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Abstract

A series of corrections is developed for the fixed points of Expectation Propaga-
tion (EP), which is one of the most popular methods for approximate probabilistic
inference. These corrections can lead to improvements of the inference approxi-
mation or serve as a sanity check, indicating when EP yields unrealiable results.

1 Introduction

Theexpectation propagation (EP) message passing algorithm is often considered as the method of
choice for approximate Bayesian inference when both good accuracy and computational efficiency
are required [5]. One recent example is a comparison of EP with extensive MCMC simulations for
Gaussian process (GP) classifiers [4], which has shown that not only the predictive distribution, but
also the typically much harder marginal likelihood (the partition function) of the data, are approxi-
mated remarkably well for a variety of data sets. However, while such empirical studies hold great
value, they can not guarantee the same performance on other data sets or when completely different
types of Bayesian models are considered.

In this paper methods are developed to assess the quality of the EP approximation. We compute
explicit expressions for the remainder terms of the approximation. This leads to various corrections
for partition functions and posterior distributions. Under the hypothesis that the EP approximation
works well, we identify quantities which can be assumed to be small and can be used in a series
expansion of the corrections with increasing complexity. The computation of low order corrections
in this expansion is often feasible, typically require only moderate computational efforts, and can
lead to an improvement to the EP approximation or to the indication that the approximation cannot
be trusted.

2 Expectation Propagation in a Nutshell

Since it is the goal of this paper to compute corrections to the EP approximation, we will not dis-
cuss details of EPalgorithms but rather characterise the fixed points which are reached when such
algorithms converge.

EP is applied to probabilistic models with an unobserved latent variablex having an intractable
distributionp(x). In applicationsp(x) is usually the Bayesian posterior distribution conditioned on
a set of observations. Since the dependency on the latter variables is not important for the subsequent
theory, we will skip them in our notation.
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It is assumed thatp(x) factorizes into a product ofterms fn such that

p(x) =
1

Z

∏

n

fn(x) , (1)

where the normalising partition functionZ =
∫

dx
∏

n fn(x) is also intractable. We then assume
an approximation top(x) in the form

q(x) =
∏

n

gn(x) (2)

where the termsgn(x) belong to a tractable, e.g. exponential family of distributions. To compute
the optimal parameters of thegn term approximation a set of auxiliarytilted distributions is defined
via

qn(x) =
1

Zn

(

q(x)fn(x)

gn(x)

)

. (3)

Here asingle approximating termgn is replaced by an original termfn. Assuming that this re-
placement leavesqn still tractable, the parameters ingn are determined by the condition thatq(x)
and allqn(x) should be made as similar as possible. This is usually achieved by requiring that these
distributions share a set of generalised moments (which usually coincide with the sufficient statistics
of the exponential family). Note, that we willnot assume that thisexpectation consistency [8] for
the moments is derived by minimising a Kullback–Leibler divergence, as was done in the original
derivations of EP [5]. Such an assumption would limit the applicability of the approximate inference
and exclude e.g. the approximation of models with binary, Ising variables by a Gaussian model as
in one of the applications in the last section.

The corresponding approximation to the normalising partition function in (1) was given in [8] and
[7] and reads in our present notation1

ZEP =
∏

n

Zn . (4)

3 Corrections to EP

An expression for the remainder terms which are neglected by the EP approximation can be obtained
by solving forfn in (3), and taking the product to get

∏

n

fn(x) =
∏

n

(

Znqn(x)gn(x)

q(x)

)

= ZEP q(x)
∏

n

(

qn(x)

q(x)

)

. (5)

HenceZ =
∫

dx
∏

n fn(x) = ZEP R, with

R =

∫

dx q(x)
∏

n

(

qn(x)

q(x)

)

and p(x) =
1

R
q(x)

∏

n

(

qn(x)

q(x)

)

. (6)

This shows that corrections to EP are small when all distributionsqn are indeed close toq, justifying
the optimality criterion of EP. For related expansions, see [2, 3, 9].

