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Abstract
In most online learning algorithms, the weights assigned to the misclassified ex-
amples (or support vectors) remain unchanged during the entire learning process.
This is clearly insufficient since when a new misclassified example is added to
the pool of support vectors, we generally expect it to affect the weights for the
existing support vectors. In this paper, we propose a new online learning method,
termed Double Updating Online Learning, or DUOL for short. Instead of only
assigning a fixed weight to the misclassified example received in current trial, the
proposed online learning algorithm also tries to update the weight for one of the
existing support vectors. We show that the mistake bound can be significantly im-
proved by the proposed online learning method. Encouraging experimental results
show that the proposed technique is in general considerably more effective than
the state-of-the-art online learning algorithms.

1 Introduction

Online learning has been extensively studied in the machine learning community (Rosenblatt, 1958;
Freund & Schapire, 1999; Kivinen et al., 2001a; Crammer et al., 2006). Most online learning
algorithms work by assigning a fixed weight to a new example when it is misclassified. As a result,
the weights assigned to the misclassified examples, or support vectors, remain unchanged during the
entire process of learning. This is clearly insufficient because when a new example is added to the
pool of support vectors, we expect it to affect the weights assigned to the existing support vectors
received in previous trials.

Although several online algorithms are capable of updating the example weights as the learning
process goes, most of them are designed for the purposes other than improving the classification
accuracy and reducing the mistake bound. For instance, in (Orabona et al., 2008; Crammer et al.,
2003; Dekel et al., 2005), online learning algorithms are proposed to adjust the example weights
in order to fit in the constraint of fixed number of support vectors; in (Cesa-Bianchi & Gentile,
2006), example weights are adjusted to track the drifting concepts. In this paper, we propose a new
formulation for online learning that aims to dynamically update the example weights in order to
improve the classification accuracy as well as the mistake bound. Instead of only assigning a weight
to the misclassified example that is received in current trial, the proposed online learning algorithm
also updates the weight for one of the existing support vectors. As a result, the example weights
are dynamically updated as learning goes. We refer to the proposed approach as Double Updating
Online Learning, or DUOL for short.

The key question in the proposed online learning approach is which one of the existing support vec-
tors should be selected for weight updating. To this end, we employ an analysis for double updating
online learning that is based on the recent work of online convex programming by incremental dual
ascent (Shalev-Shwartz & Singer, 2006). Our analysis shows that under certain conditions, the pro-
posed online learning algorithm can significantly reduce the mistake bound of the existing online
algorithms. This result is further verified empirically by extensive experiments and comparison to
the state-of-the-art algorithms for online learning.
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The rest of this paper is organized as follows. Section 2 reviews the related work for online learning.
Section 3 presents the proposed “double updating” approach to online learning. Section 4 gives our
experimental results. Section 5 sets out the conclusion and addresses some future work.

2 Related Work
Online learning has been extensively studied in machine learning (Rosenblatt, 1958; Crammer &
Singer, 2003; Cesa-Bianchi et al., 2004; Crammer et al., 2006; Fink et al., 2006; Yang et al., 2009).
One of the most well-known online approaches is the Perceptron algorithm (Rosenblatt, 1958; Fre-
und & Schapire, 1999), which updates the learning function by adding a new example with a constant
weight into the current set of support vectors when it is misclassified. Recently a number of online
learning algorithms have been developed based on the criterion of maximum margin (Crammer &
Singer, 2003; Gentile, 2001; Kivinen et al., 2001b; Crammer et al., 2006; Li & Long, 1999). One
example is the Relaxed Online Maximum Margin algorithm (ROMMA) (Li & Long, 1999), which
repeatedly chooses the hyper-planes that correctly classify the existing training examples with the
maximum margin. Another representative example is the Passive-Aggressive (PA) method (Cram-
mer et al., 2006). It updates the classification function when a new example is misclassified or its
classification score does not exceed some predefined margin. Empirical studies showed that the
maximum margin based online learning algorithms are generally more effective than the Perceptron
algorithm. However, despite the difference, most online learning algorithms only update the weight
of the newly added support vector, and keep the weights of the existing support vectors unchanged.
This constraint could significantly limit the effect of online learning.

