-approximation algorithm. In this section, we
extend the ideas in [AV07] to get an (O(log k), O(1))-approximation algorithm. Here is the k-
means++ algorithm:

1. Choose an initial center c1 uniformly at random from X .
2. Repeat (k − 1) times:
3. Choose the next center ci, selecting ci = x′ ∈ X with probability D(x′)2P

x∈X D(x)2 .
(here D(.) denotes the distances w.r.t. to the subset of points chosen in the previous rounds)

Algorithm 1: k-means++

In the original definition of k-means++ in [AV07], the above algorithm is followed by Lloyd’s
algorithm. The above algorithm is used as a seeding step for Lloyd’s algorithm which is known
to give the best results in practice. On the other hand, the theoretical guarantee of the k-means++
comes from analyzing this seeding step and not Lloyd’s algorithm. So, for our analysis we focus on
this seeding step. The running time of the algorithm is O(nkd).

In the above algorithm X denotes the set of given points and for any point x, D(x) denotes the
distance of this point from the nearest center among the centers chosen in the previous rounds. To
get an (O(log k), O(1))-approximation algorithm, we make a simple change to the above algorithm.
We first set up the tools for analysis. These are the basic lemmas from [AV07]. We will need the
following definition first:
Definition 2.1 (Potential w.r.t. a set). Given a clustering C, its potential with respect to some set A
is denoted by φC(A) and is defined as φC(A) =

∑
x∈A D(x)2, where D(x) is the distance of the

point x from the nearest point in C.
Lemma 2.2 ([AV07], Lemma 3.1). Let A be an arbitrary cluster in COPT , and let C be the clustering
with just one center, chosen uniformly at random from A. Then Exp[φC(A)] = 2 · φCOP T (A).
Corollary 2.3. Let A be an arbitrary cluster in COPT , and let C be the clustering with just one
center, which is chosen uniformly at random from A. Then, Pr[φC(A) < 8φCOP T (A)] ≥ 3/4

Proof. The proof follows from Markov’s inequality.

Lemma 2.4 ([AV07], Lemma 3.2). Let A be an arbitrary cluster in COPT , and let C be an arbitrary
clustering. If we add a random center to C from A, chosen with D2 weighting to get C′, then
Exp[φC′(A)] ≤ 8 · φCOP T (A).
Corollary 2.5. Let A be an arbitrary cluster in COPT , and let C be an arbitrary clustering. If
we add a random center to C from A, chosen with D2 weighting to get C′, then Pr[φC′(A) <
32 · φCOP T (A)] ≥ 3/4.
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We will use k-means++ and the above two lemmas to obtain a (O(log k), O(1))-approximation
algorithm for the k-means problem. Consider the following algorithm:

1. Choose 3 · log k centers independently and uniformly at random from X .
2. Repeat (k − 1) times.
3. Choose 3 · log k centers independently and with probability D(x′)2P

x∈X D(x)2 .
(here D(.) denotes the distances w.r.t. to the subset of points chosen in the previous rounds)

Algorithm 2: k-means#

Note that the algorithm is almost the same as the k-means++ algorithm except that in each round
of choosing centers, we pick O(log k) centers rather than a single center. The running time of the
above algorithm is clearly O(ndk log k).

Let A = {A1, ..., Ak} denote the set of clusters in the optimal clustering COPT . Let Ci denote the
clustering after ith round of choosing centers. Let Ai

c denote the subset of clusters ∈ A such that

∀A ∈ Ai
c, φCi(A) ≤ 32 · φCOP T (A).

We call this subset of clusters, the “covered” clusters. Let Ai
u = A\Ai

c be the subset of “uncovered”
clusters. The following simple lemma shows that with constant probability step (1) of k-means#
picks a center such that at least one of the clusters gets covered, or in other words, |A1

c | ≥ 1. Let us
call this event E.
Lemma 2.6. Pr[E] ≥ (1− 1/k).

Proof. The proof easily follows from Corollary 2.3.