Exact probabilistic inference with the corrections described here again leads to intractable computa-
tions. However, we can derive exactperturbation expansions involving a series of corrections with
increasing computational complexity. Assuming that EP already yields a good approximation, the
computation of a small number of these terms maybe sufficient to obtain the most dominant correc-
tions. On the other hand, when the leading corrections come out large or do not sufficiently decrease
with order, this may indicate that the EP approximation is inaccurate. Two such perturbation expan-
sions are be presented in this section.

1The definition of partition functionsZn is slightly different from previous works.
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3.1 Expansion I: Clusters

The most basic expansion is based on the variablesεn(x) = qn(x)
q(x) − 1 which we can assume to be

typically small, when the EP approximation is good. Expanding the products in (6) we obtain the
correction to the partition function

R =

∫

dx q(x)
∏

n

(1 + εn(x)) (7)

= 1 +
∑

n1<n2

〈

εn1
(x)εn2

(x)
〉

q
+

∑

n1<n2<n3

〈

εn1
(x)εn2

(x)εn3
(x)
〉

q
+ . . . , (8)

which is a finite series in terms of growing clusters of “interacting” variablesεn(x). Here the
brackets〈. . .〉q denote expectations with respect to the distributionq. Note, that the first order term
∑

n 〈εn(x)〉q = 0 vanishes by the normalization ofqn andq. As we will see later, the computation
of corrections is feasible whenqn is just a finitemixture of K simpler densities from the exponential
family to whichq belongs. Then the number of mixture components in thej-th term of the expansion
of R is just of the orderO(Kj) and an evaluation of low order terms should be tractable.

In a similar way, we get

p(x) =
q(x)

(

1 +
∑

n εn(x) +
∑

n1<n2
εn1

(x)εn2
(x) + . . .

)

1 +
∑

n1<n2
〈εn1

(x)εn2
(x)〉q + . . .

, (9)

In order to keep the resulting density normalized to one, we should keep as many terms in the
numerator as in the denominator. As an example, the first order correction toq(x) is

p(x) ≈
∑

n

qn(x) − (N − 1)q(x) . (10)

3.2 Expansion II: Cumulants

One of most important applications of EP is to the case of statistical models with Gaussian process
priors. Herex is a latent variable with Gaussian prior distribution and covarianceE[xx

⊤] = K

whereK is the kernel matrix. In this case we haveN +1 termsf0, f1, . . . , fN in (1) wheref0(x) =
g0(x) = exp[− 1

2x
⊤
K

−1
x]. For n ≥ 1 eachfn(x) = tn(xn) is the likelihood term for the nth

observation which depends only on a single componentxn of the vectorx.

The corresponding approximating terms are chosen to be Gaussian of the formgn(x) ∝
eγnx− 1

2
λnx2

. The2N parametersγn andλn are determined in such a way thatq(x) and the dis-
tributionsqn(x) have the same first and secondmarginal moments 〈xn〉 and〈x2

n〉. In this case, the
computation of corrections (7) would require the computation of multivariate integrals of increasing
dimensionality. Hence, a different type of expansion seems more appropriate. The main idea is to
expand with respect to the higher order cumulants of the distributionsqn.

To derive this expansion, we simplify (6) using the fact thatq(x) = q(x\n|xn)q(xn) andqn(x) =
q(x\n|xn)qn(xn), where we have (with a slight abuse of notation) introducedq(xn) andqn(xn),
the marginals ofq(x) andqn(x). Thusp(x) = 1

R
q(x)F (x) andR =

∫

dx q(x)F (x), where

F (x) =
∏

n

(

qn(xn)

q(xn)

)

. (11)

Sinceq(xn) and theqn(xn) have the same first two cumulants, corrections can be expressed by the
higher cumulants of theqn(xn) (note, that the higher cumulants ofq(xn) vanish). The cumulants
cln of qn(xn) are defined by theircharacteristic functions χn(k) via

qn(xn) =

∫

dk

2π
e−ikxnχn(k) and ln χn(k) =

∑

l

(i)l cln

l!
kl . (12)

