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Abstract

This paper studies global ranking problem by learning to rank methods. Con-
ventional learning to rank methods are usually designed for ‘local ranking’, in the
sense that the ranking model is defined on a single object, for example, a document
in information retrieval. For many applications, this is a very loose approximation.
Relations always exist between objects and it is better to define the ranking model
as a function on all the objects to be ranked (i.e., the relations are also included).
This paper refers to the problem as global ranking and proposes employing a Con-
tinuous Conditional Random Fields (CRF) for conducting the learning task. The
Continuous CRF model is defined as a conditional probability distribution over
ranking scores of objects conditioned on the objects. It can naturally represent
the content information of objects as well as the relation information between
objects, necessary for global ranking. Taking two specific information retrieval
tasks as examples, the paper shows how the Continuous CRF method can perform
global ranking better than baselines.

1 Introduction

Learning to rank is aimed at constructing a model for ordering objects by means of machine learning.
It is useful in many areas including information retrieval, data mining, natural language processing,
bioinformatics, and speech recognition. In this paper, we take information retrieval as an example.

Traditionally learning to rank is restricted to ‘local ranking’, in which the ranking model is defined
on a single object. In other words, the relations between the objects are not directly represented
in the model. In many application tasks this is far from being enough, however. For example, in
Pseudo Relevance Feedback [17, 8], we manage to rank documents on the basis of not only relevance
of documents to the query, but also similarity between documents. Therefore, the use of a model
solely based on individual documents would not be sufficient. (Previously, heuristic methods were
developed for Pseudo Relevance Feedback.) Similar things happen in the tasks of Topic Distillation
[12, 11] and Subtopic Retrieval [18]. Ideally, in information retrieval we would exploit a ranking
model defined as a function on all the documents with respect to the query. In other words, ranking
should be conducted on the basis of the contents of objects as well as the relations between objects.
We refer to this setting as ‘global ranking’ and give a formal description on it with information
retrieval as an example.

Conditional Random Fields (CRF) technique is a powerful tool for relational learning, because it al-
lows the uses of both relations between objects and contents of objects [16]. However, conventional
CRF cannot be directly applied to global ranking because it is a discrete model in the sense that
the output variables are discrete [16]. In this work, we propose a Continuous CRF model (C-CRF)
to deal with the problem. The C-CRF model is defined as a conditional probability distribution
over ranking scores of objects (documents) conditioned on the objects (documents). The specific
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probability distribution can be represented by an undirected graph, and the output variables (rank-
ing scores) can be continuous. To our knowledge, this is the first time such kind of CRF model is
proposed.

We apply C-CRF to two global ranking tasks: Pseudo Relevance Feedback and Topic Distillation.
Experimental results on benchmark data show that our method performs better than baseline meth-
ods.

2 Global Ranking Problem

Document ranking in information retrieval is a problem as follows. When the user submits a query,
the system retrieves all the documents containing at least one query term, calculates a ranking score
for each of the documents using the ranking model, and sorts the documents according to the ranking
scores. The scores can represent relevance, importance, and/or diversity of documents.

Let q denote a query. Let x(q) = {x(q)
1 , x

(q)
2 , . . . , x

(q)

n(q)} denote the documents retrieved with q, and

y(q) = {y(q)
1 , y

(q)
2 , . . . , y

(q)

n(q)} denote the ranking scores assigned to the documents. Here n(q) stands
for the number of documents retrieved with q. Note that the numbers vary according to queries. We
assume that y(q) is determined by a ranking model.

We call the ranking ‘local ranking’, if the ranking model is defined as

y
(q)
i = f(x(q)

i ), i = 1, . . . , n(q) (1)

Furthermore, we call the ranking ‘global ranking’, if the ranking model is defined as

y(q) = F (x(q)) (2)

The major difference between the two is that F takes on all the documents together as its input,
while f takes on an individual document as its input. In other words, in global ranking, we use not
only the content information of documents but also the relation information between documents.
There are many specific application tasks that can be viewed as examples of global ranking. These
include Pseudo Relevance Feedback, Topic Distillation, and Subtopic Retrieval.

