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Abstract

It was recently shown that certain nonparametric regressors can escape the curse
of dimensionality when the intrinsic dimension of data is low ([1, 2]). We prove
some stronger results in more general settings. In particular, we consider a regres-
sor which, by combining aspects of both tree-based regression and kernel regres-
sion, adapts to intrinsic dimension, operates on general metrics, yields a smooth
function, and evaluates in time O(log n). We derive a tight convergence rate of
the form n−2/(2+d) where d is the Assouad dimension of the input space.

1 Introduction

Relative to parametric methods, nonparametric regressors require few structural assumptions on the
function being learned. However, their performance tends to deteriorate as the number of features
increases. This so-called curse of dimensionality is quantified by various lower bounds on the con-
vergence rates of the form n−2/(2+D) for data in RD (see e.g. [3, 4]). In other words, one might
require a data size exponential in D in order to attain a low risk.

Fortunately, it is often the case that data in RD has low intrinsic complexity, e.g. the data is near a
manifold or is sparse, and we hope to exploit such situations. One simple approach, termed manifold
learning (e.g. [5, 6, 7]), is to embed the data into a lower dimensional space where the regressor
might work well. A recent approach with theoretical guarantees for nonparametric regression, is
the study of adaptive procedures, i.e. ones that operate in RD but attain convergence rates that
depend just on the intrinsic dimension of data. An initial result [1] shows that for data on a d-
dimensional manifold, the asymptotic risk at a point x ∈ RD depends just on d and on the behavior
of the distribution in a neighborhood of x. Later, [2] showed that a regressor based on the RPtree
of [8] (a hierarchical partitioning procedure) is not only fast to evaluate, but is adaptive to Assouad
dimension, a measure which captures notions such as manifold dimension and data sparsity. The
related notion of box dimension (see e.g. [9]) was shown in an earlier work [10] to control the risk
of nearest neighbor regression, although adaptivity was not a subject of that result.

This work extends the applicability of such adaptivity results to more general uses of nonparametric
regression. In particular, we present an adaptive regressor which, unlike RPtree, operates on a
general metric space where only distances are provided, and yields a smooth function, an important
property in many domains (see e.g. [11] which considers the smooth control of a robotic tool based
on noisy outside input). In addition, our regressor can be evaluated in time just O(log n), unlike
kernel or nearest neighbor regression. The evaluation time for these two forms of regression is
lower bounded by the number of sample points contributing to the regression estimate. For nearest
neighbor regression, this number is given by a parameter kn whose optimal setting (see [12]) is
O
(
n2/(2+d)

)
. For kernel regression, given an optimal bandwidth h ≈ n−1/(2+d) (see [12]), we

would expect about nhd ≈ n2/(2+d) points in the ball B(x, h) around a query point x.

We note that there exist many heuristics for speeding up kernel regression, which generally combine
fast proximity search procedures with other elaborate methods for approximating the kernel weights
(see e.g. [13, 14, 15]). There are no rigorous bounds on either the achievable speedup or the risk of
the resulting regressor.
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Figure 1: Left and Middle- Two r-nets at different scales r, each net inducing a partition of the sample X. In
each case, the gray points are the r-net centers. For regression each center contributes the average Y value of
the data points assigned to them (points in the cells). Right- Given an r-net and a bandwidth h, a kernel around
a query point x weights the Y -contribution of each center to the regression estimate for x.

Our regressor integrates aspects of both tree-based regression and kernel regression. It constructs
partitions of the input dataset X = {Xi}n

1 , and uses a kernel to select a few sets within a given
partition, each set contributing its average output Y value to the estimate. We show that such a
regressor achieves an excess risk of O

(
n−2/(2+d)

)
, where d is the Assouad dimension of the input

data space. This is a tighter convergence rate than the O
(
n−2/(2+O(d log d)

)
of RPtree regression

(see [2]). Finally, the evaluation time of O(log n) is arrived at by modifying the cover tree proximity
search procedure of [16]. Unlike in [16], this guarantee requires no growth assumption on the data
distribution.

We’ll now proceed with a more detailed presentation of the results in the next section, followed by
technical details in sections 3 and 4.

2 Detailed overview of results

We’re given i.i.d training data (X,Y) = {(Xi, Yi)}n
1 , where the input variable X belongs to a metric

space X where the distance between points is given by the metric ρ, and the output Y belongs to a
subset Y of some Euclidean space. We’ll let ∆X and ∆Y denote the diameters of X and Y .