Let X i
c = ∪A∈Ai

c
A and let X i

u = X \ X i
c . Now after the ith round, either φCi(X i

c ) ≤ φCi(X i
u)

or otherwise. In the former case, using Corollary 2.5, we show that the probability of covering an
uncovered cluster in the (i + 1)th round is large. In the latter case, we will show that the current set
of centers is already competitive with constant approximation ratio. Let us start with the latter case.
Lemma 2.7. If event E occurs ( |A1

c | ≥ 1) and for any i > 1, φCi(X i
c ) > φCi(X i

u), then φCi ≤
64φCOP T .

Proof. We get the main result using the following sequence of inequalities: φCi = φCi(X i
c ) +

φCi(X i
u) ≤ φCi(X i

c )+φCi(X i
c ) ≤ 2 · 32 ·φCOP T (X i

c ) ≤ 64 φCOP T (using the definition of X i
c ).

Lemma 2.8. If for any i ≥ 1, φCi(X i
c ) ≤ φCi(X i

u), then Pr[|Ai+1
c | ≥ |Ai

c| + 1] ≥ (1− 1/k).

Proof. Note that in the (i+1)th round, the probability that a center is chosen from a cluster /∈ Ai
c is

at least φCi (X i
u)

φCi (X i
u)+φCi (X i

c ) ≥ 1/2. Conditioned on this event, with probability at least 3/4 any of the
centers x chosen in round (i + 1) satisfies φCi∪x(A) ≤ 32 · φCOP T (A) for some uncovered cluster
A ∈ Ai

u. This means that with probability at least 3/8 any of the chosen centers x in round (i + 1)
satisfies φCi∪x(A) ≤ 32 · φCOP T (A) for some uncovered cluster A ∈ Ai

u. This further implies that
with probability at least (1 − 1/k) at least one of the chosen centers x in round (i + 1) satisfies
φCi∪x(A) ≤ 32 · φCOP T (A) for some uncovered cluster A ∈ Ai

u.

We use the above two lemmas to prove our main theorem.
Theorem 2.9. k-means# is a (O(log k), O(1))-approximation algorithm.

Proof. From Lemma 2.6 we know that event E (i.e., |Ai
c| ≥ 1) occurs. Given this, suppose for

any i > 1, after the ith round φCi(Xc) > φCi(Xu). Then from Lemma 2.7 we have φC ≤ φCi ≤
64φCOP T . If no such i exist, then from Lemma 2.8 we get that the probability that there exists a
cluster A ∈ A such that A is not covered even after k rounds(i.e., end of the algorithm) is at most:
1 − (1 − 1/k)k ≤ 3/4. So with probability at least 1/4, the algorithm covers all the clusters in A.
In this case from Lemma 2.8, we have φC = φCk ≤ 32 · φCOP T .

We have shown that k-means# is a randomized algorithm for clustering which with probability at
least 1/4 gives a clustering with competitive ratio 64.
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3 A single pass streaming algorithm for k-means
In this section, we will provide a single pass streaming algorithm. The basic ingredients for the algo-
rithm is a divide and conquer strategy defined by [GMMM+03] which uses bi-criterion approxima-
tion algorithms in the batch setting. We will use k-means++ which is a (1, O(log k))-approximation
algorithm and k-means# which is a (O(log k), O(1))-approximation algorithm, to construct a single
pass streaming O(log k)-approximation algorithm for k-means problem. In the next subsection, we
develop some of the tools needed for the above.

3.1 A streaming (a,b)-approximation for k-means
We will show that a simple streaming divide-and-conquer scheme, analyzed by [GMMM+03] with
respect to the k-medoid objective, can be used to approximate the k-means objective. First we
present the scheme due to [GMMM+03], where in this case we use k-means-approximating algo-
rithms as input.

Inputs: (a) Point set S ⊂ Rd. Let n = |S|.
(b) Number of desired clusters, k ∈ N .
(c) A, an (a, b)-approximation algorithm to the k-means objective.
(d) A′, an (a′, b′)-approximation algorithm to the k-means objective.