3 Continuous CRF for Global Ranking

3.1 Continuous CRF

Let {hk(y(q)
i , x(q))}K1

k=1 be a set of real-valued feature functions defined on document set x(q) and
ranking score y

(q)
i (i = 1, · · · , n(q)), and {gk(y(q)

i , y
(q)
j , x(q))}K2

k=1 be a set of real-valued feature

functions defined on y
(q)
i , y

(q)
j , and x(q) (i, j = 1, · · · , n(q), i 6= j).

Continuous Conditional Random Fields is a conditional probability distribution with the following
density function,

Pr(y(q)|x(q)) =
1

Z(x(q))
exp

{∑
i

K1∑
k=1

αkhk(y
(q)
i , x(q)) +

∑
i,j

K2∑
k=1

βkgk(y
(q)
i , y

(q)
j , x(q))

}
, (3)

where α is a K1-dimensional parameter vector and β is a K2-dimensional parameter vector, and
Z(x(q)) is a normalization function,

Z(x(q)) =

∫

y(q)
exp

{∑
i

K1∑
k=1

αkhk(y
(q)
i , x(q)) +

∑
i,j

K2∑
k=1

βkgk(y
(q)
i , y

(q)
j , x(q))

}
dy(q). (4)

Given a set of documents x(q) for a query, we select the ranking score vector y(q) with the maximum
conditional probability Pr(y(q)|x(q)) as the output of our proposed global ranking model:

F (x(q)) = arg max
y(q)

Pr(y(q)|x(q)). (5)
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C-CRF is a graphical model, as depicted in Figure 1. In the conditioned undirected graph, a white
vertex represents a ranking score, a gray vertex represents a document, an edge between two white
vertexes represents the dependency between ranking scores, and an edge between a gray vertex
and a white vertex represents the dependency of a ranking score on its document (content). (In
principle a ranking score can depend on all the documents of the query; here for ease of presenta-
tion we only consider the simple case in which it only depends on the corresponding document.)

y3 y5y1

y4 y6y2

x1

x2

x3

x4

x5

x6

Figure 1: Continuous CRF Model

In C-CRF, feature function hk represents the depen-
dency between the ranking score of a document and
the content of it, and feature function gk represents a
relation between the ranking scores of two documents.
Different retrieval tasks may have different relations
(e.g. similarity relation, parent-child relation), as will
be explained in Section 4. For ease of reference, we
call the feature functions hk vertex features, and the
feature functions gk edge features.

Note that in conventional CRF the output random vari-
ables are discrete while in C-CRF the output variables
are continuous. This makes the inference of C-CRF
largely different from that of conventional CRF, as will
be seen in Section 4.

3.2 Learning

In the inference of C-CRF, the paramters {α, β} are given, while in learning, they are to be estimated.

Given training data {x(q), y(q)}N
q=1, where each x(q) = {x(q)

1 , x
(q)
2 , ..., x

(q)

n(q)} is a set of documents

of query q, and each y(q) = {y(q)
1 , y

(q)
2 , ..., y

(q)

n(q)} is a set of ranking scores associated with the
documents of query q, we employ Maximum Likelihood Estimation to estimate the parameters
{α, β} of C-CRF. Specifically, we calculate the conditional log likelihood of the training data with
respect to the C-CRF model,

L(α, β) =
N∑

q=1

log Pr(y(q)|x(q);α, β). (6)

We then use Gradient Ascend to maximze the log likelihood, and use the optimal parameter α̂, β̂ to
rank the documents of a new query.

4 Case Study

4.1 Pseudo Relevance Feedback (PRF)

Pseudo Relevance Feedback (PRF) [17, 8] is an example of global ranking, in which similarity be-
tween documents are considered in the ranking process. Conceptually, in this task one first conducts
a round of ranking, assuming that the top ranked documents are relevant; then conducts another
round of ranking, using similarity information between the top ranked documents and the other doc-
uments to boost some relevant documents dropped in the first round. The underlying assumption
is that similar documents are likely to have similar ranking scores. Here we consider a method of
using C-CRF for performing the task.