Expressing the Gaussian marginalsq(xn) by their first and second cumulants, the meansmn and
the variancesSnn and introducing the function

rn(k) =
∑

l≥3

(i)l cln

l!
kl (13)

3



which contains the contributions of all higher order cumulants, we get

F (x) =
∏

n

(

∫

dkn exp
[

−ikn(xn − mn) − 1
2Snnk2

n + rn(kn)
]

∫

dkn exp
[

−ikn(xn − mn) − 1
2Snnk2

n

]

)

(14)

=

∫

dη

√

∏

n

Snn

2π
exp

[

−
∑

n

Snnη2
n

2

]

exp

[

∑

n

rn

(

ηn − i
(xn − mn)

Snn

)

]

(15)

where in the last equality we have introduced a shift of variablesηn = kn + i (xn−mn)
Snn

.

An expansion can be performed with respect to the cumulants in the termsgn which had been ne-
glected in the EP approximation. The basic computations are most easily explained for the correction
R to the partition function.

3.2.1 Correction to the partition function

Sinceq(x) is a multivariate Gaussian of the formq(x) = N (x;m,S), the correctionR to the
partitionZ involves a double Gaussian average over the vectorx and the set ofηn. This can be
simplified by combining them into asingle complex zero mean Gaussian random vector defined as
zn = ηn − ixn−mn

Snn

such that

R =

〈

exp

[

∑

n

rn (zn)

]〉

z

(16)

The most remarkable property of the Gaussianz is its covariance which is easily found to be

〈zizj〉z = − Sij

SiiSjj

when i 6= j, and 〈z2
i 〉z = 0 . (17)

The last equation has important consequences for the surviving terms in an expansion ofR!

Assuming that thegn are small we perform a power series expansion ofln R

ln R = ln

〈

exp
[

∑

n

rn (zn)
]

〉

z

=
∑

n

〈rn〉z +
1

2

〈(

∑

n

rn

)2〉

z

− 1

2

(

∑

n

〈rn〉z
)2

± . . . (18)

=
1

2

∑

m 6=n

〈rmrn〉z ± . . . =
∑

m 6=n

∑

l≥3

clnclm

l!

(

Snm

SnnSmm

)l

± . . . (19)

Here we have repeatedly used the fact that each factorzn in expectations〈zl
nzs

m〉 have to be paired
(by Wick’s theorem) with a factorzm wherem 6= n (diagonal terms vanish by (17)). This gives
nonzero contributions only, whenl = s and there arel! ways for pairing.2

This expansion gives a hint why EP may work typically well for multivariate models when covari-
ancesSij are small compared to the variancesSii. While we may expect thatln ZEP = O(N)
whereN is the number of variablesxn, the vanishing of the “self interactions” indicates that correc-
tions may not scale withN .

3.2.2 Correction to marginal moments

The predictive density of a novel observation can be treated by extending the Gaussian prior to
include a new latent variablex∗ with E[x∗x] = k∗ andE[x2

∗] = k∗, and appears as an average of a
likelihood term over the posterior marginal ofx∗.

A correction for the predictive density can also be derived in terms of the cumulant expansion by
averaging the conditional distributionp(x∗|x) = N (x∗;k

⊤
∗ K

−1
x, σ2

∗) with σ2
∗ = k∗ − k

⊤
∗ K

−1
k∗.

Using the expression (15) we obtain (where we setR = 1 in (6) to lowest order)

p(x∗) =

∫

dx p(x∗|x) p(x) = N (x∗; µx∗
, s2

x∗

)

〈

1 +
∑

n

rn

(

ηn − i
xn − mn

Snn

)

+ . . .

