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Abstract

Correlations between spike counts are often used to analyze neural coding. The
noise is typically assumed to be Gaussian. Yet, this assumption is often inappro-
priate, especially for low spike counts. In this study, we present copulas as an
alternative approach. With copulas it is possible to use arbitrary marginal distri-
butions such as Poisson or negative binomial that are better suited for modeling
noise distributions of spike counts. Furthermore, copulas place a wide range of
dependence structures at the disposal and can be used to analyze higher order in-
teractions. We develop a framework to analyze spike count data by means of cop-
ulas. Methods for parameter inference based on maximum likelihood estimates
and for computation of mutual information are provided. We apply the method
to our data recorded from macaque prefrontal cortex. The data analysis leads to
three findings: (1) copula-based distributions provide significantly better fits than
discretized multivariate normal distributions; (2) negative binomial margins fit the
data significantly better than Poisson margins; and (3) the dependence structure
carries12% of the mutual information between stimuli and responses.

1 Introduction

Understanding neural coding is at the heart of theoretical neuroscience. Analyzing spike counts of
a population is one way to gain insight into neural coding properties. Even when the same stimulus
is presented repeatedly, responses from the neurons vary, i.e. from trial to trial responses of neu-
rons are subject to noise. The noise variations of neighboring neurons are typically correlated (noise
correlations). Due to their relevance for neural coding, noise correlations have been subject of a con-
siderable number of studies (see [1] for a review). However, these studies always assumed Gaussian
noise. Thus, correlated spike rates were generally modeled by multivariate normal distributions with
a specific covariance matrix that describes all pairwise linear correlations.

For long time intervals or high firing rates, the average number of spikes is sufficiently large for the
central limit theorem to apply and thus the normal distribution is a good approximation for the spike
count distributions. However, several experimental findings suggest that noise correlations as well
as sensory information processing predominantly take place on a shorter time scale, on the order of
tens to hundreds of milliseconds [2, 3]. It is therefore questionable if the normal distribution is still
an appropriate approximation and if the results of studies based on Gaussian noise apply to short
time intervals and low firing rates.
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Figure 1: (a): Recording of correlated spike trains from two neurons and conversion to spike counts.
(b): The distributions of the spike counts of a neuron pair from the data described in Section 4 for
100 ms time bins. Dark squares represent a high number of occurrences of corresponding pairs of
spike counts. One can see that the spike counts are correlated since the ratios are high near the
diagonal. The distributions of the individual spike counts are plotted below and left of the axes.
(c): Density of a fit with a bivariate normal distribution. (d): Distribution of a fit with negative
binomial margins coupled with the Clayton copula.

This is due to several major drawbacks of the multivariate normal distribution: (1) Its margins
are continuous with a symmetric shape, whereas empirical distributions of real spike counts tend
to have a positive skew, i.e. the mass of the distribution is concentrated at the left of its mode.
Moreover, the normal distribution allows negative values which are not meaningful for spike counts.
Especially for low rates, this can become a major issue, since the probability of negative values
will be high. (2) The dependence structure of a multivariate normal distribution is always elliptical,
whereas spike counts of short time bins can have a bulb-shaped dependence structure (see Fig. 1b).
(3) The multivariate normal distribution does not allow higher order correlations of its elements.
Instead, only pairwise correlations can be modeled. It was shown that pairwise interactions are
sufficient for retinal ganglion cells and cortex cellsin vitro [4]. However, there is evidence that
they are insufficient for subsequent cortex areasin vivo [5]. We will show that our data recorded in
prefrontal cortex suggest that higher order interactions (which involve more than two neurons) do
play an important role in the prefrontal cortex as well.

In this paper, we present a method that addresses the above shortcomings of the multivariate normal
distribution. We applycopulas [6] to form multivariate distributions with a rich set of dependence
structures and discrete marginal distributions, including the Poisson distribution. Copulas were
previously applied to model the distribution of continuous first-spike-latencies [7]. Here we apply
this concept to spike counts.



2 Copulas

We give an informal introduction to copulas and apply the concept to a pair of neurons from our data
which are described and fully analyzed in Section 4. Formal details of copulas follow in Section 3.2.

A copula is a cumulative distribution function that can couple arbitrary marginal distributions. There
are many families of copulas, each with a different dependence structure. Some families have an
elliptical dependence structure, similar to the multivariate normal distribution. However, it is also
possible to use completely different dependence structures which are more appropriate for the data
at hand.

