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Abstract 

Recent advances in neuroimaging techniques provide great potentials for 
effective diagnosis of Alzheimer’s disease (AD), the most common form of 
dementia. Previous studies have shown that AD is closely related to the 
alternation in the functional brain network, i.e., the functional connectivity 
among different brain regions. In this paper, we consider the problem of 
learning functional brain connectivity from neuroimaging, which holds 
great promise for identifying image-based markers used to distinguish 
Normal Controls (NC), patients with Mild Cognitive Impairment (MCI), 
and patients with AD.  More specifically, we study sparse inverse 
covariance estimation (SICE), also known as exploratory Gaussian 
graphical models, for brain connectivity modeling. In particular, we apply 
SICE to learn and analyze functional brain connectivity patterns from 
different subject groups, based on a key property of SICE, called the 
“monotone property” we established in this paper. Our experimental results 
on neuroimaging PET data of 42 AD, 116 MCI, and 67 NC subjects reveal 
several interesting connectivity patterns consistent with literature findings, 
and also some new patterns that can help the knowledge discovery of AD.    

 
 

1 Introduction  

Alzheimer’s disease (AD) is a fatal, neurodegenerative disorder characterized by progressive 
impairment of memory and other cognitive functions. It is the most common form of 
dementia and currently affects over five million Americans; this number will grow to as 
many as 14 million by year 2050. The current knowledge about the cause of AD is very 
limited; clinical diagnosis is imprecise with definite diagnosis only possible by autopsy; 
also, there is currently no cure for AD, while most drugs only alleviate the symptoms.  

To tackle these challenging issues, the rapidly advancing neuroimaging techniques provide 
great potentials. These techniques, such as MRI, PET, and fMRI, produce data (images) of 
brain structure and function, making it possible to identify the difference between AD and 
normal brains. Recent studies have demonstrated that neuroimaging data provide more 
sensitive and consistent measures of AD onset and progression than conventional clinical 



assessment and neuropsychological tests [1].  

Recent studies have found that AD is closely related to the alternation in the functional brain 
network, i.e., the functional connectivity among different brain regions [2]-[3]. Specifically, 
it has been shown that functional connectivity substantially decreases between the 
hippocampus and other regions of AD brains [3]-[4]. Also, some studies have found 
increased connectivity between the regions in the frontal lobe [6]-[7].  

Learning functional brain connectivity from neuroimaging data holds great promise for 
identifying image-based markers used to distinguish among AD, MCI (Mild Cognitive 
Impairment), and normal aging. Note that MCI is a transition stage from normal aging to 
AD. Understanding and precise diagnosis of MCI have significant clinical value since it can 
serve as an early warning sign of AD. Despite all these, existing research in functional brain 
connectivity modeling suffers from limitations. A large body of functional connectivity 
modeling has been based on correlation analysis [2]-[3], [5]. However, correlation only 
captures pairwise information and fails to provide a complete account for the interaction of 
many (more than two) brain regions. Other multivariate statistical methods have also been 
used, such as Principle Component Analysis (PCA) [8], PCA-based Scaled Subprofile Model 
[9], Independent Component Analysis [10]-[11], and Partial Least Squares [12]-[13], which 
group brain regions into latent components. The brain regions within each component are 
believed to have strong connectivity, while the connectivity between components is weak. 
One major drawback of these methods is that the latent components may not correspond to 
any biological entities, causing difficulty in interpretation. In addition, graphical models 
have been used to study brain connectivity, such as structural equation models [14]-[15], 
dynamic causal models [16], and Granger causality. However, most of these approaches are 
confirmative, rather than exploratory, in the sense that they require a prior model of brain 
connectivity to begin with. This makes them inadequate for studying AD brain connectivity, 
because there is little prior knowledge about which regions should be involved and how they 
are connected. This makes exploratory models highly desirable.  

In this paper, we study sparse inverse covariance estimation (SICE), also known as 
exploratory Gaussian graphical models, for brain connectivity modeling. Inverse covariance 
matrix has a clear interpretation that the off-diagonal elements correspond to partial 
correlations, i.e., the correlation between each pair of brain regions given all other regions. 
This provides a much better model for brain connectivity than simple correlation analysis 
which models each pair of regions without considering other regions. Also, imposing 
sparsity on the inverse covariance estimation ensures a reliable brain connectivity to be 
modeled with limited sample size, which is usually the case in AD studies since clinical 
samples are difficult to obtain. From a domain perspective, imposing sparsity is also valid 
because neurological findings have demonstrated that a brain region usually only directly 
interacts with a few other brain regions in neurological processes [2]-[3]. Various algorithms 
for achieving SICE have been developed in recent year [17]-[22]. In addition, SICE has been 
used in various applications [17], [21], [23]-[26].  