Assouad dimension: The Assouad or doubling dimension of X is defined as the smallest d such
that any ball can be covered by 2d balls of half its radius.

Examples: A d-dimensional affine subspace of a Euclidean space RD has Assouad dimension O(d)
[9]. A d-dimensional submanifold of a Euclidean space RD has Assouad dimension O(d) subject
to a bound on its curvature [8]. A d-sparse data space in RD, i.e. one where each data point has at
most d non zero coordinates, has Assouad dimension O(d log D) [8, 2].

The algorithm has no knowledge of the dimension d, nor of ∆Y , although we assume ∆X is known
(or can be upper-bounded).

Regression function: We assume the regression function f(x) .= E [Y |X = x] is Lipschitz, i.e.
there exists λ , unknown, such that ∀x, x′ ∈ X , ‖f(x) − f(x′)‖ ≤ λ · ρ (x, x′).

Excess risk: Our performance criteria for a regressor fn(x) is the integrated excess l2 risk:

‖fn − f‖2 .= E
X
‖fn(X) − f(X)‖2 = E

X,Y
‖fn(X) − Y ‖2 − E

X,Y
‖f(X) − Y ‖2

. (1)

2.1 Algorithm overview

We’ll consider a set of partitions of the data induced by a hierarchy of r-nets of X. Here an r-net Qr

is understood to be both an r-cover of X (all points in X are within r of some point in Qr), and an
r-packing (the points in Qr are at least r apart). The details on how to build the r-nets are covered
in section 4. For now, we’ll consider a class of regressors defined over these nets (as illustrated in
Figure 1), and we’ll describe how to select a good regressor out of this class.

Partitions of X: The r-nets are denoted by
{
Qr, r ∈ {∆X /2i}I+2

0

}
, where I

.= dlog ne, and
Qr ⊂ X. Each Q ∈

{
Qr, r ∈ {∆X /2i}I+2

0

}
induces a partition {X(q), q ∈ Q} of X, where
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X(q) designate all those points in X whose closest point in Q is q. We set nq
.= |X(q)|, and

Ȳq = 1
nq

∑
i:Xi∈X(q) Yi.

Admissible kernels: We assume that K(u) is a non increasing function of u ∈ [0,∞); K is
positive on u ∈ [0, 1), maximal at u = 0, and vanishes for u ≥ 1. To simplify notation, we’ll often
let K(x, q, h) denote K(ρ (x, q) /h).

Regressors: For each Q ∈
{
Qr, r ∈ {∆X /2i}I+2

0

}
, and given a bandwidth h, we define the fol-

lowing regressor:

fn,Q(x) =
∑
q∈Q

wq(x)Ȳq, where wq =
nq(K(x, q, h) + ε)∑

q′∈Q nq′(K(x, q′, h) + ε)
. (2)

The positive constant ε ensures that the estimate remains well defined when K(x, q, h) = 0. We
assume ε ≤ K(1/2)/n2. We can view (K(·) + ε) as the effective kernel which never vanishes. It is
clear that the learned function fn,Q inherits any degree of smoothness from the kernel function K,
i.e. if K is of class Ck, then so is fn,Q.

Selecting the final regressor: For fixed n, K(·), and {Qr, r ∈ {∆X /2i}I+2
0 }, equation (2) above

defines a class of regressors parameterized by r ∈ {∆X /2i}I+2
0 , and the bandwidth h. We want

to pick a good regressor out of this class. We can reduce the search space right away by noticing
that we need r = θ(h): if r >> h then B(x, h) ∩ Qr is empty for most x since the points in Qr

are over r apart, and if r << h then B(x, h) ∩ Qr might contain a lot of points, thus increasing
evaluation time. So for each choice of h, we will set r = h/4, which will yield good guarantees on
computational and prediction performance. The final regressor is selected as follows.

Draw a new sample (X′,Y′) of size n. As before let I
.= dlog ne, and define H

.= {∆X /2i}I
0. For

every h ∈ H , pick the r-net Qh/4 and test fn,Qh/4 on (X′,Y′); let the empirical risk be minimized

at ho, i.e. ho
.= argminh∈H

1
n

∑n
i=1

∥∥fn,Qh/4(X
′
i) − Y ′

i

∥∥2. Return fn,Qho/4 as the final regressor.

