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Abstract

We propose new methodologies to detect anomalies in déstirae processes
taking values in a probability space. These methods aredb@sé¢he inference
of functionals whose evaluations on successive stateediby the process are
stationary and have low autocorrelations. Deviations fthi: behavior are used
to flag anomalies. The candidate functionals are estimated Subspace of a
reproducing kernel Hilbert space associated with the waigprobability space
considered. We provide experimental results on simulagdsats which show
that these techniques compare favorably with other alyoist

1 Introduction

Detecting abnormal points in small and simple datasets &&n be performed by visual inspec-

tion, using notably dimensionality reduction techniquelwever, non-parametric techniques are
often the only credible alternative to address these pnoblen the many high-dimensional, richly

structured data sets available today.

When carried out omdependent and identically distributed (i.i.d) observations, anomaly detection
is usually referred to as outlier detection and is in many svaguivalent to density estimation.
Several density estimators have been used in this contextvarrefer the reader to the exhaustive
review in [1]. Among such techniques, methods which esgnmain-parametric alarm functions in
reproducing kernel Hilbert spaces (rkHs) are particulaghgvant to our work. They form alarm
functions of the typef(-) = > .., cik(zs, - ), wherek is a positive definite kernel an@;);cr

is a family of coefficients paired with a famili; );c; of previously observed data points. A new
observation: is flagged as anomalous wheneyér) goes outside predetermined boundaries which
are also provided by the algorithm. Two well known kernel mogis have been used so far for
this purpose, namely kernel principal component analy$*CQ) [2] and one-class support vector
machines (ocSVM) [3]. The ocSVM is a popular density estioratool and it is thus not surprising
that it has already found successful applications to deteamalies in i.i.d data [4]. KPCA can also
be used to detect outliers as described in [5], where aneouslidefined as any point far enough
from the boundaries of an ellipsoid in the rkHs containingstraf the observed points.

These outlier detection methods can also be appliegitamical systems. We now monitor discrete
time stochastic processes = (Z;);.v taking values in a spacg& and, based on previous obser-
vationsz;_1, - - - , 29, We seek to detect whether a new observatioabnormally deviates from the
usual dynamics of the system. As explained in [1], this pgobtan be reduced to density estimation
when eitherZ; or a suitable representation &f that includes a finite number of lags is Markovian,
i.e. when the conditional probability &f; given its past depends only on the values taketrhy;.



In practice, anomaly detection then involves a two step gatace. It first produces an estimator
Z, of the conditional expectation df, givenZ,_; to extract an empirical estimator for the residues
& = Z,— 7. Underani.i.d assumption, abnormal residues can thendzktadlag anomalies. This
approach and advanced extensions can be used both foramialtd/data [6, 7] and linear processes
in functional spaces [8] using spaces of Holderian fumgio

The main contribution of our paper is to propose an estimadjgproach of alarm functionals that
can be used on arbitrary Hilbert spaces and which bypassestimation of residues € Z by fo-
cusing directly on suitable properties for alarm functisn®ur approach is based on the following
intuition. Detecting anomalies in a sequence generatedtitewmoise is a task which is arguably
easier than detecting anomalies in arbitrary time-sehiethis sense, we look for functionadssuch
thata(Z;) exhibits a stationary behavior with low autocorrelatiadsally white noise, which can
be used in turn to flag an anomaly whenew€f,) departs from normality. We call functionals
that strike a good balance between exhibitimgvaautocovariance of order 1 and ahigh varianceon
successive values, awhite functional of the proces%’. Our definition can be naturally generalized
to higher autocovariance orders as the reader will najusak in the remaining of the paper.

Our perspective is directly related to the concept of cgrason (see [9] for a comprehensive re-
view) for multivariate time series, extensively used byremoetricians to study equilibria between
various economic and financial indicators. For a multitar&ochastic process = (X;):cz tak-

ing values inR%, X is said to be cointegrated if there exists a veatof R? such thata” X;);c7 is
stationary. Economists typically interpret the weighta @fs describing a stablenear relationship
between various (non-stationary) macroeconomic or firsiraicators. In this work we discard the
immediate interpretability of the weights associated Wiitiear functionalse” X, to focus instead

on functionalsy in a rkHsH such thatv(Z;) is stationary, and use this property to detect anomalies.