Besides the studies for regular online learning, several algorithms are proposed for online learning
with fixed budget. In these studies, the total number of support vectors is required to be bounded
either by a theoretical bound or by a manually fixed budget. Example algorithms for fixed budget
online learning include (Weston & Bordes, 2005; Crammer et al., 2003; Cavallanti et al., 2007;
Dekel et al., 2008). The key idea of these algorithms is to dynamically update the weights of the
existing support vectors as a new support vector is added, and the support vector with the least weight
will be discarded when the number of support vectors exceeds the budget. The idea of discarding
support vectors is also used in studies (Kivinen et al., 2001b) and (Cheng et al., 2006). In a very
recently proposed method (Orabona et al., 2008), a new “projection” approach is proposed for online
learning that ensures the number of support vectors is bounded. Besides, in (Cesa-Bianchi & Gentile,
2006), an online learning algorithm is proposed to handle the drifting concept, in which the weights
of the existing support vectors are reduced whenever a new support vector is added. Although these
online learning algorithms are capable of dynamically adjusting the weights of support vectors, they
are designed to either fit in the budget of the number of support vectors or to handle drifting concepts,
not to improve the classification accuracy and the mistake bound.

The proposed online learning algorithm is closely related to the recent work of online convex pro-
gramming by incremental dual ascent (Shalev-Shwartz & Singer, 2006). Although the idea of si-
multaneously updating the weights of multiple support vectors was mentioned in (Shalev-Shwartz
& Singer, 2006), no efficient updating algorithm was explicitly proposed. As will be shown later, the
online algorithm proposed in this work shares the same computational cost as that of conventional
online learning algorithms, despite the need of updating weights of two support vectors.

3 Double Updating to Online Learning
3.1 Motivation
We consider an online learning trial t with an incoming example that is misclassified. Let κ(·, ·) :
Rd × Rd → R be the kernel function used in our classifier. Let D = {(xi, yi), i = 1, . . . , n}
be the collection of n misclassified examples received before the trial t, where xi ∈ Rd and yi ∈
{−1,+1}. We also refer to these misclassified training examples as “support vectors”. We denote
by α = (α1, . . . , αn) ∈ [0, C]n the weights assigned to the support vectors in D, where C is a
predefined constant. The resulting classifier, denoted by f(x), is expressed as

f(x) =
n∑

i=1

αiyiκ(x, xi) (1)

Let (xa, ya) be the misclassified example received in the trial t, i.e., yaf(xa) ≤ 0. In the conven-
tional approach for online learning, we simply assign a constant weight, denoted by β, to (xa, ya),
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and the resulting classifier becomes

f ′(x) = βyaκ(x, xa) +
n∑

i=1

αiyiκ(x, xi) = βyaκ(x, xa) + f(x) (2)

The shortcoming with the conventional online learning approach is that the introduction of the new
support vector (xa, ya) may harm the classification of existing support vectors in D, which is re-
vealed by the following proposition.
Proposition 1. Let (xa, ya) be an example misclassified by the current classifier f(x) =∑n

i=1 αiyiκ(x, xi), i.e., yaf(xa) < 0. Let f ′(x) = βyaκ(x, xa) + f(x) be the updated classi-
fier with β > 0. There exists at least one support vector xi ∈ D such that yif(xi) > yif

′(xi).

Proof. It follows from the fact that: ∃xi ∈ D, yiyaκ(xi, xa) < 0 when yaf(xa) < 0.

As indicated by the above proposition, when a new misclassified example is added to the classi-
fier, the classification confidence of at least one support vector will be reduced. In the case when
yaf(xa) ≤ −γ, it is easy to verify that there exists some support vector (xb, yb) who satisfies
βyaybk(xa, xb) ≤ −γ/n; at the meantime, it can be shown that when the classification confidence
of (xb, yb) is less than γ/n, i.e., ybf(xb) ≤ γ/n, such support vector will be misclassified after
the classifier is updated with the example (xa, ya). In order to alleviate this problem, we propose
to update the weight for the existing support vector whose classification confidence is significantly
affected by the new misclassified example. In particular, we consider a support vector (xb, yb) ∈ D
for weight updating if it satisfies the following two conditions

• ybf(xb) ≤ 0, i.e., support vector (xb, yb) is misclassified by the current classifier f(x)
• k(xb, xa)yayb ≤ −ρ where ρ ≥ 0 is a predefined threshold, i.e., support vector (xb, yb)

“conflicts” with the new misclassified example (xa, ya).