Fast evaluation: Each regressor fn,Qh/4(x) can be estimated quickly on points x by traversing
(nested) r-nets as described in detail in section 4.

2.2 Computational and prediction performance

The cover property ensures that for some h, Qh/4 is a good summary of local information (for
prediction performance), while the packing property ensures that few points in Qh/4 fall in B(x, h)
(for fast evaluation). We have the following main result.

Theorem 1. Let d be the Assouad dimension of X and let n ≥ max
(

9,
(

∆Y
λ∆X

)2

,
(

λ∆X
∆Y

)2
)

.

(a) The final regressor selected satisfies

E
∥∥fn,Qho/4 − f

∥∥2 ≤ C (λ∆X )2d/(2+d)

(
∆2

Y
n

)2/(2+d)

+ 3∆2
Y

√
ln(n log n)

n
,

where C depends on the Assouad dimension d and on K(0)/K(1/2).

(b) fn,Qho/4(x) can be computed in time C ′ log n, where C ′ depends just on d.

Part (a) of Theorem 1 is given by Corollary 1 of section 3, and does not depend on how the r-nets
are built; part (b) follows from Lemma 4 of section 4 which specifies the nets.

3 Risk analysis

Throughout this section we assume 0 < h < ∆X and we let Q = Qh/4. We’ll bound the risk for
fn,Q for any fixed choice of h, and then show that the final h0 selected yields a good risk. The results
in this section only require the fact that Q is a cover of data and thus preserves local information,
while the packing property is needed in the next section for fast evaluation.
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Define f̃n,Q(x) .= EY|X fn,Q(x), i.e. the conditional expectation of the estimate, for X fixed. We
have the following standard decomposition of the excess risk into variance and bias terms:

∀x ∈ X , E
Y|X

‖fn,Q(x) − f(x)‖2 = E
Y|X

∥∥∥fn,Q(x) − f̃n,Q(x)
∥∥∥2

+
∥∥∥f̃n,Q(x) − f(x)

∥∥∥2

. (3)

We’ll proceed by bounding each term separately in the following two lemmas, and then combining
these bounds in Lemma 3. We’ll let µ denote the marginal measure over X and µn denote the
corresponding empirical measure.
Lemma 1 (Variance at x). Fix X, and let Q be an h

4 -net of X, 0 < h < ∆X . Consider x ∈ X such
that X ∩ (B(x, h/4)) 6= ∅. We have

E
Y|X

∥∥∥fn,Q(x) − f̃n,Q(x)
∥∥∥2

≤
2K(0)∆2

Y
K(1/2) · nµn (B(x, h/4))

.

Proof. Remember that for independent random vectors vi with expectation 0, E ‖
∑

i vi‖2 =∑
i E ‖vi‖2. We apply this fact twice in the inequalities below, given that, conditioned on X and

Q ⊂ X, the Yi values are mutually independent and so are the Ȳq values. We have

E
Y|X

∥∥∥fn,Q(x) − f̃n,Q(x)
∥∥∥2

= E
Y|X

∥∥∥∥∥∥
∑
q∈Q

wq(x)
(

Ȳq − E
Y|X

Ȳq

)∥∥∥∥∥∥
2

≤
∑
q∈Q

w2
q(x) E

Y|X

∥∥∥∥Ȳq − E
Y|X

Ȳq

∥∥∥∥2

=
∑
q∈Q

w2
q(x) E

Y|X

∥∥∥∥∥∥
∑

i:Xi∈X(q)

1
nq

(
Yi − E

Y|X
Yi

)∥∥∥∥∥∥
2

≤
∑
q∈Q

w2
q(x)

∆2
Y

nq

≤
(

max
q∈Q

{
wq(x)

∆2
Y

nq

})∑
q∈Q

wq = max
q∈Q

{
wq(x)

∆2
Y

nq

}

= max
q∈Q

(K(x, q, h) + ε)∆2
Y∑

q′∈Q nq′(K(x, q′, h) + ε)
≤

2K(0)∆2
Y∑

q∈Q nqK(x, q, h)
. (4)

To bound the fraction in (4), we lower-bound the denominator as:∑
q∈Q

nqK(x, q, h) ≥
∑

q:ρ(x,q)≤h/2

nqK(x, q, h) ≥
∑

q:ρ(x,q)≤h/2

nqK(1/2) ≥ K(1/2) · nµn(B(x, h/4)).