The rest of this paper is organized as follows. In Section@study different criterions to measure
the autocorrelation of a process, directly inspired by mast autocorrelation factors [10] and the
seminal work of Box-Tiao [11] on cointegration. We study #symptotic properties of finite sample
estimators of these criterions in Section 3 and discussrhatipal estimation of white functionals
in Section 4. We discuss relationships with existing methiadsection 5 and provide experimental
results to illustrate the effectiveness of these appraairth8ection 6.

2 Criterions to define white functionals

Consider a process = (Z;);_z taking values in a probability spa¢e Z will be mainly considered

in this work under the light of its mapping onto a rkHsassociated with a bounded and continuous
kernelk on Z x Z. Z is assumed to be second-order stationary, that is the @EnsgiZ; = z) and
joint densitiep(Z; = z, Zy+1, = 2’) for k € IN are independent af Following [12, 13] we write

ot = (Zt) — Eplp(Z4)],

for the centered projection df in H, wherep : z € Z — k(z,-) € H is the feature map associated
with k. For two elements: andg of H we write « ® [ for their tensor product, namely the linear
map of H onto itself such that ® 5 : x — («, z)% 5. Using the notations of [14] we write

C=Eyp: @], D=Eplp ® bpry1],

respectively for the covariance and autocovariance ofratds ¢,. Both C' and D are linear op-
erators ofH{ by weak stationarity [14, Definition 2.4] df;).cz, which can be deduced from the
second-order stationarity df. The following definitions introduce two criterions whicliantify
how related two successive evaluations¥;) are.

Definition 1 (Autocorrelation Factor [10]). Given an element « of H such that (a, Ca)y > 0,
~(«) isthe absolute autocorrelation of «(Z) of order 1,

(@, Do)

V(@) = [corr(a(Zt), a(Zi41)| = W-

)

The condition(a, Ca)y > 0 requires thavar a(¢;) is not zero, which excludes constant or van-
ishing functions on the support of the densitydef Note also that defining requires no other
assumption than second-order stationarity’of



If we assume further thatis an autoregressive Hilbertian process of order 1 [14], ABIfbr short,
there exists a compact operator H — H and aH strong white noisk(e;);cz such that

Gi41 = p P + &4

In their seminal work, Box and Tiao [11] quantify the prediaility of the linear functionals of
a vector autoregressive process in terms of variance rafib® following definition is a direct
adaptation of that principle to autoregressive processeslbert spaces. From [14, Theorem 3.2]
we have thaC = p Cp* + C. where for any linear operatot of H, A* is its adjoint.

Definition 2 (Predictability in the Box-Tiao sense[11]). Given an element o of H such that
(a, Cayy > 0, the predictability A(«) isthe quotient

o) = var{a, p ¢t )n _ (a, pC p*a)y _ (a,DC’lD*a>H. @

V&I‘<OL, ¢t>'H <Oé, CO‘>'H <Oé, CO‘>'H

The right hand-side of Equation (2) follows from the factttp@® = D andp* = C~1D* [14],
the latter equality being always valid irrelevant of thestaice of”—! on the whole of+ as noted
in [15]. Combining these two equalities give€'p* = DC ' D*.

Both~ and) are convenient ways to quantify for a given functipof H the independence ¢ Z;)
with its immediate past. We provide in this paragraph a comrepresentation fox and~. For any
linear operatord of H and any non-zero elementof H write R(A, =) for the Rayleigh quotient
A
R(A,z) = AT
<x7 x>7'l
We use the notations in [12] and introduce the normalizedszmmvariance (or rather auto-
covariance in the context of this paper) operaidr= C-:DC~%. Note that for any skew-

symmetric operator, thatisA = —A*, we have thatz, Az)y = (A*z,z)y = —(Az,2)x =0
and thusR (4, z) = R(242-, z). Both A andy applied on a functioa € H can thus be written as
(o) = ‘R (V+ 4 ,C;a) ’ , Ma)=R(VV*,C2a).

As detailed in Section 4, our goal is to estimate function®ifrom data such that they have either
low v or A values. Minimizing\ is equivalent to solving a generalized eigenvalue problaugh
the Courant-Fisher-Weyl theorem. Minimizings a more challenging problem since the operator
V + V* is not necessarily positive definite. The S-lemma from adribreory [16, Appendix B.2]
can be used to cast the problem of estimating functions withl as a semi-definite program. In
practice the eigen-decompositionldf+ V* provides good approximate answers.