We refer to the support vector satisfying the above conditions as auxiliary example. It is clear that
by adding the misclassified example (xa, ya) to classifier f(x) with weight β, the classification score
of (xb, yb) will be reduced by at least βρ, which could lead to the misclassification of the auxiliary
example (xb, yb). To avoid such a mistake, we propose to update the weights for both (xa, ya) and
(xb, yb) simultaneously. In the next section, we show the details of the double updating algorithm
for online learning, and the analysis for mistake bound.

Our analysis follows closely the previous work on the relationship between online learning and
the dual formulation of SVM (Shalev-Shwartz & Singer, 2006), in which the online learning is
interpreted as an efficient updating rule for maximizing the objective function in the dual form of
SVM. We denote by ∆t the improvement of the objective function in dual SVM when adding a new
misclassified example to the classification function in the t-th trial. If an online learning algorithmA
is designed to ensure that all ∆t is bounded from the below by a positive constant ∆, then the number
of mistakes made by A when trained over a sequence of trials (x1, y1), . . . , (xT , yT ), denoted by
M , is upper bounded by:

M ≤ 1
∆

(
min

f∈Hκ

1
2
‖f‖2Hκ

+ C
T∑

i=1

`(yif(xi))

)
(3)

where `(yif(xi)) = max(0, 1 − yif(xi)) is the hinge loss function. In our analysis, we will show
that ∆, which is referred to as the bounding constant for the improvement in the objective function,
could be significantly improved when updating the weight for both the newly misclassified example
and the auxiliary example.

For the remaining part of this paper, we denote by (xb, yb) an auxiliary example that satisfies the two
conditions specified before. We slightly abuse the notation by using α = (α1, . . . , αn−1)) ∈ Rn−1

to denote the weights assigned to all the support vectors in D except (xb, yb). Similarly, we denote
by y = (y1, . . . , yn−1) ∈ [−1, 1]n−1 the class labels assigned to all the examples in D except for
(xb, yb). We define

sa = κ(xa, xa), sb = κ(xb, xb), sab = κ(xa, xb), wab = yaybsab. (4)
According to the assumption of auxiliary example, we have wab = sabyayb ≤ −ρ. Finally, we de-
note by γ̂b the weight for the auxiliary example (xb, yb) that is used in the current classifier f(x), and
by γa and γb the updated weights for (xa, ya) and (xb, yb), respectively. Throughout the analysis,
we assume κ(x, x) ≤ 1 for any example x.
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3.2 Double Updating Online Learning

Recall an auxiliary example (xb, yb) should satisfy two conditions (I) ybf(xb) ≤ 0, and (II) wab ≤
−ρ. In addition, the new example (xa, ya) received in the current iteration t is misclassified, i.e.,
yaf(xa) ≤ 0. Following the framework of dual formulation for online learning, the following
lemma shows how to compute ∆t, i.e., the improvement in the objective function of dual SVM by
adjusting weights for (xa, ya) and (xb, yb).
Lemma 1. The maximal improvement in the objective function of dual SVM by adjusting weights
for (xa, ya) and (xb, yb), denoted by ∆t, is computed by solving the following optimization problem:

∆t = max
γa,∆γb

{h(γa,∆γb) : 0 ≤ γa ≤ C, 0 ≤ ∆γb ≤ C − γ̂b} (5)

where

h(γa, ∆γb) = γa(1− yaf(xa)) + ∆γb(1− ybf(xb))− sa

2
γ2

a −
sb

2
∆γ2

b − wabγa∆γb (6)

Proof. It is straightforward to verify that the dual function of min
ft∈Hκ

1
2‖ft‖2Hκ

+C
∑t

i=1 `(yift(xi)),

denoted by Dt(γ1, . . . , γt), is computed as follows,

Dt(γ1, . . . , γt) =
t∑

i=1

γi −
t∑

i=1

γiyift(xi) +
1
2
‖ft‖2Hκ

(7)

where 0 ≤ γi ≤ C, i = 1, . . . , t and ft(·) =
∑t

i=1 γiyiκ(·, xi) is the current classifier. Thus,
h(γa,∆γb) = Dt(γ1, . . . , γ̂b + ∆γb, . . . , γt−1, γa)−Dt−1(γ1, . . . , γ̂b, . . . , γt−1)

=
t−1∑

i=1

γi + ∆γb + γa −
(

t−1∑

i=1

γiyift(xi) + ∆γbybft(xb) + γayaft(xa)

