Multiscale Random Fields with Application to Contour Grouping

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper


Longin Latecki, Chengen Lu, Marc Sobel, Xiang Bai


We introduce a new interpretation of multiscale random fields (MSRFs) that admits efficient optimization in the framework of regular (single level) random fields (RFs). It is based on a new operator, called append, that combines sets of random variables (RVs) to single RVs. We assume that a MSRF can be decomposed into disjoint trees that link RVs at different pyramid levels. The append operator is then applied to map RVs in each tree structure to a single RV. We demonstrate the usefulness of the proposed approach on a challenging task involving grouping contours of target shapes in images. MSRFs provide a natural representation of multiscale contour models, which are needed in order to cope with unstable contour decompositions. The append operator allows us to find optimal image labels using the classical framework of relaxation labeling, Alternative methods like Markov Chain Monte Carlo (MCMC) could also be used.