〉

η,x∼N (x;µ,Σ)

(20)
2The terms in the expansion might be organised inFeynman graphs, where “self interaction” loops are

absent.
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Figure 1: ln Z approximations obtained from
q(x)’s factorization in (2), for sec. 4.1’s mixture
model, as obtained by: variational Bayes (see [1]
for details) as red squares;α = 1

2 in Minka’s α-
divergence message passing scheme, described in
[6], as magenta triangles; EP as blue circles; EP
with the 2nd order correction in (8) as green di-
amonds. For 20 runs each, the colour intensities
correspond to the frequency of reaching different
estimates. A Monte Carlo estimate of the true
ln Z, as found by parallel tempering with thermo-
dynamic integration, is shown as a line with two-
standard deviation error bars.

whereµx∗
= k

⊤
∗ K

−1
m and variances2

x∗

= k∗ − k
⊤
∗ (K + Λ

−1)−1
k∗ andΛ = diag(λ) denotes

the parameters in the Gaussian termsgn. The average in (20) is over a Gaussianx with Σ
−1 =

(K − k−1
∗ k∗k

⊤
∗ )−1 + Λ

−1 andµ = (x∗ − µx∗
)σ−2

∗ ΣK
−1

k∗ + m. By simplifying the inner
expectation over the complex Gaussian variablesη we obtain

p(x∗) = N (x∗; µx∗
, s2

x∗

)



1 +
∑

n

∑

l≥3

cln

l!

(

1√
Snn

)l
〈

hl

(

xn − mn√
Snn

)

〉

x∼N (x;µ,Σ)

+ · · ·





(21)
wherehl is the lth Hermite polynomial. The Hermite polynomials are averaged over a Gaussian
density where the only occurrence ofx∗ is through(x∗−µx∗

) in µ, so that the expansion ultimately
appears as a polynomial inx∗. A correction to the predictive density follows from averagingt∗(x∗)
over (21).

4 Applications

4.1 Mixture of Gaussians

This section illustrates an example where a large first nontrivial correction term in (8) reflects an
inaccurate EP approximation. We explain this for aK-component Gaussian mixture model.

ConsiderN observed data pointsζn with likelihood termsfn(x) =
∑

κ πκN (ζn; µκ,Γ−1
κ ), with

n ≥ 1 and with the mixing weightsπκ forming a probability vector. The latent variables are then
x = {πκ, µκ,Γκ}K

κ=1. For our prior onx we use a Dirichlet distribution and product of Normal-
Wisharts densities so thatf0(x) = D(π)

∏

κ NW(µκ,Γκ). When we multiply thefn terms we
see that intractability for the mixture model arises because the number of terms in the marginal
likelihood is KN , rather than because integration is intractable. The computation of lower-order
terms in (8) should therefore be immediately feasible. The approximationq(x) and eachgn(x) are
chosen to be of the same exponential family form asf0(x), where we don’t requiregn(x) to be
normalizable.

For brevity we omit the details of the EP algorithm for this mixture model, and assume here that an
EP fixed point has been found, possibly using some damping. Fig. 1 shows various approximations
to the log marginal likelihoodln Z for ζn coming from theacidity data set. It is evident that the
“true peak” doesn’t match the peak obtained by approximate inference, and we will wrongly predict
whichK maximizes the log marginal likelihood. Without having to resort to Monte Carlo methods,
the second order correction forK = 3 both corrects our prediction and already confirms that the
original approximation might be inadequate.

4.2 Gaussian Process Classification

The GP classification model arises when we observeN data pointsζn with class labelsyn ∈
{−1, 1}, and modely through a latent functionx with the GP prior mentioned in sec. 3.2. The
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(b) Monte Carloln R

Figure 2: A comparison of a perturbation expansion of (19) against Monte Carlo estimates of the
true correctionln R, using the USPS data set from [4].

likelihood terms foryn are assumed to betn(xn) = Φ(ynxn), whereΦ(·) denotes the cumulative
Normal density.