)
+

1
2
‖ft‖2Hκ

−
(

t−1∑

i=1

γi −
t−1∑

i=1

γiyift−1(xi) +
1
2
‖ft−1‖2Hκ

)

Using the relation ft(x) = ft−1(x) + ∆γbybκ(x, xb) + γayaκ(x, xa), we have

h(γa,∆γb) = γa(1− yaft−1(xa)) + ∆γb(1− ybft−1(xb))− sa

2
γ2

a −
sb

2
∆γ2

b − wabγa∆γb

Finally, we need to show ∆γb ≥ 0. Note that this constraint does not come directly from the box
constraint that the weight for example (xb, yb) is in the range [0, C], i.e., γ̂b + ∆γb ∈ [0, C]. To this
end, we consider the part of h(γa, ∆γb) that is related to ∆γb, i.e.,

g(∆γb) = ∆γb(1− ybft−1(xb)− wabγa)− sb

2
∆γ2

b

Since wab ≤ −ρ and ybft−1(xb) ≤ 0, it is clear that ∆γb ≥ 0 when maximizing g(∆γb), which
results in the constraint ∆γb ≥ 0.

The following theorem shows the bound for ∆ when C is sufficiently large.
Theorem 1. Assume C > γ̂b + 1/(1 − ρ) for the selected auxiliary example (xb, yb). We have the
following bound for ∆

∆ ≥ 1
1− ρ

(8)

Proof. Using the fact sa, sb ≤ 1, γa, ∆γb ≥ 0, yaf(xa) ≤ 0, ybf(xb) ≤ 0, and wa,b ≤ −ρ, we
have

h(γa, ∆γb) ≥ γa + ∆γb − 1
2
γ2

a −
1
2
∆γ2

b + ργa∆γb

Thus, ∆ is bounded as

∆ ≥ max
γb∈[0,C],∆γb∈[0,C−γ̂]

γa + ∆γb − 1
2
(γ2

a + ∆γ2
b ) + ργa∆γb

Under the condition that C > γ̂b + 1/(1 − ρ), it is easy to verify that the optimal solution for the
above problem is γa = ∆γb = 1/(1− ρ), which leads to the result in the theorem.
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We now consider the general case, where we only assume C ≥ 1. The following theorem shows the
bound for ∆ in the general case.
Theorem 2. Assume C ≥ 1. We have the following bound for ∆, when updating the weights for the
new example (xa, ya) and the auxiliary example (xb, yb)

∆ ≥ 1
2

+
1
2

min
(
(1 + ρ)2, (C − γ̂)2

)

Proof. By setting γa = 1, we have h(γa,∆γb) computed as

h(γa = 1, ∆γb) ≥ 1
2

+ (1 + ρ)∆γb − 1
2
∆γ2

b

Hence, ∆ is lower bounded by

∆ ≥ 1
2

+ max
∆γb∈[0,C−γ̂]

(
(1 + ρ)∆γb − 1

2
∆γ2

b

)
≥ 1

2
+

1
2

min
(
(1 + ρ)2, (C − γ̂)2

)

Since we only have ∆ ≥ 1/2 if we only update the weight for the new misclassified example
(xa, ya), the result in theorem 2 indicates an increase in ∆ when updating the weight for both
(xa, ya) and the auxiliary example (xb, yb). Furthermore, when C is sufficiently large, as indicated
by Theorem 1, the improvement in ∆ can be very significant.

The final remaining question is how to identify the auxiliary example (xb, yb) efficiently, which
requires efficiently updating the classification score yif(xi) for all the support vectors. To this
end, we introduce a variable for each support vector, denoted by f i

t , to keep track the classifi-
cation score. When a new support vector (xa, ya) with weight γa is added to the classifier, we
update the classification score f i

t−1 by f i
t ← f i

t−1 + yiγayaκ(xi, xa), and when the weight of
an auxiliary example (xb, yb) is updated from γ̂b to γb, we update the classification score f i

t−1 by
f i

t ← f i
t−1 +yi(γb− γ̂b)ybκ(xi, xb).This updating procedure ensures that the computational cost of

double updating online learning is O(n), where n is the number of support vectors, similar to that
of the kernel online learning algorithm. Figure 1 shows the details of the DUOL algorithm.