4.1.1 Continuous CRF for Pseudo Relevance Feedback

We first introduce vertex feature functions. The relevance of a document to the query depends on
many factors, such as term frequency, page importance, and so on. For each factor we define a vertex
feature function. Suppose that x

(q)
i,k is the k-th relevance factor of document xi with respect to query
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q extracted by operator tk: x
(q)
i,k = tk(xi, q). We define the k-th feature function1hk(yi, x) as

hk(yi, x) = −(yi − xi,k)2. (7)

Next, we introduce the edge feature function. Recall that there are two rounds in PRF: the first
round scores each document, and the second round re-ranks the documents considering similarity
between documents. Here the similarities between any two documents are supposed to be given. We
incorporate them into the edge feature function.

g(yi, yj , x) = −1
2
Si,j(yi − yj)2, (8)

where Si,j is similarity between documents xi and xj , which can be extracted by some operator s
from the raw content2 of document xi and xj : Si,j = s(xi, xj). The larger Si,j is, the more similar
the two documents are. Sine only similarity relation is considered in this task, we have only one
edge function (K2 = 1).

The C-CRF for Pseudo Relevance Feedback then becomes

Pr(y|x) =
1

Z(x)
exp

{∑
i

K1∑
k=1

−αk(yi − xi,k)2 +
∑
i,j

−β

2
Si,j(yi − yj)

2

}
, (9)

where Z(x) is defined as

Z(x) =

∫

y

exp

{∑
i

K1∑
k=1

−αk(yi − xi,k)2 +
∑
i,j

−β

2
Si,j(yi − yj)

2

}
dy. (10)

To guarantee that exp
{∑

i

∑K1
k=1−αk(yi − xi,k)2 +

∑
i,j −β

2 Si,j(yi − yj)2
}

is integrable, we

must have αk > 03 and β > 0.

The item
∑

i

∑K1
k=1−αk(yi − xi,k)2 in Eq. (9) plays a role similar to the first round of PRF:

the ranking score yi is determined solely by the relevance factors of document xi. The item∑
i,j −β

2 Si,j(yi − yj)2 in Eq. (9) plays a role similar to the second round of PRF: it makes sure that
similar documents have similar ranking scores. We can see that CRF combines the two rounds of
ranking of PRF into one.

To rank the documents of a query, we calculate the ranking scores of documents with respect to this
query in the following way.

F (x) = arg max
y

Pr(y|x;α, β) = (αT eI + βD − βS)−1Xα. (11)

where e is a K1-dimensional all-ones vector, I is an n × n identity matrix, S is a similarity matrix
with Si,j = s(xi, xj), D is an n× n diagonal matrix with Di,i =

∑
j Si,j , and X is a factor matrix

with Xi,k = xi,k. If we ignore the relation between documents and set β = 0, then the ranking
model degenerates to F (x) = Xα, which is equivalent to a linear model used in conventional local
ranking.

For n documents, the time complexity of straightforwardly computing the ranking model (11) is of
order O(n3) and thus the computation is expensive. The main cost of the computation comes from
matrix inversion. We employ a fast computation technique to quickly perform the task. First, we
make S a sparse matrix, which has at most K non-zero values in each row and each column. We
can do so by only considering the similarity between each document and its K

2 nearest neighbors.
Next, we use the Gibbs-Poole-Stockmeyer algorithm [9] to convert S to a banded matrix. Finally
we solve the following system of linear equation and take the solution as ranking scores.

(αT eI + βD − βS)F (x) = Xα (12)
Since S is a banded matrix, the scores F (x) in Eq.(12) can be computed with time complexity of
O(n) when K ¿ n [5]. That is to say, the time complexity of testing a new query is comparable
with those of existing local ranking methods.