In this paper, we apply SICE to learn functional brain connectivity from neuroimaging and 
analyze the difference among AD, MCI, and NC based on a key property of SICE, called the 
“monotone property” we established in this paper. Unlike the previous study which is based 
on a specific level of sparsity [26], the monotone property allows us to study the 
connectivity pattern using different levels of sparsity and obtain an order for the strength of 
connection between pairs of brain regions. In addition, we apply bootstrap hypothesis testing 
to assess the significance of the connection. Our experimental results on PET data of 42 AD, 
116 MCI, and 67 NC subjects enrolled in the Alzheimer’s Disease Neuroimaging Initiative 
project reveal several interesting connectivity patterns consistent with literature findings, 
and also some new patterns that can help the knowledge discovery of AD.    

 

2 SICE: Background and the Monotone Property  

An inverse covariance matrix can be represented graphically. If used to represent brain 
connectivity, the nodes are activated brain regions; existence of an arc between two nodes 
means that the two brain regions are closely related in the brain's functiona l process.  



Let  be all the brain regions under study.  We assume that  follows a 

multivariate Gaussian distribution with mean  and covariance matrix . Let  be the 
inverse covariance matrix. Suppose we have  samples (e.g.,  subjects with AD) for these 
brain regions. Note that we will only illustrate here the SICE for AD, whereas the SICE for 
MCI and NC can be achieved in a similar way.  

We can formulate the SICE into an optimization problem, i.e.,  

                                   (1) 

where  is the sample covariance matrix; , , and  denote the 
determinant, trace, and sum of the absolute values of all elements of a matrix, respectively.  

The part “ ” in (1) is the log-likelihood, whereas the part “ ” 

represents the “sparsity” of the inverse covariance matrix . (1) aims to achieve a tradeoff 
between the likelihood fit of the inverse covariance estimate and the sparsity. The tradeoff is 
controlled by , called the regularization parameter; larger  will result in more sparse estimate 
for . The formulation in (1) follows the same line of the -norm regularization, which has been 
introduced into the least squares formulation to achieve model sparsity and the resulting model is 
called Lasso [27]. We employ the algorithm in [19] in this paper. Next, we show that with  
going from small to large, the resulting brain connectivity models have a monotone property. 
Before introducing the monotone property, the following definitions are needed.  

Definition: In the graphical representation of the inverse covariance, if node  is connected 
to  by an arc, then  is called a “neighbor” of . If  is connected to  though some 

chain of arcs, then  is called a “connectivity component” of .  

Intuitively, being neighbors means that two nodes (i.e., brain regions) are directly connected, 
whereas being connectivity components means that two brain regions are indirectly 
connected, i.e., the connection is mediated through other regions. In other words, not being 
connectivity components (i.e., two nodes completely separated in the graph) means that the 
two corresponding brain regions are completely independent of each other. Connectivity 
components have the following monotone property:  

Monotone property of SICE: Let  and  be the sets of all the connectivity 
components of  with  and , respectively. If , then .  

Intuitively, if two regions are connected (either directly or indirectly) at one level of 
sparseness ( ), they will be connected at all lower levels of sparseness ( ). Proof 
of the monotone property can be found in the supplementary file  [29]. This monotone 
property can be used to identify how strongly connected each node (brain region)  to its 

connectivity components. For example, assuming that  and , 

this means that  is more strongly connected to  than . Thus, by changing  from small 

to large, we can obtain an order for the strength of connection between pairs of brain 
regions. As will be shown in Section 3, this order is different among AD, MCI, and NC. 

 

3  Application in Brain Connectivity M odel ing of  AD 
 

3 . 1  Da ta  a cqui s i t io n  a nd  prep ro cess i ng  

We apply SICE on FDG-PET images for 49 AD, 116 MCI, and 67 NC subjects downloaded from 
the ADNI website. We apply Automated Anatomical Labeling (AAL) [28] to extract data from 
each of the 116 anatomical volumes of interest (AVOI), and derived average of each AVOI for 
every subject. The AVOIs represent different regions of the whole brain.  

 

3 .2  B ra in  co nnec t iv i ty  mo de l ing  by  SIC E  

42 AVOIs are selected for brain connectivity modeling, as they are considered to be potentially 
related to AD. These regions distribute in the frontal, parietal, occipital, and temporal lobes. Table 
1 list of the names of the AVOIs with their corresponding lobes. The number before each AVOI is 
used to index the node in the connectivity models.  