Finally, we show a bound on the number of mistakes by assuming C is sufficiently large.
Theorem 3. Let (x1, y1), . . . , (xT , yT ) be a sequence of examples, where xt ∈ Rn, yt ∈ {−1,+1}
and κ(xt, xt) ≤ 1 for all t. And assume C is sufficiently large. Then for any function f in Hκ, the
number of prediction mistakes M made by DUOL on this sequence of examples is bounded by:

M ≤ 2

(
min

f∈Hκ

1
2
‖f‖2Hκ

+ C
T∑

i=1

`(yif(xi))

)
− 1 + ρ

1− ρ
Md(ρ) (9)

where Md(ρ) is the number of mistakes when there is an auxiliary example, which depends on the
threshold ρ and the dataset (Md(ρ) is actually a decreasing function with ρ).

Proof. We denote by Ms the number of mistakes when we made a single update without finding
appropriate auxiliary example. Using Theorem 1, we have the following inequality,

1
2
Ms +

1
1− ρ

Md(ρ) ≤
(

min
f∈Hκ

1
2
‖f‖2Hκ

+ C
T∑

i=1

`(yif(xi))

)
(10)

Plugging M = Ms + Md into the equation above, we can get

M ≤ 2

(
min

f∈Hκ

1
2
‖f‖2Hκ

+ C
T∑

i=1

`(yif(xi))

)
− 1 + ρ

1− ρ
Md(ρ) (11)

It is worthwhile pointing out that although according to Theorem 3, it seems that the larger the value
of ρ the smaller the mistake bound will be. This however is not true since Md(ρ) is in general a
monotonically decreasing function in ρ. As a result, it is unclear if Md(ρ) × (1 + ρ)/(1 − ρ) will
increase when ρ is increased.
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Algorithm 1 The DUOL Algorithm (DUOL)
PROCEDURE
1: Initialize S0 = ∅, f0 = 0;
2: for t=1,2,. . . ,T do
3: Receive new instance xt
4: Predict ŷt = sign(ft−1(xt));
5: Receive label yt ;
6: lt = max{0, 1− ytft−1(xt)}
7: if lt > 0 then
8: wmin = 0
9: for ∀i ∈ St−1 do
10: if (fi

t−1 ≤ 0) then
11: if (yiytk(xi, xt) < wmin) then
12: wmin = yiytk(xi, xt);
13: (xb, yb) = (xi, yi);/*auxiliary example*/
14: end if
15: end if
16: end for
17: ft

t−1 = ytft−1(xt);
18: St = St−1 ∪ {t};
19: if (wmin ≤ −ρ) then

20: γt = min(C, 1
1−ρ

);

21: γb = min(C, γ̂b + 1
1−ρ

);
22: for ∀i ∈ St do
23: fi

t ← fi
t−1 + yiγtytk(xi, xt)

+ yi(γb − γ̂b)ybk(xi, xb);
24: end for
25: ft = ft−1 + γtytk(xt, ·) + (γb − γ̂b)ybk(xb, ·);
26: else /* no auxiliary example found */
27: γt = min(C, 1);
28: for ∀i ∈ St do
29: fi

t ← fi
t−1 + yiγtytk(xi, xt);

30: end for
31: ft = ft−1 + γtytk(xt, ·);
32: end if
33: else
34: ft = ft−1; St = St−1 ;
35: for ∀i ∈ St do
36: fi

t ← fi
t−1 ;

37: end for
38: end if
39: end for

Figure 1: The Algorithm of Double Updating Online Learning (DUOL).

4 Experimental Results
4.1 Experimental Testbed and Setup
We now evaluate the empirical performance of the proposed double updating online learning
(DUOL) algorithm. We compare DUOL with a number of state-of-the-art techniques, including
Perceptron (Rosenblatt, 1958; Freund & Schapire, 1999), the “ROMMA” algorithm and its aggres-
sive version “agg-ROMMA” (Li & Long, 1999), the ALMAp(α) algorithm (Gentile, 2001), and the
Passive-Aggressive algorithms (“PA”) (Crammer et al., 2006). The original Perceptron algorithm
was proposed for learning linear models. In our experiments, we follow (Kivinen et al., 2001b) by
adapting it to the kernel case. Two versions of PA algorithms (PA-I and PA-II) were implemented as
described in (Crammer et al., 2006). Finally, as an ideal yardstick, we also implement a full online
SVM algorithm (“Online-SVM”) (Shalev-Shwartz & Singer, 2006), which updates all the support
vectors in each trial, and is thus computationally extremely intensive as will be revealed in our study.