The formulation ofy and\ as Rayleigh quotients is also useful to obtain the asymptotivergence
of their empirical counterparts (Section 3) and to draw carigons with kernel-CCA (Section 5).

3 Asymptotics and matrix expressions for empirical estimatrs of v and \

3.1 Asymptotic convergence of the normalized cross-covamce operatorV’

The covariance operat6r and cross-covariance operafoican be estimated through a finite sample
of points zg, - - - , z,, translated into a sample of centered points: - - , ¢, in H, wheregp; =

P(2i) — g > ©(25). We write

n—1

1 < 1
C, = i ¢y, Dp = i @ i1,
n_lgb ® ¢ n_1;<z> 2 di1

for the estimates af’ and D respectively which converge in Hilbert-Schmidt norm [1E§timators
for « or A require approximatin@"%, which is a typical challenge encountered when studying

"namely a sequencg:).cz of H random variables such that () < E||s;||> = ¢ Ee; = 0 and the
covariance’., is constant, equal t@%; (ii) (e:) is a sequence of i.i.#-random variables



ARH(1) processes and more generally stationary lineargases in Hilbert spaces [14, Section
8]. This issue is addressed in this section through a Tikixeagularization, that is considering a
sequence of positive numbetswe write

Vo = (Cp + €u) 2Dy (Cp + €,1) 2,
for the empirical estimate df regularized by,,. We have already assumed ttiais bounded and
continuous. The convergencedf to V' in norm is ensured under the additional conditions below

Theorem 3. Assume that V' is a compact operator, hm 0 € = 0 and lim M = 0. Then

n—oo

writing || - ||s for the Hilbert-Schmidt operator norm, hm IV, = Vs =0.

Proof. The structure of the proof is identical to that of of [12, Them 1] except that the i.i.d
assumption does not hold here. In [12], the ndiih — V|| s is upper-bounded by the two terms
[V, = (C+ enI)"2D(C 4 €,1) 2 ||s + || (C + €xI)"2D(C 4 €,1)2 — V|| s. The second term
converges under the assumption that— 0 [12, Lemma 7] while the first term decreases at a rate
that is proportional to the rates ¢€,, — C||s and||D,, — D||s. With the assumptions above [14,
Corollary4.1,Theorem 4.8] gives us tHat,, — C||s = O((*22)z) and||D,,— D||s = O((}&2)3).

We use this result to substitute the latter rate to the faaterobtained for i.i.d observations in [12,
Lemma 5] and conclude the proof. O

3.2 Empirical estimators and matrix expressions

Givena € H, consider the following estimators 9fa) andA(«) defined in Equations (1) and (2),

Vo + Vi 1 (e, 3(Dn + Djy)e) x|
n =R = ) Cn nl = ,

(@) ‘ < L (Cote )m) Lo D
<a7 Dn(Cn + €nI)71D:zO‘>H

(o, (Cp, + en) )y ’
which converge to the adequate values through the convesgef(C,, + enI)%, V., + VF and
V., V¥. Then observationss, ..., ¢, which define the empirical estimators above also span a
subspacét,, in ‘H which can be used to estimate white functionals. Giwea H,, we use any
arbitrary decomposition = " | a;¢;. We write K for the originaln + 1 x n 4+ 1 Gram matrix
[k(zi, 2;))i,; andK for its centered counterpalf = (I, — 21, ) K (1, — 2 15.0) = [(¢i, &5)w]i -
Because of the centeringan{ ¢y, . . ., ¢, } is actually equal tepan{ ¢, . .., ¢, } and we will only

use then x n matrix K obtained by removing the first row and columniof

An(@) = R(VLVE (C + €p])7 ) =

For an x n matrix M, we write M_; for then x n — 1 matrix obtained by removing th& column
of M. With these notations),, and~,, take the following form when evaluated ane H,,,

Vn(a) = Tn <Z Z(bz) _ 1 |a ( K2, + K—IK,n)a|

— al(K2 + ne,K)a ’

=\ Xn:amﬁi = alK K2, (K + nE"K)ilenKzla.
aT(K? + ne, K)a
If €,, follows the assumptions of Theorem 3, bathand\,, converge toy and A pointwise in*,,.