We apply the SICE algorithm to learn one connectivity model for AD, one for MCI, and one for 
NC, for a given . With different ’s, the resulting connectivity models hold a monotone property, 
which can help obtain an order for the strength of connection between brain regions. To show the 
order clearly, we develop a tree-like plot in Fig. 1, which is for the AD group. To generate this 
plot, we start  at a very small value (i.e., the right-most of the horizontal axis), which results in a 
fully-connected connectivity model. A fully-connected connectivity model is one that contains no 
region disconnected with the rest of the brain. Then, we decrease  by small steps and record the 
order of the regions disconnected with the rest of the brain regions.  

Table 1: Names of the AVOIs for connectivity modeling (“L” means that the brain region 
is located at the left hemisphere; “R” means right hemisphere.) 

 

For example, in Fig. 1, as  decreases below   (but still above ), region “Tempora_Sup_L” is 
the first one becoming disconnected from the rest of the brain. As  decreases below   (but still 
above ), the rest of the brain further divides into three disconnected clusters, including the 
cluster of “Cingulum_Post_R” and “Cingulum_Post_L”, the cluster of “Fusiform_R” up to 
“Hippocampus_L”, and the cluster of the other regions. As  continuously decreases, each current 
cluster will split into smaller clusters; eventually, when  reaches a very large value, there will be 
no arc in the IC model, i.e., each region is now a cluster of itself and the split will stop. The 
sequence of the splitting gives an order for the strength of connection between brain regions. 
Specifically, the earlier (i.e., smaller ) a region or a cluster of regions becomes disconnected from 
the rest of the brain, the weaker it is connected with the rest of the brain. For example, in Fig. 1, it 
can be known that “Tempora_Sup_L” may be the weakest region in the brain network of AD; the 
second weakest ones are the cluster of “Cingulum_Post_R” and “Cingulum_Post_L”, and the 
cluster of “Fusiform_R” up to “Hippocampus_L”. It is very interesting to see that the weakest and 
second weakest brain regions in the brain network include “Cingulum_Post_R” and 
“Cingulum_Post_L” as well as regions all in the temporal lobe, all of which have been found to be 
affected by AD early and severely [3]-[5].  

Next, to facilitate the comparison between AD and NC, a tree-like plot is also constructed for NC, 
as shown in Fig. 2. By comparing the plots for AD and NC, we can observe the following two 
distinct phenomena: First, in AD, between-lobe connectivity tends to be weaker than within-lobe 
connectivity. This can be seen from Fig. 1 which shows a clear pattern that the lobes become 
disconnected with each other before the regions within each lobe become disconnected with each 
other, as  goes from small to large.  This pattern does not show in Fig. 2 for NC. Second, the 
same brain regions in the left and right hemisphere are connected much weaker in AD than in NC. 
This can be seen from Fig. 2 for NC, in which the same brain regions in the left and right 
hemisphere are still connected even at a very large  for NC. However, this pattern does not show 
in Fig. 1 for AD.  

Furthermore, a tree-like plot is also constructed for MCI (Fig. 3), and compared with the plots for 
AD and NC. In terms of the two phenomena discussed previously, MCI shows similar patterns to 
AD, but these patterns are not as distinct from NC as AD. Specifically, in terms of the first 

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L 

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R 

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L 

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R 

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R 

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L 

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L 

12 Cingulum_Ant_R 38 Fusiform_R 

39 Hippocampus_L 

40 Hippocampus_R 

41 ParaHippocampal_L 

42 ParaHippocampal_R 

Temporal lobeFrontal lobe Parietal lobe Occipital lobe



phenomenon, MCI also shows weaker between-lobe connectivity than within-lobe connectivity, 
which is similar to AD. However, the degree of weakerness is not as distinctive as AD. For 
example, a few regions in the temporal lobe of MCI, including “Temporal_Mid_R” and 
“Temporal_Sup_R”, appear to be more strongly connected with the occipital lobe than with other 
regions in the temporal lobe. In terms of the second phenomenon, MCI also shows weaker 
between-hemisphere connectivity in the same brain region than NC. However, the degree of 
weakerness is not as distinctive as AD. For example, several left-right pairs of the same brain 
regions are still connected even at a very large , such as “Rectus_R” and “Rectus_L”, 
“Frontal_Mid_Orb_R” and “Frontal_Mid_Orb _L”, “Parietal_Sup_R” and “Parietal_Sup_L”, as 
well as “Precuneus_R” and “Precuneus_L”. All above findings are consistent with the knowledge 
that MCI is a transition stage between normal aging and AD. 