Eq. (19) shows how to compute the cumulant expansion by dovetailing the EP fixed point with the
characteristic function ofqn(xn): From the EP fixed point we haveq(x) = N (x;m,S) andgn ∝
eγnxn− 1

2
λnxn ; consequently the marginal density ofxn in q(x)/gn(xn) from (3) isN (xn; µ, v2),

wherev−2 = 1/Snn − λn andµ = v−2(mn/Snn − γn). Using (3) again we have

qn(xn) =
1

Zn

Φ(ynxn)N (xn; µ, v2) . (22)

The characteristic function ofqn(xn) is obtained by the inversion of (12),

χn(k) =
〈

eikxn

〉

= eikµ− 1

2
k2v2 Φ(wk)

Φ(w)
, with w =

ynµ√
1 + v2

and wk =
ynµ + ikv2

√
1 + v2

, (23)

with expectations〈· · ·〉 being with respect toqn(xn). Raw moments are computed through deriva-

tives of the characteristic function, i.e.〈xj
n〉 = i−jχ

(j)
n (0). The cumulantscln are determined

from the derivatives ofln χn(k) evaluated at zero (or equally from raw moments, e.g.c3n =

2〈xn〉3 − 3〈xn〉〈x2
n〉 + 〈x3

n〉), such that

c3n = α3β
[

2β2 + 3wβ + w2 − 1
]

(24)

c4n = −α4β
[

6β3 + 12wβ2 + 7w2β + w3 − 4β − 3w
]

, (25)

whereα = v2/
√

1 + v2 andβ = N (w; 0, 1)/Φ(w).

An extensive MCMC evaluation of EP for GP classification on various data sets was recently given
by [4], showing that the log marginal likelihood of the data can be approximated remarkably well.
An even more accurate estimation of the approximation error is given by considering the second
order correction in (19) (computed here up tol = 4). For GPC we generally found that thel = 3
term dominatesl = 4, and we do not include any higher cumulants here. Fig. 2 illustrates theln R
correction on the binary subproblem of the USPS 3’s vs. 5’s digits data set, withN = 767, as was
used by [4]. We used the same kernelk(ζ, ζ′) = σ2 exp(− 1

2‖ζ − ζ′‖2/ℓ2) as [4], and evaluated
(19) on a similar grid ofln ℓ andln σ values. For the same grid values we obtained Monte Carlo
estimates ofln Z, and henceln R. They are plotted in fig. 2(b) for the cases where they estimateln Z
to sufficient accuracy (up to four decimal places) to obtain a smoothly varying plot ofln R.3 The
correction from (19), as computed here, isO(N2), and compares favourably toO(N3) complexity
of EP for GPC.

3The Monte Carlo estimates in [4] are accurate enough for showing EP’s close approximation tolnZ, but
not enough to make any quantified statement aboutln R.
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In fig. 3 we show the coefficients of the polynomial corrections (21) in powers ofx∗ to the predictive
densityp(x∗), using3rd and4th cumulants. The small corrections arise as whenever termsynmn

are positive and large compared to the posterior variance, non-Gaussian termsfn(x) = tn(xn) ≈ 1
for almost all values ofxn which have significant probability under the Gaussian distribution that
is proportional toq(x)/gn(xn). For these termsqn(x) is thereforealmost Gaussian and higher
cumulants are small. A example where this will no longer be the case is a GP model withtn(xn) = 1
for |xn| < a andtn(xn) = 0 for |xn| > a. This is a regression modelyn = xn+νn where i.i.d. noise
variablesνn have uniform distribution and the observed outputs are all zero, i.e.yn = 0. For this
case, the exact posterior variance does not shrink to zero even if the number of data points goes
to infinity. The EP approximation however has the variance decrease to zero and our corrections
increase with sample size.

4.3 Ising models

Somewhat surprising (and probably less known) is the fact that EP and our corrections apply
well to a fairly limiting case of the GP model where the terms are of the formtn(xn) =
eθnxn (δ(xn + 1) + δ(xn − 1)), whereδ(x) is the Dirac distribution. These terms, together with
a “Gaussian”f0(x) = exp[

∑

i<j Jijxixj ] (where we do not assume that the matrixJ is negative
definite), makes this GP model an Ising model with binary variablesxn = ±1. As shown in [8],
this model can still be treated with the same type of Gaussian term approximations as ordinary GP
models, allowing for surprisingly accurate estimation of the meanand covariance. Here we will
show the effect of our corrections for toy models, where exact inference is possible by enumeration.