To extensively examine the performance, we test all the algorithms on a number of benchmark
datasets from web machine learning repositories. All of the datasets can be downloaded from LIB-
SVM website 1, UCI machine learning repository 2 and MIT CBCL face datasets 3 . Due to space
limitation, we randomly choose six of them in our discussions, including “german”, “splice”, “spam-
base”, “MITFace”, “a7a”, and “w7a”.

To make a fair comparison, all algorithms adopt the same experimental setup. In particular, for all
the compared algorithms, we set the penalty parameter C = 5, and employ the same Gaussian kernel
with σ = 8. For the ALMAp(α) algorithm, parameter p and α are set to be 2 and 0.9, respectively,
based on our experience. For the proposed DUOL algorithm, we fix ρ to be 0.2 for all cases.

All the experiments were conducted over 20 random permutations for each dataset. All the results
were reported by averaging over these 20 runs. We evaluate the online learning performance by mea-
suring mistake rate, i.e., the ratio of the number of mistakes made by the online learning algorithm
over the total number of examples received for predictions. In addition, to examine the sparsity of
the resulting classifiers, we also evaluate the number of support vectors produced by each online
learning algorithm. Finally, we also evaluate computational efficiency of all the algorithms by their
running time (in seconds). All experiments were run in Matlab over a machine of 2.3GHz CPU.

4.2 Performance Evaluation
Table 1 to 6 summarize the performance of all the compared algorithms over the six datasets4,
respectively. Figure 2 to 6 show the mistake rates of all online learning algorithms in comparison
over trials. We observe that Online-SVM yields considerably better performance than the other
online learning algorithms for dataset “german”, “splice”, “spambase”, and “MITFace”, however,
at the price of extremely high computational cost. For most cases, the running time of Online-SVM
is two order, sometimes three order, higher than the other online learning algorithms, making it

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
2http://www.ics.uci.edu/˜mlearn/MLRepository.html
3http://cbcl.mit.edu/software-datasets
4Due to huge computational cost, we are unable to obtain the results of Online-SVM on two large datasets.
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unsuitable for online learning. For the remaining part of this section, we restrict our discussion to
the other six baseline online learning algorithms.

First, among the six baseline algorithms in comparison, we observe that the agg-ROMMA and two
PA algorithms (PA-I and PA-II) perform considerably better than the other three algorithms (i.e.,
Perceptron, ROMMA, and ALMA) in most cases. We also notice that the agg-ROMMA and the
two PA algorithms consume considerably larger numbers of support vectors than the other three
algorithms. We believe this is because the agg-ROMMA and the two PA algorithms adopt more
aggressive strategies than the other three algorithms, resulting more updates and better classification
performance. For the convenience of discussion, we refer to agg-ROMMA and two PA algorithms
as aggressive algorithms, and the three algorithms as non-aggressive ones.

Second, comparing with all six competing algorithms, we observe that DUOL achieves significantly
smaller mistake rates than the other single-updating algorithms in all cases. This shows that the
proposed double updating approach is effective in improving the online prediction performance.
By examining the sparsity of resulting classifiers, we observed that DUOL results in sparser clas-
sifiers than the three aggressive online learning algorithms, and denser classifiers than the three
non-aggressive algorithms.

Third, according to the results of running time, we observe that DUOL is overall efficient compared
to the state-of-the-art online learning algorithms. Among all the compared algorithms, Percep-
tron, for its simplicity, is clearly the most efficient algorithm, and the agg-ROMMA algorithm is
significantly slower than the others (except for “Online-SVM”). Although DUOL requires double
updating, its efficiency is comparable to the PA and ROMMA algorithms.

Table 1: Evaluation on german (n=1000, d=24).
Algorithm Mistake (%) Support Vectors (#) Time (s)

Perceptron 35.305± 1.510 353.05± 15.10 0.018
ROMMA 35.105± 1.189 351.05± 11.89 0.154
agg-ROMMA 33.350± 1.287 643.25± 12.31 1.068
ALMA2(0.9) 34.025± 0.910 402.00± 7.33 0.225
PA-I 33.670± 1.278 732.60± 9.74 0.029
PA-II 33.175± 1.229 757.00± 10.02 0.030
Online-SVM 28.860± 0.651 646.10± 5.00 16.097
DUOL 29.990± 1.033 682.50± 12.87 0.089

Table 2: Evaluation on splice (n=1000, d=6).
Algorithm Mistakes (%) Support Vectors (#) Time (s)