                 

Fig 1:  Order for the strength of connection between brain regions of AD 

 

           Fig 2: Order for the strength of connection between brain regions of NC 

Small λLarge λ λ3 λ2 λ1

Small λLarge λ



 

 

Fig 3: Order for the strength of connection between brain regions of MCI 

Furthermore, we would like to compare how within-lobe and between-lobe connectivity is 
different across AD, MCI, and NC. To achieve this, we first learn one connectivity model for AD, 
one for MCI, and one for NC. We adjust the  in the learning of each model such that the three 
models, corresponding to AD, MCI, and NC, respectively, will have the same total number of 
arcs. This is to “normalize” the models, so that the comparison will be more focused on how the 
arcs distribute differently across different models. By selecting different values for the total 
number of arcs, we can obtain models representing the brain connectivity at different levels of 
strength. Specifically, given a small value for the total number of arcs, only strong arcs will show 
up in the resulting connectivity model, so the model is a model of strong brain connectivity; when 
increasing the total number of arcs, mild arcs will also show up in the resulting connectivity 
model, so the model is a model of mild and strong brain connectivity.  

For example, Fig. 4 shows the connectivity models for AD, MCI, and NC with the total number of 
arcs equal to 50 (Fig. 4(a)), 120 (Fig. 4(b)), and 180 (Fig. 4(c)). In this paper, we use a “matrix” 
representation for the SICE of a connectivity model. In the matrix, each row represents one node 
and each column also represents one node. Please see Table 1 for the correspondence between the 
numbering of the nodes and the brain region each number represents. The matrix contains black 
and white cells: a black cell at the -th row, -th column of the matrix represents existence of an 
arc between nodes  and  in the SICE-based connectivity model, whereas a white cell 

represents absence of an arc. According to this definition, the total number of black cells in the 
matrix is equal to twice the total number of arcs in the SICE-based connectivity model. Moreover, 
on each matrix, four red cubes are used to highlight the brain regions in each of the four lobes; that 
is, from top-left to bottom-right, the red cubes highlight the frontal, parietal, occipital, and 
temporal lobes, respectively. The black cells inside each red cube reflect within-lobe connectivity, 
whereas the black cells outside the cubes reflect between-lobe connectivity.  

While the connectivity models in Fig. 4 clearly show some connectivity difference between AD, 
MCI, and NC, it is highly desirable to test if the observed difference is statistically significant. 
Therefore, we further perform a hypothesis testing and the results are summarized in Table 2. 
Specifically, a P-value is recorded in the sub-table if it is smaller than 0.1, such a P-value is further 
highlighted if it is even smaller than 0.05; a “---” indicates that the corresponding test is not 
significant (P-value>0.1). We can observe from Fig. 4 and Table 2:  



Within-lobe connectivity: The temporal lobe of AD has significantly less connectivity than NC. 
This is true across different strength levels (e.g., strong, mild, and weak) of the connectivity; in 
other words, even the connectivity between some strongly-connected brain regions in the temporal 
lobe may be disrupted by AD. In particular, it is clearly from Fig. 4(b) that the regions 
“Hippocampus” and “ParaHippocampal” (numbered by 39-42, located at the right-bottom corner 
of Fig. 4(b)) are much more separated from other regions in AD than in NC. The decrease in 
connectivity in the temporal lobe of AD, especially between the Hippocampus and other regions, 
has been extensively reported in the literature [3]-[5]. Furthermore, the temporal lobe of MCI does 
not show a significant decrease in connectivity, compared with NC. This may be because MCI 
does not disrupt the temporal lobe as badly as AD.  

 

     AD                                  MCI                                      NC 

Fig 4(a): SICE-based brain connectivity models (total number of arcs equal to 50) 

 

     AD                                  MCI                                      NC 

Fig 4(b): SICE-based brain connectivity models (total number of arcs equal to 120) 

 

     AD                                  MCI                                      NC 

Fig 4(c): SICE-based brain connectivity models (total number of arcs equal to 180) 
 

The frontal lobe of AD has significantly more connectivity than NC, which is true across different 

strength levels of the connectivity. This has been interpreted as compensatory reallocation or 

recruitment of cognitive resources [6]-[7]. Because the regions in the frontal lobe are typically 

affected later in the course of AD (our data are early AD), the increased connectivity in the frontal 

lobe may help preserve some cognitive functions in AD patients. Furthermore, the frontal lobe of 

MCI does not show a significant increase in connectivity, compared with NC. This indicates that 

the compensatory effect in MCI brain may not be as strong as that in AD brains. 