1. Divide S into groups S1, S2, . . . , S#

2. For each i ∈ {1, 2, . . . , #}
3. Run A on Si to get ≤ ak centers Ti = {ti1, ti2, . . .}
4. Denote the induced clusters of Si as Si1 ∪ Si2 ∪ · · ·
5. Sw ← T1 ∪ T2 ∪ · · · ∪ T#, with weights w(tij) ← |Sij |
6. Run A′ on Sw to get ≤ a′k centers T
7. Return T

Algorithm 3: [GMMM+03] Streaming divide-and-conquer clustering

First note that when every batch Si has size
√

nk, this algorithm takes one pass, and O(a
√

nk)
memory. Now we will give an approximation guarantee.

Theorem 3.1. The algorithm above outputs a clustering that is an (a′, 2b + 4b′(b + 1))-
approximation to the k-means objective.
The a′ approximation of the desired number of centers follows directly from the approximation
property of A′, with respect to the number of centers, since A′ is the last algorithm to be run. It
remains to show the approximation of the k-means objective. The proof, which appears in the
Appendix, involves extending the analysis of [GMMM+03], to the case of the k-means objective.
Using the exposition in Dasgupta’s lecture notes [Das08], of the proof due to [GMMM+03], our
extension is straightforward, and differs in the following ways from the k-medoid analysis.

1. The k-means objective involves squared distance (as opposed to k-medoid in which the
distance is not squared), so the triangle inequality cannot be invoked directly. We replace it
with an application of the triangle inequality, followed by (a+b)2 ≤ 2a2+2b2, everywhere
it occurs, introducing several factors of 2.

2. Cluster centers are chosen from Rd, for the k-means problem, so in various parts of the
proof we save an approximation a factor of 2 from the k-medoid problem, in which cluster
centers must be chosen from the input data.

3.2 Using k-means++ and k-means# in the divide-and-conquer strategy
In the previous subsection, we saw how a (a, b)-approximation algorithm A and an (a′, b′)-
approximation algorithm A′ can be used to get a single pass (a′, 2b + 4b′(b + 1))-approximation
streaming algorithm. We now have two randomized algorithms, k-means# which with probability
at least 1/4 is a (3 log k, 64)-approximation algorithm and k-means++ which is a (1, O(log k))-
approximation algorithm (the approximation factor being in expectation). We can now use these
two algorithms in the divide-and-conquer strategy to obtain a single pass streaming algorithm.

We use the following as algorithms as A and A′ in the divide-and-conquer strategy (3):
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A: “Run k-means# on the data 3 log n times independently, and pick the clustering
with the smallest cost.”
A’: “Run k-means++”

Weighted versus non-weighted. Note that k-means and k-means# are approximation algorithms
for the non-weighted case (i.e. w(x) = 1 for all points x). On the other hand, in the divide-and-
conquer strategy we need the algorithm A′, to work for the weighted case where the weights are
integers. Note that both k-means and k-means# can be easily generalized for the weighted case
when the weights are integers. Both algorithms compute probabilities based on the cost with respect
to the current clustering. This cost can be computed by taking into account the weights. For the
analysis, we can assume points with multiplicities equal to the integer weight of the point. The
memory required remains logarithmic in the input size, including the storing the weights.

Analysis. With probability at least
(
1− (3/4)3 log n

)
≥

(
1− 1

n

)
, algorithm A is a (3 log k, 64)-

approximation algorithm. Moreover, the space requirement remains logarithmic in the input size. In
step (3) of Algorithm 3 we run A on batches of data. Since each batch is of size

√
nk the number of

batches is
√

n/k, the probability that A is a (3 log k, 64)-approximation algorithm for all of these

batches is at least
(
1− 1

n

)√n/k ≥ 1/2. Conditioned on this event, the divide-and-conquer strategy
gives a O(log k)-approximation algorithm. The memory required is O(log(k) ·

√
nk) times the

logarithm of the input size. Moreover, the algorithm has running time O(dnk log n log k).