1We omit superscript (q) in this section when there is no confusion.
2Note that Si,j is not computed from the ranking factors of documents xi and xj but from their raw terms.

For more details, please refer to our technique report [13].
3αk > 0 means that the factor xi,k is positively correlated with the ranking score yi. Considering that some

factor may be negatively correlated with yi, we double a factor xi,k into two factors xi,k and xi,k′ = −xi,k in
experiments. Then if αk′ > αk, one can get the factor xi,k is negatively correlated with the ranking score yi.
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Algorithm 1 Learning Algorithm of Continuous CRF for Pseudo Relevance Feedback

Input: training data {(x(1), y(1)), · · · , (x(N), y(N))}, number of iterations T and learning rate η
Initialize parameter log αk and log β
for t = 1 to T do

for i = 1 to N do
Compute gradient ∇log αk

and ∇log β using Eq. (13) and (14) for a single query
(x(i), y(i), S(i)).
Update log αk = log αk + η ×∇log αk

and log β = log β + η ×∇log β

end for
end for
Output: parameters of CRF model αk and β.

4.1.2 Learning

In learning, we try to maximize the log likelihood. Note that maximization of L(α, β) in Eq. (6) is
a constrained optimization problem because we need to guarantee that αk > 0 and β > 0. Gradient
Ascent cannot be directly applied to such a constrained optimization problem. Here we adopt a
technique similar to that in [3]. Specifically, we maximize L(α, β) with respect to log αk and log β
instead of αk and β. As a result, the new optimization issue becomes unconstrained and Gradient
Ascent method can be used. Algorithm 1 shows the learning algorithm based on Stochastic Gradient
Ascent 4, in which the gradient ∇log αk

and ∇log β can be computed as follows5.

∇log αk =
∂L(α, β)

∂ log αk
= −αk

{(
−1

2
(A−T ) :T I :

)
+ 2XT

,kA−1b− bT A−1A−1b +
∑

i

(y2
i − 2yixi,k)

}

(13)

∇log β =
∂L(α, β)

∂ log β
= −β

{(
−1

2
(A−T ) :T (D − S) :

)
− bT A−1(D − S)A−1b +

∑
i,j

1

2
Si,j(yi − yj)

2

}

(14)
where A = αT eI + βD− βS, |A| is determinant of matrix A, b = Xα, c =

∑
i

∑K1
k=1 αkx2

i,k, X :
denotes the long column vector formed by concatenating the columns of matrix X , and X,k denotes
the k-th column of matrix X .

4.2 Topic Distillation (TD)

Topic Distillation [12] is another example of global ranking. In this task, one selects a page that can
best represent the topic of the query from a web site by using structure (relation) information of the
site. If both a page and its parent page are concerned with the topic, then the parent page is preferred
(to be ranked higher) [12, 11]. Here we apply C-CRF to Topic Distillation.

4.2.1 Continuous CRF for Topic Distillation

We define the vertex feature function hk(yi, x) in the same way as in Eq.(7).

Recall that in Topic Distillation, a page is more preferred than its child page if both of them are
relevant to a query. Here the parent-child relation between two pages is supposed to be given. We
incorporate them into the edge feature function. Specifically, we define the (and the only) edge
feature function as

g(yi, yj , x) = Ri,j(yi − yj), (15)
where Ri,j = r(xi, xj) denotes the parent-child relation: r(xi, xj) = 1 if document xi is the parent
of xj , and r(xi, xj) = 0 for other cases.

The C-CRF for Topic Distillation then becomes

Pr(y|x) =
1

Z(x)
exp

{∑
i

K1∑
k=1

−αk(yi − xi,k)2 +
∑
i,j

βRi,j(yi − yj)

}
, (16)

4Stochastic Gradient means conducting gradient ascent from one query to another.
5Details can be found in [13].
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where Z(x) is defined as

Z(x) =

∫

y

exp

{∑
i

K1∑
k=1

−αk(yi − xi,k)2 +
∑
i,j

βRi,j(yi − yj)

}
dy. (17)

To guarantee that exp
{∑

i

∑K1
k=1

−αk(yi − xi,k)2 +
∑

i,j
βRi,j(yi − yj)

}
is integrable, we must

have αk > 0.