The last inequality follows by remarking that, since Q is an h
4 -cover of X, the ball B(x, h/4) can

only contain points from ∪q:ρ(x,q)≤h/2X(q). Plug this last inequality into (4) and conclude.

Lemma 2 (Bias at x). As before, fix X, and let Q be an h
4 -net of X, 0 < h < ∆X . Consider x ∈ X

such that X ∩ (B(x, h/4)) 6= ∅. We have∥∥∥f̃n,Q(x) − f(x)
∥∥∥2

≤ 2λ2h2 +
∆2

Y
n

.

Proof. We have∥∥∥f̃n,Q(x) − f(x)
∥∥∥2

=

∥∥∥∥∥∥
∑
q∈Q

wq(x)
nq

∑
Xi∈X(q)

(f(Xi) − f(x))

∥∥∥∥∥∥
2

≤
∑
q∈Q

wq(x)
nq

∑
Xi∈X(q)

‖f(Xi) − f(x)‖2
,

where we just applied Jensen’s inequality on the norm square. We bound the r.h.s by breaking the
summation over two subsets of Q as follows.∑

q:ρ(x,q)<h

wq(x)
nq

∑
Xi∈X(q)

‖f(Xi) − f(x)‖2 ≤
∑

q:ρ(x,q)<h

wq(x)
nq

∑
Xi∈X(q)

λ2ρ (Xi, x)2

≤
∑

q:ρ(x,q)<h

wq(x)
nq

∑
Xi∈X(q)

λ2 (ρ (x, q) + ρ (q, Xi))
2 ≤

∑
q:ρ(x,q)<h

wq(x)
nq

∑
Xi∈X(q)

25
16

λ2h2 ≤ 2λ2h2.
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Next, we have∑
q:ρ(x,q)≥h

wq(x)
nq

∑
Xi∈X(q)

‖f(Xi) − f(x)‖2 ≤
∑

q:ρ(x,q)≥h

wq(x)∆2
Y

=
∆2

Y
∑

q:ρ(x,q)≥h nqε∑
q:ρ(x,q)≥h

nqε +
∑

q:ρ(x,q)<h

nq (K(x, q, h) + ε)
= ∆2

Y

1 +

∑
q:ρ(x,q)<h nq (K(x, q, h) + ε)∑

q:ρ(x,q)≥h

nqε


−1

≤ ∆2
Y

(
1 +

K(1/2)∑
q:ρ(x,q)≥h nqε

)−1

≤ ∆2
Y

(
1 +

K(1/2)
nε

)−1

≤
∆2

Y
1 + n

,

where the second inequality is due to the fact that, since µn(B(x, h/4)) > 0, the set B(x, h/2)∩Q
cannot be empty (remember that Q is an h

4 -cover of X). This concludes the argument.

Lemma 3 (Integrated excess risk). Let Q be an h
4 -net of X, 0 < h < ∆X . We have

E
(X,Y)

‖fn,Q − f‖2 ≤ C0

∆2
Y

n · (h/∆X )d
+ 2λ2h2,

where C0 depends on the Assouad dimension d and on K(0)/K(1/2).

Proof. Applying Fubini’s theorem, the expected excess risk, E(X,Y) ‖fn,Q − f‖2, can be written as

E
X

E
(X,Y)

‖fn,Q(X) − f(X)‖2 (
1{µn(B(X,h/4))>0} + 1{µn(B(X,h/4))=0}

)
.

By lemmas 1 and 2 we have for X = x fixed,

E
(X,Y)

‖fn,Q(x) − f(x)‖2
1{µn(B(x,h/4))>0} ≤ C1 E

X

[
∆2

Y1{µn(B(x,h/4))>0}

nµn(B(x, h/4))

]
+ 2λ2h2 +

∆2
Y

n

≤ C1

(
2∆2

Y
nµ(B(x, h/4))

)
+ 2λ2h2 +

∆2
Y

n
, (5)

where for the last inequality we used the fact that for a binomial b(n, p), E
[

1{b(n,p)>0}
b(n,p)

]
≤ 2

np (see
lemma 4.1 of [12]).