As an example, consider the modeling of spike count dependencies of two neurons (Fig. 1). Spike
trains are recorded from the neurons and transformed to spike counts (Fig. 1a). Counting leads to a
bivariate empirical distribution (Fig. 1b). The distribution of the counts depends on the length of the
time bin that is used to count the spikes, here100 ms. In the case considered, the correlation at low
counts is higher than at high counts. This is calledlower tail dependence.

The density of a typical population model based on the multivariate normal (MVN) distribution
is shown in Fig. 1c. Here, we did not discretize the distribution since the standard approach to
investigate noise correlations also uses the continuous distribution [1]. The mean and covariance
matrix of the MVN distribution correspond to the sample mean and the sample covariances of the
empirical distribution. Yet, the dependence structure does not reflect the true dependence structure
of the counts. But the spike count probabilities for a copula-based distribution (Fig. 1d) correspond
well to the empirical distribution in Fig. 1b.

The modeling of spike count data with the help of a copula is done in three steps: (1) A marginal
distribution, e.g. a Poisson or a negative binomial distribution is chosen, based on the spike count
distribution of the individual neurons. (2) The counts are transformed to probabilities using the
cumulative distribution function of the marginal distribution. (3) The probabilities and thereby the
cumulative marginal distributions are coupled with the help of a so-called copula function. As an
example, consider the Clayton copula family [6]. For two variables the copula is given by

C(p1, p2, α) =
1

α

√
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1
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pα
2

− 1, 0}
,

wherepi denotes the probability of the spike countXi of the ith neuron being lower or equal to
ri (i.e. pi = P (Xi ≤ ri)). Note that there are generalizations to more than two margins (see
Section 3.2). The functionC(p1, p2, α) generates a joint cumulative distribution function by cou-
pling the margins and thereby introduces correlations of second and higher order between the spike
count variables. The ratio of the joint probability that corresponds to statistically independent spike
countsP (X1 ≤ r1, X2 ≤ r2) = p1p2 and the dependence introduced by the Clayton copula (for
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Suppose thatα is positive. Sincepi ∈ [0, 1] the deviation from the ratio1 will be larger for small
probabilities. Thus, the copula generates correlations whose strengths depend on the magnitude of
the probabilities. The probability mass function (Fig. 1d) can then be calculated from the cumulative
probability using the difference scheme as described in Section 3.4. Care must be taken whenever
copulas are applied to form discrete distributions: while for continuous distributions typical mea-
sures of dependence are determined by the copula functionC only, these measures are affected by
the shape of the marginal distributions in the discrete case [8].

3 Parametric spike count models and model selection procedure

We will now describe the formal aspects of the multivariate normal distribution on the one hand and
copula-based models as the proposed alternative on the other hand, both in terms of their application
to spike counts.



3.1 The discretized multivariate normal distribution

The MVN distribution is continuous and needs to be discretized (and rectified) before it can be ap-
plied to spike count data (which are discrete and non-negative). The cumulative distribution function
(cdf) of the spike count vector~X is then given by

F ~X(r1, . . . , rd) =

{
Φµ,Σ(⌊r1⌋, . . . , ⌊rd⌋), if ∀i ∈ {1, . . . , d} : ri ≥ 0

0, otherwise

where⌊.⌋ denotes the floor operation for the discretization,Φµ,Σ denotes the cdf of the MVN dis-
tribution with meanµ and correlation matrixΣ, andd denotes the dimension of the multivariate
distribution and corresponds to the number of neurons that are modeled. Note thatµ is no longer the
mean of ~X. The mean is shifted to greater values asΦµ,Σ is rectified (negative values are cut off).
This deviation grows with the dimensiond. According to thecentral limit theorem, the distribution
of spike counts approaches the MVN distribution only for large counts.

3.2 Copula-based models

Formally, a copulaC is a cdf with uniform margins. It can be used to couple marginal cdf’s
FX1

, . . . , FXd
to form a joint cdfF ~X , such that

F ~X(r1, . . . , rd) = C(FX1
(r1), . . . , FXd

(rd))

holds [6]. There are many families of copulas with different dependence shapes and different num-
bers of parameters, e.g. the multivariate Clayton copula family with a scalar parameterα:

Cα(~u) =

(
max

{
1 − d +

d∑

i=1

u−α
i , 0

})−1/α

.