The tilted distributionsqn(xn) are biased binary distributions with cumulants:c3n = −2mn(1 −
m2

n), c4n = −2 + 8m2
n − 6m4

n, etc. We will consider two different scenarios for randomθ andJ
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Figure 4: The left plot shows the MAD of the estimated covariance matrix from the exact one for
different values ofβ for EP (blue), EP2nd orderl = 4 corrections (blue with triangles), Bethe or
loopy belief propagation (LBP; dashed green) and Kikuchi or generalized LBP (dash–dotted red).
The Bethe and Kikuchi approximations both give covariance estimates for all variable pairs as the
model is fully connected. The right plot shows the absolute deviation ofln Z from the true value
using second order perturbations withl = 3, 4, 5 (l = 3 is the smallest change). The remaining line
styles are the same as in the left plot.
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described in detail in [8]. In the first scenario, withN = 10, theJij ’s are generated independently
at random according toJij = βwij andwij ∼ N (0, 1). For varyingβ, the maximum absolute
deviation (MAD) of the estimated covariance matrices from the exact onemaxi,j |Σest

ij − Σexact
ij |

is shown in fig. 4 left. The absolute deviation on the log partition function is shown in fig. 4 right.
In the Wainwright-Jordan set-upN = 16 nodes are either fully connected or connected to nearest
neighbors in a 4–by–4 grid. The external field (observation) strengthsθi are drawn from auniform
distributionθi ∼ U [−dobs, dobs] with dobs = 0.25. Three types of coupling strength statistics are
considered: repulsive (anti-ferromagnetic)Jij ∼ U [−2dcoup, 0], mixedJij ∼ U [−dcoup, +dcoup]
and attractive (ferromagnetic)Jij ∼ U [0, +2dcoup]. Table 1 gives the MAD of marginals averaged
of 100 repetitions. The results for both set-ups give rise to the conclusion that when the EP approx-
imation works well then the correction give an order of magnitude of improvement. In the opposite
situation, the correction might worsen the results.

Table 1: Average MAD of marginals in a Wainwright-Jordan set-up, comparing loopy belief prop-
agation (LBP), log-determinant relaxation (LD), EP, EP withl = 5 correction (EP+), and EP with
only one spanning tree approximating term (EP tree).

Problem type Method
Graph Coupling dcoup LBP LD EP EP+ EP tree

Repulsive 0.25 0.037 0.020 0.003 0.00058487 0.0017
Repulsive 0.50 0.071 0.018 0.031 0.0157 0.0143

Full Mixed 0.25 0.004 0.020 0.002 0.00042727 0.0013
Mixed 0.50 0.055 0.021 0.022 0.0159 0.0151

Attractive 0.06 0.024 0.027 0.004 0.0023 0.0025
Attractive 0.12 0.435 0.033 0.117 0.1066 0.0211
Repulsive 1.0 0.294 0.047 0.153 0.1693 0.0031
Repulsive 2.0 0.342 0.041 0.198 0.4244 0.0021

Grid Mixed 1.0 0.014 0.016 0.011 0.0122 0.0018
Mixed 2.0 0.095 0.038 0.082 0.0984 0.0068

Attractive 1.0 0.440 0.047 0.125 0.1759 0.0028
Attractive 2.0 0.520 0.042 0.177 0.4730 0.0002

5 Outlook

We expect that it will be possible to develop similar corrections to other approximate inference
methods, such as the variational approach or the “power EP” approximations which interpolate
between the variational method and EP. This may help the user to decide which approximation is
more accurate for a given problem. We will also attempt an analysis of the scaling of higher order
terms in these expansions to see if they are asymptotic or have a finite radius of convergence.
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