For the case where B(x, h/4) is empty, we have

E
(X,Y)

‖fn,Q(x) − f(x)‖2
1{µn(B(x,h/4))=0} ≤ ∆2

Y E
X

1{µn(B(x,h/4))=0} = ∆2
Y (1 − µ(B(x, h/4))n

≤ ∆2
Ye−nµ(B(x,h/4)) ≤

∆2
Y

nµ(B(x, h/4))
. (6)

Combining (6) and (5), we can then bound the expected excess risk as

E
(X,Y)

‖fn,Q − f‖2 ≤
3C1∆2

Y
n

E
X

[
1

µ(B(X, h/4))

]
+ 2λ2h2 +

∆2
Y

n
. (7)

The expectation on the r.h.s is bounded using a standard covering argument (see e.g. [12]). Let
{zi}N

1 be an h
8 -cover of X . Notice that for any zi, x ∈ B(zi, h/8) implies B(x, h/4) ⊃ B(zi, h/8).

We therefore have

E
X

[
1

µ(B(X,h/4))

]
≤

N∑
i=1

E
X

[
1{X∈B(zi,h/8)}

µ(B(X, h/4))

]
≤

N∑
i=1

E
X

[
1{X∈B(zi,h/8)}

µ(B(X,h/8))

]

= N ≤ C2

(
∆X

h

)d

, where C2 depends just on d.

We conclude by combining the above with (7) to obtain

E
(X,Y)

‖fn,Q − f‖2 ≤
3C1C2∆2

Y
n(h/∆X )d

+ 2λ2h2 +
∆2

Y
n

.
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Corollary 1. Let n ≥ max
(

9,
(

∆Y
λ∆X

)2

,
(

λ∆X
∆Y

)2
)

. The final regressor selected satisfies

E
∥∥fn,Qho/4 − f

∥∥2 ≤ C (λ∆X )2d/(2+d)

(
∆2

Y
n

)2/(2+d)

+ 3∆2
Y

√
ln(n log n)

n
,

where C depends on the Assouad dimension d and on K(0)/K(1/2).

Proof outline. Let h̃ = C3

(
∆d/(2+d)

X

(
∆2

Y
λ2n

)1/(2+d)
)

∈ H . We note that n is lower bounded so

that such an h̃ is in H . We have by Lemma 3 that for h̃,

E
X,Y

∥∥∥fn,Qh̃/4
− f

∥∥∥2

≤ C0 (λ∆X )2d/(2+d)

(
∆2

Y
n

)2/(2+d)

.

Applying McDiarmid’s to the empirical risk followed by a union bound over H , we have that, with
probability at least 1 − 1/

√
n over the choice of (X′,Y′), for all h ∈ H∣∣∣∣∣ E

X,Y

∥∥fn,Qh/4(X) − Y
∥∥2 − 1

n

n∑
i=0

∥∥fn,Qh/4(X
′
i) − Y ′

i

∥∥∣∣∣∣∣ ≤ ∆2
Y

√
ln(|H|

√
n)

n
.

It follows that E
X,Y

∥∥fn,Qho/4(X) − Y
∥∥2 ≤ E

X,Y

∥∥∥fn,Qh̃/4
(X) − Y

∥∥∥2

+ 2∆2
Y

√
ln(|H|

√
n)

n
, which

by (1) implies
∥∥fn,Qho/4 − f

∥∥2 ≤
∥∥∥fn,Qh̃/4

− f
∥∥∥2

+2∆2
Y

√
ln(|H|

√
n)

n . Take the expectation (given
the randomness in the two samples) over this last inequality and conclude.

4 Fast evaluation

In this section we show how to modify the cover-tree procedure of [16] to enable fast evaluation of
fn,Qh/4 for any h ∈ H

.= {∆X /2i}I
1, I = dlog ne.

The cover-tree performs proximity search by navigating a hierarchy of nested r-nets of X. The
navigating-nets of [17] implement the same basic idea. They require additional book-keeping to
enable range queries of the form X ∩ B(x, h), for a query point x. Here we need to perform range
searches of the form Qh/4 ∩ B(x, h) and our book-keeping will therefore be different from [17].
Note that, for each h and Qh/4, one could use a generic range search procedure such as [17] with
the data in Qh/4 as input, but this requires building a separate data structure for each h, which is
expensive. We use a single data structure.