Thus, for a given realization~r, which can represent the counts of two neurons, we can setui =
FXi

(ri) andFX(~r) = Cα(~u), whereFXi
can be arbitrary univariate cdf’s. Thereby, we can generate

a multivariate distribution with specific marginsFXi
and a dependence structure determined byC.

In the case of discrete marginal distributions, however, typical measures of dependence, such as the
linear correlation coefficient or Kendall’sτ are effected by the shape of these margins [8]. Note
thatα does not only control the strength of pairwise interactions but also the degree of higher order
interactions.
Another copula family is the Farlie-Gumbel-Morgenstern (FGM) copula [6]. It is special in that it
has2d − d− 1 parameters that individually determine the pairwise and higher order interactions. Its
cdf takes the form

C~α(~u) =



1 +

d∑
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αj1j2...jk
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i=1

(1 − uji
)




d∏
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subject to the constraints

1 +

d∑
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αj1j2...jk

k∏

i=1

εji
≥ 0, ε1, ε2, . . . εd ∈ {−1, 1}.

We only have pairwise interactions if we set all but the first
(
d
2

)
parameters to zero. Hence, we can

easily investigate the impact of higher order interactions on the model fit. Due to the constraints for
α, the correlations that the FGM copula can model are small in terms of their absolute value. Nev-
ertheless, this is not an issue for modeling noise dependencies of spike counts of a small number of
neurons, since the noise correlations that are found experimentally are typically small (see e.g. [2]).

3.3 Marginal distributions

Copulas allow us to have different marginal distributions. Typically, the Poisson distribution is a
good approximation to spike count variations of single neurons [9]. For this distribution the cdf’s of
the margins take the form

FXi
(r;λi) =

⌊r⌋∑

k=0

λk
i

k!
e−λi ,



whereλi is the mean spike count of neuroni for a given bin size. We will also use the negative
binomial distribution as a generalization of the Poisson distribution:

FXi
(r;λi, υi) =

⌊r⌋∑

k=0

λk
i

k!

1

(1 + λi

υi
)υi

Γ(υi + k)

Γ(υi)(υi + λi)k
,

whereΓ is the gamma function. The additional parameterυi controls the degree of overdispersion:
the smaller the value ofυi, the greater the Fano factor. Asυi approaches infinity, the negative
binomial distribution converges to the Poisson distribution.

3.4 Inference for copulas and discrete margins

Likelihoods of discrete vectors can be computed by applying the inclusion-exclusion principle of
Poincaŕe and Sylvester. For this purpose we define the setsA = {X1 ≤ r1, . . . , Xd ≤ rd} and
Ai = {X1 ≤ r1, . . . , Xd ≤ rd, Xi ≤ ri − 1}, i ∈ {1, . . . , d}. The probability of a realization~r is
given by

P ~X(~r) = P

(
A \

d⋃

i=1

Ai

)
= P (A) −

d∑

k=1

(−1)k−1
∑

I⊆{1....,d},

|I|=k

P

(
⋂

i∈I

Ai

)

= F ~X(~r) −

d∑

k=1

(−1)k−1
∑

~m∈{0,1}d,
P

mi=k

F ~X(r1 − m1, . . . , rd − md).

(1)

Thus, we can compute the probability mass of a realization~r using only the cdf of~X. Since copulas
separate the margins from the dependence structure, an efficient inference procedure is feasible. Let

li(θi) =
T∑

t=1

log PXi
(ri,t; θi), i = 1, . . . , d

denote the univariate margins of log likelihoods. Note that we assume independent time bins. Fur-
ther, let

l(~α, θ1, . . . , θd) =
T∑

t=1

log P ~X(~rt; ~α, θ1, . . . , θd)

be the log likelihood of the joint distribution, where~α denotes the parameter of the copula. The so-
calledinference for margins (IFM) method proceeds in two steps [10]. First, the marginal likelihoods
are maximized separately:

θ̂i = argmax
θi

{li(θi)}.

Then, the full likelihood is maximized given the estimated margin parameters:

~̂α = argmax
~α

{l(~α, θ̂1, . . . , θ̂d)}.

The estimator is asymptotically efficient and close to the maximum likelihood estimator [10].