The C-CRF can naturally model Topic Distillation: if the value of Ri,j is one, then the value of yi is
large than that of yj with high probability.

To rank the documents of a query, we calculate the ranking scores in the following way.

F (x) = arg max
y

Pr(y|x;α, β) =
1

αT e
(2Xα + β(Dr −Dc)e) (18)

where Dr and Dc are two diagonal matrixes with Dri,i =
∑

j Ri,j and Dci,i =
∑

j Rj,i.

Similarly to Pseudo Relevance Feedback, if we ignore the relation between documents and set β =
0, the ranking model degenerates to a linear ranking model in conventional local ranking.

4.2.2 Learning

In learning, we use Gradient Ascent to maximize the log likelihood. We use the same technique as
that for PRF to guarantee αk > 0. The gradient of L(α, β) with respect to log αk and β can be
found6 in Eq. (19) and (20). Due to space limitation, we omit the details of the learning algorithm,
which is similar to Algorithm 1.

∇log αk =
∂L(α, β)

∂ log αk
= αk

{
n

2a
+

1

4a2
bT b− 1

2a
bT X,k +

∑
i

x2
i,k −

∑
i

(yi − xi,k)2

}
(19)

∇β =
∂L(α, β)

∂β
= − 1

2a
bT (Dr −Dc)e +

∑
i,j

Ri,j(yi − yj) (20)

where where n denotes number of documents for the query, and a = αT e, b = 2Xα+β(Dr−Dc)e,
c =

∑
i

∑K1
k=1 αkx2

i,k, X,k denotes the k-th column of matrix X .

4.3 Continuous CRF for Multiple Relations

We only consider using one type of relation in the previous two cases. We can also conduct global
ranking by utilizing multiple types of relation. C-CRF is a powerful tool to perform the task. It can
easily incorporate various types of relation as edge feature functions. For example, we can combine
similarity relation and parent-child relation by using the following C-CRF model:

Pr(y|x) =
1

Z(x)
exp

{∑

i

K1∑

k=1

−αk(yi − xi,k)2 +
∑

i,j

(
β1Ri,j(yi − yj)− β2

Si,j

2
(yi − yj)2

)

.

In this case, the ranking scores of documents for a new query is calculated as follows.

F (x) = arg max
y

Pr(y|x;α, β) = (αT eI + β2D − β2S)−1

(
Xα +

β1

2
(Dr −Dc)e

)

5 Experiments

We empirically tested the performance of C-CRF on both Pseudo Relevance Feedback and Topic
Distillation7. As data, we used LETOR [10], which is a public dataset for learning to rank research.

6Please refer to [13] for the derivation of the two equations.
7Please refer to [13] for more details of experiments.
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Table 1: Ranking Accuracy

PRF on OHSUMED Data
Algorithms ndcg1 ndcg2 ndcg5

BM25 0.3994 0.3931 0.3972
BM25-PRF 0.3962 0.4277 0.3981
RankSVM 0.4952 0.4755 0.4579

ListNet 0.5231 0.497 0.4662
C-CRF 0.5443 0.4986 0.4808

TD on TREC2004 Data
Algorithms ndcg1 ndcg2 ndcg5

BM25 0.3067 0.2933 0.2293
ST 0.3200 0.3133 0.3232
SS 0.3200 0.3200 0.3227

RankSVM 0.4400 0.4333 0.3935
ListNet 0.4400 0.4267 0.4209
C-CRF 0.5200 0.4733 0.4428

We made use of OHSUMED in LETOR for Pseudo Relevance Feedback and TREC2004 in LETOR
for Topic Distillation. As evaluation measure, we utilized NDCG@n (Normalized Discounted Cu-
mulative Gain) [6].