4.1 The hierarchy of nets

Consider an ordering
{
X(i)

}n

1
of the data points obtained as follows: X(1) and X(2) are the farthest

points in X; inductively for 2 < i < n, X(i) in X is the farthest point from
{
X(1), . . . , X(i−1)

}
,

where the distance to a set is defined as the minimum distance to a point in the set.

For r ∈
{
∆X /2i

}I+2

0
, define Qr =

{
X(1), . . . , X(i)

}
where i ≥ 1 is the highest index such that

ρ
(
X(i),

{
X(1), . . . , X(i−1)

})
≥ r. Notice that, by construction, Qr is an r-net of X.

4.2 Data structure

The data structure consists of an acyclic directed graph, and range sets defined below.

Neighborhood graph: The nodes of the graph are the
{
X(i)

}n

1
, and the edges are given by the

following parent-child relationship: starting at r = ∆X /2, the parent of each node in Qr \ Q2r is
the point it is closest to in Q2r. The graph is implemented by maintaining an ordered list of children
for each node, where the order is given by the children’s appearance in the sequence

{
X(i)

}n

1
. These

relationships are depicted in Figure 2.
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X(1) X(2) X(3) X(4) X(5) X(6) X(1) X(2) X(3) X(4) X(5) X(6)

Figure 2: The r-nets (rows of left subfigure) are implicit to an ordering of the data. They define a parent-child
relationship implemented by the neighborhood graph (right), the structure traversed for fast evaluation.

These ordered lists of children are used to implement the operation nextChildren defined itera-
tively as follows. Given Q ⊂

{
X(i)

}n

1
, let visited children denote any child of q ∈ Q that a previous

call to nextChildren has already returned. The call nextChildren (Q) returns children of q ∈ Q
that have not yet been visited, starting with the unvisited child with lowest index in

{
X(i)

}n

1
, say

X(i), and returning all unvisited children in Qr, the first net containing X(i), i.e. X(i) ∈ Qr \Q2r ;
r is also returned. The children returned are then marked off as visited. The time complexity of this
routine is just the number of children returned.

Range sets: For each node X(i) and each r ∈
{
∆X /2i

}∞
0

, we maintain a set of neighbors of X(i)

in Qr defined as R(i),r
.=
{
q ∈ Qr : ρ

(
X(i), q

)
≤ 8r

}
.

4.3 Evaluation

Procedure evaluate(x, h)
Q← Q∆X ;
repeat

Q′, r ← nextChildren (Q);
Q′′ ← Q ∪Q′;
if r < h/4 or Q′ = ∅ then // We reached past Qh/4.

X(i) ← argminq∈Q ρ (x, q); // Closest point to x in Qh/4.
Q← R(i),h/4 ∩B(x, h); // Search in a range of 2h around X(i).
Break loop ;

if ρ (x,Q′′) ≥ h + 2r then // The set Qh/4 ∩B(x, h) is empty.

Q← ∅;
Break loop ;

Q← {q ∈ Q′′, ρ (x, q) < ρ (x,Q′′) + 2r};
until . . . ;
//At this point Q = Qh/4 ∩B(x, h).
return

fn,Qh/4(x)←

P

q∈Q nq(K(x, q, h) + ε)Ȳq + ε
“

P

q∈Qh/4
nqȲq −

P

q∈Q nqȲq

”

P

q∈Q nq(K(x, q, h) + ε) + ε
“

n−
P

q∈Q nq

” ;

The evaluation procedure consists of quickly identifying the closest point X(i) to x in Qh/4 and
then searching in the range of X(i) for the points in Qh/4 ∩ B(x, h). The identification of X(i) is
done by going down the levels of nested nets, and discarding those points (and their descendants)
that are certain to be farther to x than X(i) (we will argue that “ρ (x,Q′′) + 2r” is an upper-bound
on ρ

(
x,X(i)

)
). Also, if x is far enough from all points at the current level (second if-clause), we

can safely stop early because B(x, h) is unlikely to contain points from Qh/4 (we’ll see that points
in Qh/4 are all within 2r of their ancestor at the current level).

Lemma 4. The call to procedure evaluate (x,h) correctly evaluates fn,Qh/4(x) and has time
complexity C log (∆X /h) + log n where C is at most 28d.
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Proof. We first show that the algorithm correctly returns fn,Qαh
(x), and we then argue its run time.