3.5 Estimation of mutual information

The mutual information [11] of dependent spike counts~X is a measure of the information that
knowing the neural response~r provides about the stimulus. It can be written as

I( ~X;S) =
∑

s∈MS

PS(s)
∑

~r∈Nd

P ~X(~r|s)

(
log2

(
P ~X(~r|s)

)
− log2

(
∑

s′∈MS

PS(s′)P ~X(~r|s′)

))

whereS is the stimulus random variable,MS is the set of stimuli, andPS is the probability mass
function for the stimuli. The likelihoodP ~X(~r|s) of ~r given s can be calculated using Equation 1.

Thereby,I( ~X;S) can be estimated by the Monte Carlo method.



4 Application to multi-electrode recordings

We now apply our parametric count models to the analysis of spike data, which we recorded from
the prefrontal cortex of an awake behaving macaque, using a4 × 4 tetrode array.

Experimental setup. Activity was recorded while the monkey performed a visual match-to-
sample-task. The task involved matching of20 visual stimuli (fruits and vegetables) that were
presented for approximately650 ms each. After an initial presentation (“sample”) a test stimulus
(“test”) was presented with a delay of3 seconds and the monkey had to decide by differential button
press whether both stimuli were the same or not. Correct responses were rewarded. Match and
non-match trials were randomly presented with an equal probability.

We recorded from the lateral prefrontal cortex in a2 × 2 mm2 area around the ventral bank of
the principal sulcus. Recordings were performed simultaneously from up to16 adjacent sites with
an array of individually movable fiber micro-tetrodes (manufactured by Thomas Recording). Data
were sampled at32 kHz and bandpass filtered between0.5 kHz and10 kHz. Recording positions of
individual electrodes were chosen to maximize the recorded activity and the signal quality.

The recorded data were processed by a PCA based spike sorting method. The method provides
automatic cluster cutting which was manually corrected by subsequent cluster merging if indicated
by quantitative criteria such as the ISI-histograms or amplitude stability.

Data set. To select neurons with stimulus specific responses, we calculated spike counts from their
spike trains. No neuron was accepted in the dependence analysis that shifted its mean firing rate
averaged over the time interval of the sample stimulus presentation by less than6.5 Hz compared
to the pre-stimulus interval. A total of six neurons fulfilled this criterion (each recorded from a
different tetrode). With this criterion we can assume that the selected neurons are indeed related to
processing of the stimulus information.

Spike trains were separated into80 groups, one for each of the20 different stimuli and the four
trial intervals: pre-stimulus, sample stimulus presentation, delay, and test stimulus presentation.
Afterwards, the trains were binned into successive100 ms intervals and converted to six-dimensional
spike counts for each bin. Due to the different interval lengths, total sample sizes of the groups were
between224 and1793 count vectors. A representative example of the empirical distribution of a
pair of these counts from the stimulus presentation interval is presented in Fig. 1b.

Model fitting. The discretized MVN distribution as well as several copula-based distributions
were fitted to the data. For each of the80 groups we selected randomly50 count vectors (test set)
for obtaining an unbiased estimate of the likelihoods. We trained the model on the remainder of
each group (training set).

A commonly applied criterion for model selection is maximum entropy [4]. This criterion selects
a certain model with minimal complexity subject to given constraints. It thereby performs regular-
ization which is supposed to prevent overfitting. Copulas on the other hand typically increase the
complexity of the model and thus decrease the entropy. However, our evaluation takes place on a
separate test set and hence takes overfitting into account.

Parameter inference for the discretized MVN distribution (see Section 3.1) was performed by com-
puting the sample mean and sample covariance matrix of the spike counts which is the standard
procedure for analyzing noise correlations [1]. Note that this estimator is biased, since it is not the
maximum likelihood solution for the discretized distribution.

The following copula families were used to construct noise distributions of the spike counts. The
Clayton (see Section 3.2), Gumbel-Hougaard, Frank and Ali-Mikhail-Haq copula families as ex-
amples of families with one parameter [6] and the FGM with a variable number of parameters (see
Section 3.2).