4 Selecting white functionals in practice

Both v(«) and A(«) are proxies to quantify the independence of successivenaigmsa(Z;).
Namely, functions with lowy and\ are likely to have low autocorrelations and be stationargnvh
evaluated on the proce&s and the same can be said of functions with tgyand),, asymptotically.
However, whertH is of high or infinite dimension, the direct minimization gf and A, is likely
to result in degenerate functionshich may have extremely low autocovariancezbut very low
variance as well. We select white functionals having thadéroff in mind, such that botfay, C, a)

is not negligible and, or A\ are low at the same time.

2Since the rank of operatdf;, is actuallyn — 1, we are even guaranteed to findf), a minimizer fory,,
and another fol,, with respectively zero predictability and zero absoluteearrelation.



4.1 Enforcing a lower bound on{«, Ca)y

We consider the following strategy: following the approacilined in [14, Section 8] to estimate
autocorrelation operators, and more generally in [17] endbntext of kernel methods, we restrict
‘H.,, to the directions spanned by thdirst eigenfunctions of the operat6t,. Namely, suppos€’,
can be decomposed 65 = Z?:l gie; ® e; wheree; is an orthonormal basis of eigenvectors with
eigenvalues in decreasing ordgr> go > --- > g, > 0. Forl < p < n We write H,, for the
span{es, ..., ey} Of thep first eigenfunctions. Any functiory in H,, is such tha{w, Cr,a)1 > g,
and thus allows us to keep the empirical varianca(@f,) above a certain threshold. LEf, be the

n x p coordinate matrix of eigenvectdrsy, . . ., ¢, expressed in the family of vectorsgy, .. ., ¢y,
andG thep x p diagonal matrix of termsgs, ..., g,). We consider now a functioi = > ¥ b;e;

in H,, and note that

_1PTEI(K KT, + K KZ,)E,b|

n : 3
w8 =3 b7 (G + ne,I)b 3
b"ETK_, K7, (K2 + ne, K)"'K_, KT, E,b
An(B) = —2 T 2 (4)
bT (G + ne, I)b

We define two different functions 6f,,, Smac and fgr, as the the functionals ik, whose coeffi-
cients correspond to the eigenvector with minimal (abs)latgenvalue of the two Rayleigh quo-
tients of Equations (3) and (4) respectively. We call thesefionals the minimum autocorrelation
(MAC) and Box-Tiao (BT) functionals of . Below is a short recapitulation of all the computational
steps we have described so far.

e Input: n + 1 observationsgy, - -- , 2, € Z of atime-series, a p.d. kernek on Z x Z
and a parameter (we propose an experimental methodology tozsiet Section 6.3)

e Output: a real-valued functiorf(-) = "7 ¢;k(z;, -) that is a white functional of.
e Algorithm :

— Compute thén + 1) x (n + 1) kernel matrixK’, center it and drop the first row and
column to obtairK.

— StoreK’s p first eigenvectors and eigenvalues in matriteanddiag (v, - - - ,vp).

— ComputeE, = Udiag(vy, -+ ,v,) "% andG = X diag(vy, -+, vp).

— Compute the matrix numeratd¥f and denominatadD of either Equation (3) or Equa-
tion (4) and recover the eigenvectomwith minimal absolute eigenvalue of the gener-
alized eigenvalue problefiN, D)

— Seta = pr € R"”. SetCQ = —% 2711 a; andCi =a; — %Z? a;

5 Relation to other methods and discussion

The methods presented in this work offer numerous paraléts other kernel methods such as
kernel-PCA or kernel-CCA which, similarly to the BT and MAGrictionals, provide a canonical
decomposition of4,, into n ranked eigenfunctions.

When Z is finite dimensional, the authors of [18] perform PCA on aetigeries sampley, .. ., z,
and consider its eigenvector with smallest eigenvalue tealeointegrated relationships in the pro-
cessZ;. Their assumption is that a linear mapping Z, that has small variance on the whole
sample can be interpreted as an integrated relationshipoégh the criterion considered by PCA,
namely variance, disregards the temporal structure ofbiserwvations and only focuses on the val-
ues spanned by the process, this technique is useful todget &ll non-stationary components of
Z;. On the other hand, kernel-PCA [2], a non-parametric extersf PCA, can be naturally applied
for anomaly detection in an i.i.d. setting [5]. It is thusumal to use kernel-PCA, namely an eigen-
function with low variance, and hope that it will have low acibrrelation to define white functionals
of a process. Our experiments show that this is indeed treeaas in agreement with [5] seem to