 

Table 2: P-values from the statistical significance test of connectivity difference among 
AD, MCI, and NC 

(a) Total number of arcs = 50     (b) Total number of arcs = 120   (c) Total number of arcs = 180 

 

 

There is no significant difference among AD, MCI, and NC in terms of the connectivity within the 
parietal lobe and within the occipital lobe. Another interesting finding is that all the P-values in the 
third sub-table of Table 2(a) are insignificant. This implies that distribution of the strong 
connectivity within and between lobes for MCI is very similar to NC; in other words, MCI has not 
been able to disrupt the strong connectivity among brain regions (it disrupts some mild and weak 
connectivity though).  

Between-lobe connectivity: In general, human brains tend to have less between-lobe connectivity 
than within-lobe connectivity. A majority of the strong connectivity occurs within lobes, but rarely 
between lobes. These can be clearly seen from Fig. 4 (especially Fig. 4(a)) in which there are 
much more black cells along the diagonal direction than the off-diagonal direction, regardless of 
AD, MCI, and NC.  

The connectivity between the parietal and occipital lobes of AD is significantly more than NC 
which is true especially for mild and weak connectivity. The increased connectivity between the 
parietal and occipital lobes of AD has been previously reported in [3]. It is also interpreted as a 
compensatory effect in [6]-[7]. Furthermore, MCI also shows increased connectivity between the 
parietal and occipital lobes, compared with NC, but the increase is not as significant as AD.  

While the connectivity between the frontal and occipital lobes shows little difference between AD 
and NC, such connectivity for MCI shows a significant decrease especially for mild and weak 
connectivity. Also, AD may have less temporal-occipital connectivity, less frontal-parietal 
connectivity, but more parietal-temporal connectivity than NC.   

Between-hemisphere connectivity: Recall that we have observed from the tree-like plots in Figs. 3 
and 4 that the same brain regions in the left and right hemisphere are connected much weaker in 
AD than in NC. It is desirable to test if this observed difference is statistically significant. To 
achieve this, we test the statistical significance of the difference among AD, MCI, and NC, in term 
of the number of connected same-region left-right pairs. Results show that when the total number 
of arcs in the connectivity models is equal to 120 or 90, none of the tests is significant. However, 
when the total number of arcs is equal to 50, the P-values of the tests for “AD vs. NC”, “AD vs. 
MCI”, and “MCI vs. NC” are 0.009, 0.004, and 0.315, respectively. We further perform tests for 
the total number of arcs equal to 30 and find the P-values to be 0. 0055, 0.053, and 0.158, 
respectively. These results indicate that AD disrupts the strong connectivity between the same 
regions of the left and right hemispheres, whereas this disruption is not significant in MCI.   

 

4  Conclusion 

In the paper, we applied SICE to model functional brain connectivity of AD, MCI, and NC based 
on PET neuroimaging data, and analyze the patterns based on the monotone property of SICE. Our 
findings were consistent with the previous literature and also showed some new aspects that may 
suggest further investigation in brain connectivity research in the future.  



References  

[1] S. Molchan. (2005) The Alzheimer's disease neuroimaging initiative. Business Briefing: US 
Neurology Review, pp.30-32, 2005.  

[2] C.J. Stam, B.F. Jones, G. Nolte, M. Breakspear, and P. Scheltens. (2007) Small-world networks and 

functional connectivity in Alzheimer’s disease. Cerebral Corter 17:92-99. 

[3] K. Supekar, V. Menon, D. Rubin, M. Musen, M.D. Greicius. (2008)    Network Analysis of Intrinsic 

Functional Brain Connectivity in Alzheimer's Disease. PLoS Comput Biol 4(6) 1-11. 

[4] K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li and T. Jiang. (2007) Altered Functional 

Connectivity in Early Alzheimer’s Disease: A Resting-State fMRI Study, Human Brain Mapping 28, 967-

978. 

[5] N.P. Azari, S.I. Rapoport, C.L. Grady, M.B. Schapiro, J.A. Salerno, A. Gonzales-Aviles. (1992) Patterns 

of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer 

type. Neurodegeneration 1: 101–111. 

[6] R.L. Gould, B.Arroyo, R,G. Brown, A.M. Owen, E.T. Bullmore and R.J. Howard. (2006) Brain 

Mechanisms of Successful Compensation during Learning in Alzheimer Disease, Neurology 67, 1011-1017. 