We applied the IFM method for copula inference (see Section 3.4). The sample mean is the max-
imum likelihood estimator forλi for both the Poisson and the negative binomial margins. The
maximum likelihood estimates forυi were computed iteratively by Newton’s method. Depending
on whether the copula parameters were constrained, either the Nelder-Mead simplex method for



Figure 2: Evaluation of the IFM estimates on the test set and estimated mutual information. (a): Log
likelihoods for the discrete multivariate normal distribution, the best fitting copula-based model with
Poisson margins, and the best fitting copula-based model with negative binomial margins averaged
over the20 different stimuli. (b): Difference between the log likelihood of the model with inde-
pendent counts and negative binomial margins (“ind. model”) and the log likelihoods of different
copula-based models with negative binomial margins averaged over the20 different stimuli. (c): Mu-
tual information between stimuli and responses for the Clayton-based model with negative binomial
margins. (d): Normalized difference between the mutual information for the Clayton-based model
with negative binomial margins and the corresponding “ind. model”.

unconstrained nonlinear optimization or the line-search algorithm for constrained nonlinear opti-
mization was applied to estimate the copula parameters.

Results for different distributions. Fig. 2 shows the evaluation of the IFM estimates on the test
set. The likelihood for the copula-based models is significantly larger than for the discrete MVN
model (p= 2 · 10−14, paired-sample Student’st test over stimuli). Moreover, the likelihood for the
negative binomial margins is even larger than that for the Poisson margins (p= 0.0003).

We estimated the impact of neglecting higher order interactions on the fit by using different numbers
of parameters for the FGM copula. For the2nd order model we set all but the first

(
d
2

)
parameters to

zero, therefore leaving only parameters for pairwise interactions. In contrast, for the3rd order model
we set all but the first

(
d
2

)
+
(
d
3

)
parameters to zero.

We computed the difference between the likelihood of the model with dependence and the corre-
sponding model with independence between its counts. Fig. 2bshows this difference for several
copulas and negative binomial margins evaluated on the test set. The model based on the Clayton
copula family provides the best fit. The fit is significantly better than for the second best fitting
copula family (p= 0.0014). In spite of having more parameters, the FGM copulas perform worse.
However, the FGM model with third order interactions fits the data significantly better than the
model that includes only pairwise interactions (p= 0.0437).

Copula coding analysis. Fig. 2cshows the Monte Carlo estimate of the mutual information based
on the Clayton-based model with negative binomial margins and IFM parameters determined on the
training set for each of the intervals. For the test stimulus interval, the estimation was performed
twice: for the previously presented sample stimulus and for the test stimulus. The Monte Carlo
method was terminated when the standard error was below5 · 10−4. The mutual information is
higher during the stimulus presentation intervals than during the delay interval.



We estimated the information increase due to the dependence structure by computing the mutual in-
formation for the Clayton-based model with negative binomial margins and subtracting the (smaller)
mutual information for the corresponding distribution with independent elements. Fig. 2dshows
this information estimate∆Ishuffled, normalized to the mutual information for the Clayton-based
model. The dependece structure carries up to12% of the mutual information. During the test
stimulus interval it carries almost twice as much information about the test stimulus as about the
previously presented sample stimulus.

Another important measure related to stimulus decoding which is currently under debate is∆I/I
[12]. The measure provides an upper bound on the information loss for stimulus decoding based on
the distribution that assumes independence. We find that one loses at most19.82% of the information
for the Clayton-based model.

5 Conclusion

We developed a framework for analyzing the noise dependence of spike counts. Applying this to
our data from the macaque prefrontal cortex we found that: (1) Gaussian noise is inadequate to
model spike count data for short time intervals; (2) negative binomial distributed margins describe
the individual spike counts better than Poisson distributed margins; and (3) higher order interactions
are present and play a substantial role in terms of model fit and information content.

The substantial role of higher order interactions bears a challenge for theoreticians as well as exper-
imentalists. The complexity of taking all higher order interactions into account grows exponentially
with the number of neurons, known as the curse of dimensionality. Based on our findings, we con-
clude that one needs to deal with this problem to analyze short-term coding in higher cortical areas.

In summary, one can say that the copula-based approach provides a convenient way to study spike
count dependencies for small population sizes (<20). At present, the approach is computationally
too demanding for higher numbers of neurons. Approximate inference methods might provide a
solution to the computational problem and seem worthwhile to investigate. Directions for future re-
search are the exploration of other copula families and the validation of population coding principles
that were obtained on the assumption of Gaussian noise.
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