®Recall that if(u;, v;) are eigenvalue and eigenvector pair&afthe matrixE of coordinates of eigenfunc-

tionse; expressed in the points¢s, . . ., ¢, can be written ab) diag(vi’m) and the eigenvalueg are equal
to Z if taken in the same order[2].



indicate that the eigenfunctions which lie at the very lowl efthe spectrum, usually discarded as
noise and less studied in the literature, can prove usef@rfomaly detection tasks.

kernel-CCA and variations such as NOCCO [12] are also dyreelated to the BT functional.
Indeed, the operatdr V* used in this work to defing is used in the context of kernel-CCA to
extract one of the two functions which maximally correlat® tsamples, the other function being
obtained fromV*V. Notable differences between our approach and kernel-OG@A &k in the
context of this papel/ is anautocorrelation operator while the authors of [12] consid®rmalized
covariancesbetween two different samples; 2. kernel-CCA assumes dmapkes are independently
and identically drawn, which is definitely not the case far Bl functional; 3. while kernel-CCA
maximizes the Rayleigh quotient &f1/*, we look for eigenfunctions which lie at the lower end of
the spectrum of the same operator. A possible extensionrafork is to look for two functionalg
andg which, rather than maximize the correlation of two distisainples as is the case in CCA, are
estimated taninimize the correlation betweeg(z;) and f(z:+1). This direction has been explored
in [19] to shed a new light on the Box-Tiao approach in thedidiimensional case.

6 Experimental results using a population dynamics model

6.1 Generating sample paths polluted by anomalies

We consider in this experimental section a simulated dyoalrsystem perturbed by arbitrary
anomalies. To this effect, we use the Lotka-Volterra equistito generate time-series quantify-
ing the populations of different species competing for cammesources. Fdf species, the model
tracks the population leveY, ; at timet of each specieg which is a number bounded betwegn
and1. Values of0 and1 account respectively for the extinction and the saturdgerls of each
species. Writing for the coordinate-wise kronecker product of vectors anttioes andh > 0 for

a discretization step, the population vectr < [0, 1]° follows the discrete-time dynamic equation

1
Xt+1 :Xt + ETOXtO (]lS—AXt)

We consider the following coefficients introduced in [20]iethare known to yield chaotic behavior,

1 1 109 152 0

0.72 0 1 44 1.36
S=4, r=|153] A=233 o 1 47 |

1.27 121 51 .35 1

which can be turned into a stochastic system by adding dn $tandard Gaussian noisg
1
Zt+1 = Zt+ ETOZtO(]Ll—AZt)"'O'sEt. (5)

Whenever the equations generate coordinates bélomabovel, the violating coordinates are set
to 0 + w or 1 — u respectively, where is uniform over(0, 0.01].

We consider trajectories of length 800 of the Lotka-Volesystem described in Equation (5). For
each experiment we draw a starting paifatrandomly with uniform distribution off), 1], discard
the 10 first iterations and generate 400 iterations follgwiiguation (5). Following this we select
randomly (uniformly over the remaining 400 steps) 40 tinagisty, - - - , t490 Where we introduce
a random perturbation &, such thatZ,,, rather than following the dynamic of Equation (5) is
randomly perturbed by a noisg chosen uniformly ovef—1, 1}* with a magnituder;, that is

Ztk = Ztk71 + 0'55%,1.

For all other timestampg, < t < tr+1, the system follows the usual dynamic of Equation (5).
Anomalies violate the usual dynamics in two different wafst, they ignore the usual dynamical
equations and the current location of the process to crestiedid purely random increments; second,
depending on the magnitude &f relative too., such anomalies may induce unusual jumps.

6.2 Estimation of white functionals and other alarm functions

We compare in this experiment five techniques to detect tbhenaties described above: the Box-
Tiao functional and a variant described in the paragrapbvipehe minimal autocorrelation func-
tional, a one-class SVM and the low-variance functionalrafiby the(p + 1) eigenfunction of
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Figure 1: The figure on the top plots a sample path of lengtha2@4-dimensional Lotka-Volterra
dynamic system with perturbations drawn with = .01 andos = 0.02. The data is split between
80 regular observations and 120 observations polluted bgnbdnalies. All four functionals have
been estimated using = 1, and we highlight by a red dot the values they take when an alyom
is actually observed. The respective weights associateddb of the 80 training observations are
displayed on the right of each methodology.

the empirical covarianc€’,, given by kernel-PCA. All techniques are parameterized kgraelk.
Writing Az; = z; — z;_1, we use the following mixture of kerneis:

Bz, 27) = pe 0I5 851" 4 (1 — =10l (6)
with p € [0, 1]. The first term ink discriminates observations according to their locatioffjr]*.
Whenp = 0.5, k accounts for both the state of the system and its most resergments, while
only increments are considered for= 1. Anomalies can be detected with both criterions, since
they can be tracked down when the process visits unusuah®gr undergoes brusque and atypical
changes. The kernel widths have been set arbitrarily.

