
A Proof of Lemma 4

Proof. Proof of Lemma 4 Let c ∈ C be an optimal decision tree, i.e., a size t decision tree that
maximizes correlation for Uf , i.e., cor(c) = cor(C). The Fourier representation of c is,

c =
∑
S⊆[n]

ĉ(S)χS(x), (4)

where [n] denotes {1, 2, . . . , n}, ĉ(S) ∈ [−1, 1], and parity classifier χS(x) =
∏
i∈S x[i] where

x[i] is the ith coordinate of x. Kushilevitz and Mansour show that if c has at most t leaves then∑
S⊆[n] |ĉ(S)| ≤ t. Now,

cor(C) = cor(c) = E
(x,y)∼Uf

[c(x)y] =
∑
S⊆[n]

ĉ(S) cor(χS)

Hence, maxS⊆[n] | cor(χS)| ≥ cor(C)/t (otherwise the quantity displayed above on the left would
be less than

∑
S⊆[n] |ĉ(S)| cor(C)/t ≤ cor(C), a contradiction). For any τ > 0, the KM algorithm

with poly(n, 1/τ, log(1/δ)) queries and runtime outputs estimates of the correlations cor(χS) (these
are exactly the estimated Fourier coefficients f̂(S)) for each S that are accurate to within an additive
τ , with probability ≥ 1− δ (there is a sparse polynomial-sized approximation using the fact that at
most 1/τ2 sets S can have | cor(χS)| ≥ τ ). Hence, if we take the set S for which KM estimates
| cor(χS)| to be largest, it will have an correlation within 2τ of that of the best S. Hence, setting
τ = ε0/2 suffices for the Lemma. Note that if cor(χS) < 0, one simply outputs the classifier
−χS .

B Proof of Theorem 3

We first prove Lemma 5.

Proof of Lemma 5. Let c : {−1, 1}n → {−1, 1}, and let cd be the degree-d truncated Fourier
approximation of c, which is the best degree-d approximation to c under the uniform distribution
over x ∈ {−1, 1}n. It is well-known that, in terms of the Fourier approximation equation 4, cd =∑
S:|S|≤d ĉ(S)χS(x).

Klivans, O’Donnell, and Servedio [25] have shown that, for any 0 < ε < 1
2 , d = 20

ε2 , and any n ≥ 1
and any halfspace c(x) = sign(w · x− θ),

E
x∼U

[
(c(x)− cd(x))2

]
≤ ε

In particular, let c be the best halfspace approximation to f , i.e., one with maximum correlation, and
let cd be its degree-d truncation. Then,

cor(cd,Uf ) = cor(c,Uf )− cor(c− cd,Uf ) = cor(C,Uf )− E
(x,y)∼Uf

[(c(x)− cd(x))y]

Now, by Cauchy-Schwartz,

E
(x,y)∼Uf

[(c(x)− cd(x))y] ≤
√

E
(x,y)∼Uf

[(c(x)− cd(x))2] E
(x,y)∼Uf

[y2] ≤
√
ε · 1

Hence, cor(cd) ≥ cor(C)−
√
ε. Now,

cor(cd) =
∑

S:|S|≤d

ĉ(S) cor(χS) ≤
∑

S:|S|≤d

|ĉ(S)| max
S:|S|≤d

| cor(χS)|

Finally,
∑
S:|S|≤d |ĉ(S)| ≤ nd (since each ĉ(S) ∈ [−1, 1] and there are ≤ nd of them), hence there

must be some set S of size ≤ d for which | cor(χS)| ≥ (cor(C) −
√
ε)/nd. Substituting ε = ε20

proves the lemma.

Theorem 3 now follows easily from the above lemma and our boosting theorem.
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Proof of Theorem 3. Consider the weak learner simply finds the degree-d term, χS(x) with |S| ≤ d,
with greatest empirical correlation 1

m

∑m
i=1 χS(xi)yi on a data set (x1, y1), . . . , (xm, ym). Standard

Chernoff-Hoeffding bounds guarantee that, for m ≥ poly(log(1/δ), nd), with probability ≥ 1 −
δ, the empirical correlation of each of the ≤ nd different χS’s will be within ε0/4 of their true
correlation.
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