3.3 Improved memory-approximation tradeoffs
We saw in the last section how to obtain a single-pass (a′, cbb′)-approximation for k-means using
first an (a, b)-approximation on input blocks and then an (a′, b′)-approximation on the union of the
output center sets, where c is some global constant. The optimal memory required for this scheme
was O(a

√
nk). This immediately implies a tradeoff between the memory requirements (growing

like a), the number of centers outputted (which is a′k) and the approximation to the potential (which
is cbb′) with respect to the optimal solution using k centers. A more subtle tradeoff is possible by a
recursive application of the technique in multiple levels. Indeed, the (a, b)-approximation could be
broken up in turn into two levels, and so on. This idea was used in [GMMM+03]. Here we make a
more precise account of the tradeoff between the different parameters.

Assume we have subroutines for performing (ai, bi)-approximation for k-means in batch mode, for
i = 1, . . . r (we will choose a1, . . . , ar, b1, . . . , br later). We will hold r buffers B1, . . . , Br as
work areas, where the size of buffer Bi is Mi. In the topmost level, we will divide the input into
equal blocks of size M1, and run our (a1, b1)-approximation algorithm on each block. Buffer B1

will be repeatedly reused for this task, and after each application of the approximation algorithm,
the outputted set of (at most) ka1 centers will be added to B2. When B2 is filled, we will run
the (a2, b2)-approximation algorithm on the data and add the ka2 outputted centers to B3. This
will continue until buffer Br fills, and the (ar, br)-approximation algorithm outputs the final ark
centers. Let ti denote the number of times the i’th level algorithm is executed. Clearly we have
tikai = Mi+1ti+1 for i = 1, . . . , r− 1. For the last stage we have tr = 1, which means that tr−1 =
Mr/kar−1, tr−2 = Mr−1Mr/k2ar−2ar−1 and generally ti = Mi+1 · · ·Mr/kr−iai · · · ar−1.7 But
we must also have t1 = n/M1, implying n = M1···Mr

kr−1a1···ar−1
. In order to minimize the total memory∑

Mi under the last constraint, using standard arguments in multivariate analysis we must have
M1 = · · · = Mr, or in other words Mi =

(
nkr−1a1 · · · ar−1

)1/r ≤ n1/rk(a1 · · · ar−1)1/r for all i.
The resulting one-pass algorithm will have an approximation guarantee of (ar, cr−1b1 · · · br) (using
a straightforward extension of the result in the previous section) and memory requirement of at most
rn1/rk(a1 · · · ar−1)1/r.

Assume now that we are in the realistic setting in which the available memory is of fixed size
M ≥ k. We will choose r (below), and for each i = 1..r − 1 we choose to either run k-means++
or the repeated k-means# (algorithm A in the previous subsection), i.e., (ai, bi) = (1, O(log k))
or (3 log k,O(1)) for each i. For i = r, we choose k-means++, i.e., (ar, br) = (1, O(log k)) (we
are interested in outputting exactly k centers as the final solution). Let q denote the number of

7We assume all quotients are integers for simplicity of the proof, but note that fractional blocks would arise
in practice.
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Figure 1: Cost vs. k: (a) Mixtures of gaussians simulation, (b) Cloud data, (c) Spam data,.

indexes i ∈ [r − 1] such that (ai, bi) = (3 log k, O(1)). By the above discussion, the memory is
used optimally if M = rn1/rk(3 log k)q/r, in which case the final approximation guarantee will be
c̃r−1(log k)r−q, for some global c̃ > 0. We concentrate on the case M growing polynomially in n,
say M = nα for some α < 1. In this case, the memory optimality constraint implies r = 1/α for
n large enough (regardless of the choice of q). This implies that the final approximation guarantee
is best if q = r − 1, in other words, we choose the repeated k-means# for levels 1..r − 1, and
k-means++ for level r. Summarizing, we get:

Theorem 3.2. If there is access to memory of size M = nα for some fixed α > 0, then for sufficiently
large n the best application of the multi-level scheme described above is obtained by running r =
-α. = -log n/ log M. levels, and choosing the repeated k-means# for all but the last level, in which
k-means++ is chosen. The resulting algorithm is a randomized one-pass streaming approximation
to k-means, with an approximation ratio of O(c̃r−1(log k)), for some global c̃ > 0. The running
time of the algorithm is O(dnk2 log n log k).

We should compare the above multi-level streaming algorithm with the state-of-art (in terms of
memory vs. approximation tradeoff) streaming algorithm for the k-median problem. Charikar,
Callaghan, and Panigrahy [CCP03] give a one-pass streaming algorithm for the k-median problem
which gives a constant factor approximation and uses O(k·poly log(n)) memory. The main problem
with this algorithm from a practical point of view is that the average processing time per item is
large. It is proportional to the amount of memory used, which is poly-logarithmic in n. This might
be undesirable in practical scenarios where we need to process a data item quickly when it arrives. In
contrast, the average per item processing time using the divide-and-conquer-strategy is constant and
furthermore the algorithm can be pipelined (i.e. data items can be temporarily stored in a memory
buffer and quickly processed before the the next memory buffer is filled). So, even if [CCP03] can
be extended to the k-means setting, streaming algorithms based on the divide-and-conquer-strategy
would be more interesting from a practical point of view.

4 Experiments

Datasets. In our discussion, n denotes the number of points in the data, d denotes the dimension,
and k denotes the number of clusters. Our first evaluation, detailed in Tables 1a)-c) and Figure 1,
compares our algorithms on the following data: (1) norm25 is synthetic data generated in the fol-
lowing manner: we choose 25 random vertices from a 15 dimensional hypercube of side length 500.
We then add 400 gaussian random points (with variance 1) around each of these points.8 So, for this
data n = 10, 000 and d = 15. The optimum cost for k = 25 is 1.5026 × 105. (2) The UCI Cloud
dataset consists of cloud cover data [AN07]. Here n = 1024 and d = 10. (3) The UCI Spambase
dataset is data for an e-mail spam detection task [AN07]. Here n = 4601 and d = 58.

To compare against a baseline method known to be used in practice, we used Lloyd’s algorithm,
commonly referred to as the k-means algorithm. Standard Lloyd’s algorithm operates in the batch
setting, which is an easier problem than the one-pass streaming setting, so we ran experiments with
this algorithm to form a baseline. We also compare to an online version of Lloyd’s algorithm,
however the performance is worse than the batch version, and our methods, for all problems, so we

8Testing clustering algorithms on this simulation distribution was inspired by [AV07].
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k BL OL DC-1 DC-2 BL OL DC-1 DC-2
5 5.1154 · 109 6.5967 · 109 7.9398 · 109 7.8474 · 109 1.25 1.32 14.37 9.93
10 3.3080 · 109 6.0146 · 109 4.5954 · 109 4.6829 · 109 2.05 2.45 45.39 21.09
15 2.0123 · 109 4.3743 · 109 2.5468 · 109 2.5898 · 109 3.88 3.49 95.22 30.34
20 1.4225 · 109 3.7794 · 109 1.0718 · 109 1.1403 · 109 8.62 4.69 190.73 41.49
25 0.8602 · 109 2.8859 · 109 2.7842 · 105 2.7298 · 105 13.13 6.04 283.19 53.07