Perceptron 27.120± 0.975 271.20± 9.75 0.016
ROMMA 25.560± 0.814 255.60± 8.14 0.055
agg-ROMMA 22.980± 0.780 602.95± 7.43 0.803
ALMA2(0.9) 26.040± 0.965 314.95± 9.41 0.075
PA-I 23.815± 1.042 665.60± 5.60 0.028
PA-II 23.515± 1.005 689.00± 7.85 0.028
Online-SVM 17.455± 0.518 614.90± 2.92 12.243
DUOL 20.560± 0.566 577.85± 8.93 0.076

Table 3: Evaluation on spambase (n=4601, d=57).
Algorithm Mistake (%) Support Vectors (#) Time (s)

Perceptron 24.987± 0.525 1149.65± 24.17 0.204
ROMMA 23.953± 0.510 1102.10± 23.44 10.128
agg-ROMMA 21.242± 0.384 2550.60± 27.32 95.028
ALMA2(0.9) 23.579± 0.411 1550.15± 15.65 25.294
PA-I 22.112± 0.374 2861.50± 24.36 0.490
PA-II 21.907± 0.340 3029.10± 24.69 0.505
Online-SVM 17.138± 0.321 2396.95± 10.57 2521.665
DUOL 19.438± 0.432 2528.55± 20.57 0.985

Table 4: Evaluation on MITFace (n=6977, d=361).
Algorithm Mistake (%) Support Vectors (#) Time (s)

Perceptron 4.665± 0.192 325.50± 13.37 0.164
ROMMA 4.114± 0.155 287.05± 10.84 0.362
agg-ROMMA 3.137± 0.093 1121.15± 24.18 11.074
ALMA2(0.9) 4.467± 0.169 400.10± 10.53 0.675
PA-I 3.190± 0.128 1155.45± 14.53 0.356
PA-II 3.108± 0.112 1222.05± 13.73 0.370
Online-SVM 1.142± 0.073 520.05± 4.55 7238.105
DUOL 2.409± 0.161 768.65± 16.18 0.384

Table 5: Evaluation on a7a (n=16100, d=123).
Algorithm Mistake (%) Support Vectors (#) Time (s)

Perceptron 22.022± 0.202 3545.50± 32.49 2.043
ROMMA 21.297± 0.272 3428.85± 43.77 306.793
agg-ROMMA 20.832± 0.234 4541.30± 109.39 661.632
ALMA2(0.9) 20.096± 0.214 3571.05± 40.38 338.609
PA-I 21.826± 0.239 6760.70± 47.89 4.296
PA-II 21.478± 0.237 7068.40± 51.32 4.536
DUOL 19.389± 0.227 7089.85± 38.93 10.122

Table 6: Results on w7a (n=24292, d=300).
Algorithm Mistake (%) Support Vectors (#) Time (s)

Perceptron 4.027± 0.095 994.40± 23.57 1.233
ROMMA 4.158± 0.087 1026.75± 21.51 13.860
agg-ROMMA 3.500± 0.061 2317.70± 58.92 137.975
ALMA2(0.9) 3.518± 0.071 1031.05± 15.33 13.245
PA-I 3.701± 0.057 2839.60± 41.57 3.732
PA-II 3.571± 0.053 3391.50± 51.94 4.719
DUOL 2.771± 0.041 1699.80± 22.78 2.677

5 Conclusions
This paper presented a novel “double updating” approach to online learning named as “DUOL”,
which not only updates the weight of the newly added support vector, but also adjusts the weight
of one existing support vector that seriously conflicts with the new support vector. We show that
the mistake bound for an online classification task can be significantly reduced by the proposed
DUOL algorithms. We have conducted an extensive set of experiments by comparing with a number
of competing algorithms. Promising empirical results validate the effectiveness of our technique.
Future work will address issues of multi-class double updating online learning.
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Figure 2: Evaluation on the german dataset. The data size is 1000 and the dimensionality is 24.
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Figure 3: Evaluation on the splice dataset. The data size is 1000 and the dimensionality is 60.
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Figure 4: Evaluation on the spambase dataset. The data size is 4601 and the dimensionality is 57.
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Figure 5: Evaluation on the a7a dataset. The data size is 16100 and the dimensionality is 123.
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Figure 6: Evaluation on the w7a dataset. The data size is 24292 and the dimensionality is 300.
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