Correctness of evaluate. The procedure works by first finding the closest point to x in Qh/4,
say X(i), and then identifying all nodes in

(
R(i),h/4 ∩ B(x, h)

)
=
(
Qh/4 ∩ B(x, h)

)
(see the first

if-clause). We just have to show that this closest point X(i) is correctly identified.

We’ll argue the following loop invariant I: at the beginning of the loop, X(i) is either in Q′′ =
Q∪Q′ or is a descendant of a node in Q′. Let’s consider some iteration where I holds (it certainly
does in the first iteration).

If the first if-clause is entered, then Q is contained in Qh/4 but Q′ is not, so X(i) must be in Q and
we correctly return.

Suppose the first if-clause is not entered. Now let X(j) be the ancestor in Q′ of X(i) or let it be X(i)

itself if it’s in Q′′. Let r be as defined in evaluate, we have ρ
(
X(i), X(j)

)
<
∑∞

k=0 r/2k = 2r by
going down the parent-child relations. It follows that

ρ (x,Q′′) ≤ ρ
(
x,X(j)

)
≤ ρ

(
x,X(i)

)
+ ρ

(
X(i), X(j)

)
< ρ

(
x, X(i)

)
+ 2r.

In other words, we have ρ
(
x,X(i)

)
> ρ (x,Q′′) − 2r. Thus, if the second if-clause is entered, we

necessarily have ρ
(
x,X(i)

)
> h, i.e. B(x, h) ∩ Qh/4 = ∅ and we correctly return.

Now assume none of the if-clauses is entered. Let X(j) ∈ Q′′ be any of the points removed from
Q′′ to obtain the next Q. Let X(k) be a child of X(j) that has not yet been visited, or a descendant
of such a child. If neither such X(j) or X(k) is X(i) then, by definition, I must hold at the next
iteration. We sure have X(j) 6= X(i) since ρ

(
x,X(j)

)
≥ ρ (x,Q′′) + 2r ≥ ρ

(
x, X(i)

)
+ 2r. Now

notice that, by the same argument as above, ρ
(
X(j), X(k)

)
<
∑∞

k=0 r/2k = 2r. We thus have
ρ
(
x,X(k)

)
> ρ

(
x,X(j)

)
− 2r ≥ ρ

(
x, X(i)

)
so we know X(j) 6= X(i).

Runtime of evaluate. Starting from Q∆X , a different net Qr is reached at every iteration, and the
loop stops when we reach past Qh/4. Therefore the loop is entered at most log (∆X /h/4) times. In
each iteration, most of the work is done parsing through Q′′, besides time spent for the range search
in the last iteration. So the total runtime is O (log (∆X /h/4) · max |Q′′|) + range search time. We
just need to bound max |Q′′| ≤ max |Q| + max |Q′| and the range search time.

The following fact (see e.g. Lemma 4.1 of [9]) will come in handy: consider r1 and r2 such that
r1/r2 is a power of 2, and let B ⊂ X be a ball of radius r1; since X has Assouad dimension d,
the smallest r2-cover of B is of size at most (r1/r2)d, and the largest r2-packing of B is of size at
most (r1/r2)2d. This is true for any metric space, and therefore holds for X which is of Assouad
dimension at most d by inclusion in X .

Let Q′ ⊂ Qr so that Q ⊂ Q2r at the beginning of some iteration. Let q ∈ Q, the children of q in Q′

are not in Q2r and therefore are all within 2r of Q; since these children an r-packing of B(q, 2r),
there are at most 22d of them. Thus, max |Q′| ≤ 22d max |Q|.

Initially Q = Q∆X so we have |Q| ≤ 22d since Q∆X is a ∆X -packing of X ⊂ B
(
X(1), 2∆X

)
. At

the end of each iteration we have Q ⊂ B(x, ρ (x,Q′′) + 2r). Now ρ (x,Q′′) ≤ h + 2r ≤ 4r + 2r
since the if-clauses were not entered if we got to the end of the iteration. Thus, Q is an r-packing of
B(x, 8r), and therefore max |Q| ≤ 28d.

To finish, the range search around X(i) takes time
∣∣R(i),h/4

∣∣ ≤ 28d since R(i),h/4 is an h
4 -packing

of B
(
X(i), 2h

)
.
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