k BL OL DC-1 DC-2 BL OL DC-1 DC-2
5 1.7707 · 107 1.2401 · 108 2.2924 · 107 2.2617 · 107 1.12 0.13 1.73 0.92
10 0.7683 · 107 8.5684 · 107 8.3363 · 106 8.7788 · 106 1.20 0.25 5.64 1.87
15 0.5012 · 107 8.4633 · 107 4.9667 · 106 4.8806 · 106 2.18 0.35 10.98 2.67
20 0.4388 · 107 6.5110 · 107 3.7479 · 106 3.7536 · 106 2.59 0.47 25.72 4.19
25 0.3839 · 107 6.3758 · 107 2.8895 · 106 2.9014 · 106 2.43 0.52 36.17 4.82

k BL OL DC-1 DC-2 BL OL DC-1 DC-2
5 4.9139 · 108 1.7001 · 109 3.4021 · 108 3.3963 · 108 9.68 0.70 11.65 5.14
10 1.6952 · 108 1.6930 · 109 1.0206 · 108 1.0463 · 108 34.78 1.31 40.14 9.75
15 1.5670 · 108 1.4762 · 109 5.5095 · 107 5.3557 · 107 67.54 1.88 77.75 14.41
20 1.5196 · 108 1.4766 · 109 3.3400 · 107 3.2994 · 107 100.44 2.57 194.01 22.76
25 1.5168 · 108 1.4754 · 109 2.3151 · 107 2.3391 · 107 109.41 3.04 274.42 27.10

Table 1: Columns 2-5 have the clustering cost and columns 6-9 have time in sec. a) norm25 dataset,
b) Cloud dataset, c) Spambase dataset.

Memory/
#levels

Cost Time
1024/0 8.74 · 106 5.5
480/1 8.59 · 106 3.6
360/2 8.61 · 106 3.8

Memory/
#levels

Cost Time
2048/0 5.78 · 104 30
1250/1 5.36 · 104 25
1125/2 5.15 · 104 26

Memory/
#levels

Cost Time
4601/0 1.06 · 108 34
880/1 0.99 · 108 20
600/2 1.03 · 108 19.5

Table 2: Multi-level hierarchy evaluation: a) Cloud dataset, k = 10, b) A subset of norm25 dataset,
n = 2048, k = 25, c) Spambase dataset, k = 10. The memory size decreases as the number of
levels of the hierarchy increases. (0 levels means running batch k-means++ on the data.)

do not include it in our plots for the real data sets.9 Tables 1a)-c) shows average k-means cost (over
10 random restarts for the randomized algorithms: all but Online Lloyd’s) for these algorithms:
(1) BL: Batch Lloyd’s, initialized with random centers in the input data, and run to convergence.10

(2) OL: Online Lloyd’s.
(3) DC-1: The simple 1-stage divide and conquer algorithm of Section 3.2.
(4) DC-2: The simple 1-stage divide and conquer algorithm 3 of Section 3.1. The sub-algorithms
used are A = “run k-means++ 3 · log n times and pick best clustering,” and A’ is k-means++. In our
context, k-means++ and k-means# are only the seeding step, not followed by Lloyd’s algorithm.

In all problems, our streaming methods achieve much lower cost than Online Lloyd’s, for all settings
of k, and lower cost than Batch Lloyd’s for most settings of k (including the correct k = 25, in
norm25). The gains with respect to batch are noteworthy, since the batch problem is less constrained
than the one-pass streaming problem. The performance of DC-1 and DC-2 is comparable.

Table 2 shows an evaluation of the one-pass multi-level hierarchical algorithm of Section 3.3, on the
different datasets, simulating different memory restrictions. Although our worst-case theoretical re-
sults imply an exponential clustering cost as a function of the number of levels, our results show a far
more optimistic outcome in which adding levels (and limiting memory) actually improves the out-
come. We conjecture that our data contains enough information for clustering even on chunks that fit
in small buffers, and therefore the results may reflect the benefit of the hierarchical implementation.

Acknowledgements. We thank Sanjoy Dasgupta for suggesting the study of approximation algo-
rithms for k-means in the streaming setting, for excellent lecture notes, and for helpful discussions.

9Despite the poor performance we observed, this algorithm is apparently used in practice, see [Das08].
10We measured convergence by change in cost less than 1.
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