[7] Y. Stern. (2006) Cognitive Reserve and Alzheimer Disease, Alzheimer Disease Associated Disorder 20, 

69-74. 

[8] K.J. Friston. (1994) Functional and effective connectivity: A synthesis. Human Brain Mapping 2, 56-78. 

[9] G. Alexander, J. Moeller. (1994) Application of the Scaled Subprofile model: a statistical approach to the 

analysis of functional patterns in neuropsychiatric disorders: A principal component approach to modeling 

regional patterns of brain function in disease. Human Brain Mapping, 79-94. 

[10] V.D. Calhoun, T. Adali, G.D. Pearlson, J.J. Pekar. (2001) Spatial and temporal independent component 

analysis of functional MRI data containing a pair of task-related waveforms. Hum.Brain Mapp. 13, 43-53. 

[11] V.D. Calhoun, T. Adali, J.J. Pekar, G.D. Pearlson. (2003) Latency (in)sensitive ICA. Group independent 

component analysis of fMRI data in the temporal frequency domain. Neuroimage. 20, 1661-1669. 

[12] A.R. McIntosh, F.L. Bookstein, J.V. Haxby, C.L. Grady. (1996) Spatial pattern analysis of functional 

brain images using partial least squares. Neuroimage. 3, 143-157. 

[13] K.J. Worsley, J.B. Poline, K.J. Friston, A.C. Evans. (1997) Characterizing the response of PET and 

fMRI data using multivariate linear models. Neuroimage. 6, 305-319. 

[14] E. Bullmore, B. Horwitz, G. Honey, M. Brammer, S. Williams, T. Sharma. (2000) How good is good 

enough in path analysis of fMRI data? NeuroImage 11, 289–301. 

[15] A.R. McIntosh, C.L. Grady, L.G. Ungerieider, J.V. Haxby, S.I. Rapoport, B. Horwitz. (1994) Network 

analysis of cortical visual pathways mapped with PET. J. Neurosci. 14 (2), 655–666. 

[16] K.J. Friston, L. Harrison, W. Penny. (2003) Dynamic causal modelling. Neuroimage 19, 1273-1302. 

[17] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. (2008) Model selection through sparse maximum 

likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research 9:485-

516. 

[18] J. Dahl, L. Vandenberghe, and V. Roycowdhury. (2008) Covariance selection for nonchordal graphs via 

chordal embedding. Optimization Methods Software 23(4):501-520. 

[19] J. Friedman, T.astie, and R. Tibsirani. (2007) Spares inverse covariance estimation with the graphical 

lasso, Biostatistics 8(1):1-10. 

[20] J.Z. Huang, N. Liu, M. Pourahmadi, and L. Liu. (2006) Covariance matrix selection and estimation via 

penalized normal likelihood. Biometrika, 93(1):85-98. 

[21] H. Li and J. Gui. (2005) Gradient directed regularization for sparse Gaussian concentration graphs, with 

applications to inference of genetic networks. Biostatistics 7(2):302-317. 

[22] Y. Lin. (2007) Model selection and estimation in the gaussian graphical model. Biometrika 94(1)19-35, 

2007. 

[23] A. Dobra, C. Hans, B. Jones, J.R. Nevins, G. Yao, and M. West. (2004) Sparse graphical models for 

exploring gene expression data. Journal of Multivariate Analysis 90(1):196-212. 

[24] A. Berge, A.C. Jensen, and A.H.S. Solberg. (2007) Sparse inverse covariance estimates for hyperspectral 

image classification, Geoscience and Remote Sensing, IEEE Transactions on, 45(5):1399-1407. 

[25] J.A. Bilmes. (2000) Factored sparse inverse covariance matrices. In ICASSP:1009-1012.  

[26] L. Sun and et al. (2009) Mining Brain Region Connectivity for Alzheimer's Disease Study via Sparse 

Inverse Covariance Estimation. In KDD: 1335-1344. 

[27] R. Tibshirani. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 

Society Series B 58(1):267-288. 

[28] N. Tzourio-Mazoyer and et al. (2002) Automated anatomical labeling of activations in SPM using a  

macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage 15:273-289. 

[29] Supplemental information for “Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging 

Data”. http://www.public.asu.edu/~jye02/Publications/AD-supplemental-NIPS09.pdf 

http://www.public.asu.edu/~jye02/Publications/AD-supplemental-NIPS09.pdf

