Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper


Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V. Shenoy, Maneesh Sahani


We consider the problem of extracting smooth low-dimensional neural trajectories'' that summarize the activity recorded simultaneously from tens to hundreds of neurons on individual experimental trials. Beyond the benefit of visualizing the high-dimensional noisy spiking activity in a compact denoised form, such trajectories can offer insight into the dynamics of the neural circuitry underlying the recorded activity. Current methods for extracting neural trajectories involve a two-stage process: the data are firstdenoised'' by smoothing over time, then a static dimensionality reduction technique is applied. We first describe extensions of the two-stage methods that allow the degree of smoothing to be chosen in a principled way, and account for spiking variability that may vary both across neurons and across time. We then present a novel method for extracting neural trajectories, Gaussian-process factor analysis (GPFA), which unifies the smoothing and dimensionality reduction operations in a common probabilistic framework. We applied these methods to the activity of 61 neurons recorded simultaneously in macaque premotor and motor cortices during reach planning and execution. By adopting a goodness-of-fit metric that measures how well the activity of each neuron can be predicted by all other recorded neurons, we found that GPFA provided a better characterization of the population activity than the two-stage methods. From the extracted single-trial neural trajectories, we directly observed a convergence in neural state during motor planning, an effect suggestive of attractor dynamics that was shown indirectly by previous studies.