As baseline methods for the two tasks, we used several local ranking algorithms such as BM25,
RankSVM [7] and ListNet [2]. BM25 is a widely used non-learning ranking method. RankSVM
is a state-of-the-art algorithm of the pairwise approach to learning to rank, and ListNet is a state-
of-the-art algorithm of the listwise approach. For Pseudo Relevance Feedback, we also compared
with a traditional feedback method based on BM25 (BM25-PRF for short). For Topic Distillation,
we also compared with two traditional methods, sitemap based term propagation (ST) and sitemap
based score propagation (SS) [11], which propagate the relevance along sitemap structure. These
algorithms can be regarded as a kind of global ranking methods but they are not based on supervised
learning. We conducted 5 fold cross validation for C-CRF and all the baseline methods, using the
partition provided in LETOR.

The left part of Table 1 shows the ranking accuracies of BM25, BM25-PRF, RankSVM, ListNet,
and C-CRF, in terms of NDCG averaged over five trials on OHSUMED data. C-CRF’s performance
is superior to the performances of RankSVM and ListNet. This is particularly true for NDCG@1;
C-CRF achieves about 5 points higher accuracy than RankSVM and more than 2 points higher
accuracy than ListNet. The results indicate that C-CRF based global ranking can indeed improve
search relevance. C-CRF also outperforms BM25-PRF, the traditional method of using similarity
information for ranking. The result suggests that it is better to employ a supervised learning approach
for the task.

The right part of Table 1 shows the performances of BM25, SS, ST, RankSVM, ListNet, and C-CRF
model in terms of NDCG averaged over 5 trials on TREC data. C-CRF outperforms RankSVM and
ListNet at all NDCG positions. This is particularly true for NDCG@1. C-CRF achieves 8 points
higher accuracy than RankSVM and ListNet, which is a more than 15% relative improvement. The
result indicates that C-CRF based global ranking can achieve better results than local ranking for this
task. C-CRF also outperforms SS and ST, the traditional method of using parent-child information
for Topic Distillation. The result suggests that it is better to employ a learning based approach.

6 Related Work

Most existing work on using relation information in learning is for classification (e.g., [19, 1]) and
clustering (e.g., [4, 15]). To the best of our knowledge, there was not much work on using relation for
ranking, except Relational Ranking SVM (RRSVM) proposed in [14], which is based on a similar
motivation as our work.

There are large differences between RRSVM and C-CRF, however. For RRSVM, it is hard to com-
bine the uses of multiple types of relation. In contrast, C-CRF can easily do it by incorportating the
relations in different edge feature functions. There is a hyper parameter β in RRSVM representing
the trade-off between content and relation information. It needs to be manually tuned. This is not
necessary for C-CRF, however, because the trade-off between them is handled naturally by the fea-
ture weights in the model, which can be learnt automatically. Furthermore, in some cases certain
approximation must be made on the model in RRSVM (e.g. for Topic Distillation) in order to fit
into the learning framework of SVM. Such kind of approximation is unnecessary in C-CRF anyway.
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Besides, C-CRF achieves better ranking accuracy than that reported for RRSVM [14] on the same
benchmark dataset.

7 Conclusions

We studied learning to rank methods for global ranking problem, in which we use both content
information of objects and relation information between objects for ranking. A Continuous CRF
(C-CRF) model was proposed for performing the learning task. Taking Pseudo Relevance Feedback
and Topic Distillation as examples, we showed how to use C-CRF in global ranking. Experimental
results on benchmark data show that C-CRF improves upon the baseline methods in the global
ranking tasks.

There are still issues which we need to investigate at the next step. (1) We have studied the method
of learning C-CRF with Maximum Likelihood Estimation. It is interesting to see how to apply
Maximum A Posteriori Estimation to the problem. (2) We have assumed absolute ranking scores
given in training data. We will study how to train C-CRF with relative preference data. (3) We have
studied two global ranking tasks: Pseudo Relevance Feedback and Topic Distillation. We plan to
look at other tasks in the future.
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