We discuss in this paragraph a variant of the BT functionahil®Mthe MAC functional is defined
and estimated in order to behave as closely as possibledomani.d noise, the BT functionalgr

is tuned to be stationary as discussed in [11]. In order taiok# white functional fronBgr it is
possible to model the time serifgr(z;) as an unidimensional autoregressive model, that is egtimat
(on the training sample again) coefficientsr,, . . ., rq such that

q
Ber(ze) =Y rifer(zei) + 5.

i=1

Both the order; and the autoregressive coefficients can be estimated omaining sample with
standard AR packages, using for instance Schwartz’s icnitéo selecy. Note that although(Z;)

is assumed to be ARH(1), this does not necessarily trarislatéhe fact that the real-valued process
Be1(Z) = (BeT, 1)1 is AR(L) as pointed out in [14, Theorem 3.4]. In practice hegrave use
the residuals®’ = fg7(2) — Zle r:0s7(2t—;) to define theBox-Tiao residuals functional which

we write OgT.
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Figure 2: The three successive plot stand for three difteralues ofp = 0,0.5, 1. The detection
rate naturally increases with the size of the anomaly, tegient that the task becomes only a gap
detection problem whess becomes closer t0.05. Functionalssgr, Gt and Gmac have a similar
performance and outperform other techniques when the saslost difficult andr;s is small.

6.3 Parameter selection methodology and numerical results

The BT functional@Bgt and its residualggr, the MAC functionfmae the one-class SVl\gfochM
and thep + 1™ eigenfunctiore,,, ; are estimated on a set 460 observations. We setthrough the
rule that thep first directions must carry at least 98% of the total variamio€,,, that isp is the first
integer suchthat™?_, g; > 0.98->""_, ¢;. We fix thev paramater of the ocSVM ta 1. The BT and
MAC functionals additionally require the use of a regulatian terme,, which we select by finding
the best ridge regressor ¢f, 1 given¢, through a 4-fold cross validation procedure on the training

set. Forfgt, BT, fmac and the KPCA functionat,; we use their respective empirical mean
and variance on the training set to rescale and whiten their output ondgbeset, namely consider
values(f(z) — p)/o. Although more elaborate anomaly detection schemes onusudimensional
time-series might be considered, for the sake of simpligi¢ytreat directly these raw outputs as
alarm scores.

Having on the one hand the correct labels for anomalies amddbres for all detectors, we vary
the threshold at which an alarm is raised to produce ROC sulie use the area under the curve
of each method on each sample path as a performance meastinatfpath. Figure 1 provides

a summary of the performance of each method on a unique saraffieof 200 observations and
10 anomalies. Perturbation parameters are set suclrthat 0.01 andos varies betweed.005
and0.055. For each coupléo.,o5) we generate 500 draws and compute the mean AUC of each
technique on such draws. We report in Figure 2 these avenagiddrmances for three different
choices of the kernel, namely three different valuessfas defined in Equation (6).

6.4 Discussion

In the experimental setting, anomalies can be characteageunusual increments between two
successive states of an otherwise smooth dynamical systeromalies are unusual due to their
size, controlled byrs, and their directions, sampled §n-1,1}*. When the step; is relatively
small, it is difficult to flag correctly an anomaly without fak into account the system’s dynamic
as illustrated by the relatively poor performance of the\WdSand the kPCA compared to the
BT, BTres and MAC functions. On the contrary, whenis big, anomalies can be more simply
discriminated as big gaps. The methods we propose do natrpeds well as the ocSVM in such a
setting. We can hypothesize two reasons for this: first,evuibctionals may be less useful in such
a regime that puts little emphasis on dynamics than a sing8&/® with adequate kernel. Second,
in this study the BT and MAC functions flag anomalies whenareevaluation goes outside of a
certain bounding tube. More advanced detectors of a dewiati change from normality, such as
CUSUM [21], might be studied in future work.
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