
Transfer Learning by Distribution Matching
for Targeted Advertising

Steffen Bickel, Christoph Sawade, and Tobias Scheffer
University of Potsdam, Germany

{bickel, sawade, scheffer}@cs.uni-potsdam.de

Abstract

We address the problem of learning classifiers for several related tasks that may
differ in their joint distribution of input and output variables. For each task, small –
possibly even empty – labeled samples and large unlabeled samples are available.
While the unlabeled samples reflect the target distribution, the labeled samples
may be biased. This setting is motivated by the problem of predicting sociodemo-
graphic features for users of web portals, based on the content which they have
accessed. Here, questionnaires offered to a portion of each portal’s users produce
biased samples. We derive a transfer learning procedure that produces resampling
weights which match the pool of all examples to the target distribution of any
given task. Transfer learning enables us to make predictions even for new portals
with few or no training data and improves the overall prediction accuracy.

1 Introduction

We study a problem setting of transfer learning in which classifiers for multiple tasks have to be
learned from biased samples. Some of the multiple tasks will likely relate to one another, but one
cannot assume that the tasks share a joint conditional distribution of the class label given the input
variables. The challenge of multi-task learning is to come to a good generalization across tasks: each
task should benefit from the wealth of data available for the entirety of tasks, but the optimization
criterion needs to remain tied to the individual task at hand.

A common method for learning under covariate shift (marginal shift) is to weight the biased train-
ing examples by the test-to-training ratio ptest(x)

ptrain(x) to match the marginal distribution of the test data
[1]. Instead of separately estimating the two potentially high-dimensional densities one can directly
estimate the density ratio – by kernel mean matching [2], minimization of the KL-divergence be-
tween test and weighted training data [3], or by discrimination of training against test data with a
probabilistic classifier [4].

Hierarchical Bayesian models are a standard statistical approach to multi-task learning [5, 6, 7].
Here, a common prior on model parameters across tasks captures the task dependencies. Similar to
the idea of learning under marginal shift by weighting the training examples, [8] devise a method
for learning under joint shift of covariates and labels over multiple tasks that is based on instance-
specific rescaling factors. We generalize this idea to a setting where not only the joint distributions
between tasks may differ but also the training and test distribution within each task.

Our work is motivated by the targeted advertising problem for which the goal is to predict sociode-
mographic features (such as gender, age, or marital status) of web users, based on their surfing
history. Many types of products are specifically targeted at clearly defined market segments, and
marketing organizations seek to disseminate their message under minimal costs per delivery to a
targeted individual. When sociodemographic attributes can be identified, delivering advertisements
to users outside the target segment can be avoided. For some campaigns, clicks and resulting on-

line purchases constitute an ultimate success criterion. However, for many campaigns – including
campaigns for products that are not typically purchased on the web – the sole goal is to deliver the
advertisement to customers in the target segment.

The paper is structured as follows. Section 2 defines the problem setting. In Section 3, we devise our
transfer learning model. We empirically study transfer learning for targeted advertising in Section 4
and Section 5 concludes.

2 Problem Setting

We consider the following multi-task learning scenario. Each of several tasks z is characterized by
an unknown joint distribution ptest(x, y|z) = ptest(x|z)p(y|x, z) over features x and labels y given
the task z. The joint distributions of different tasks may differ arbitrarily but usually some tasks
have similar distributions. An unlabeled test sample T = 〈(x1, z1), . . . , (xm, zm)〉 with examples
from different tasks is available. For each test example, attributes xi and the originating task zi are
known. The test data for task z are governed by ptest(x|z).

A labeled training set L = 〈(xm+1, ym+1, zm+1), . . . , (xm+n, ym+n, zm+n)〉 collects examples
from several tasks. In addition to xi and zi, the label yi is known for each example. The training
data for task z is drawn from a joint distribution ptrain(x, y|z) = ptrain(x|z)p(y|x, z) that may
differ from the test distribution in terms of the marginal distribution ptrain(x|z). The training and
test marginals may differ arbitrarily, as long as each x with positive ptest(x|z) also has a positive
ptrain(x|z). This guarantees that the training distribution covers the entire support of the test distri-
bution for each task. The conditional distribution p(y|x, z) of test and training data is identical for
a given task z, but conditionals can differ arbitrarily between tasks. The entire training set over all
tasks is governed by the mixed density ptrain(z)ptrain(x, y|z). The prior ptrain(z) specifies the task
proportions. There may be tasks with only a few or no labeled data.

The goal is to learn a hypothesis fz : x 7→ y for each task z. This hypothesis fz(x) should correctly
predict the true label y of unseen examples drawn from p(x|z) for all z. That is, it should minimize
the expected loss

E(x,y)∼ptest(x,y|z)[`(fz(x), y)]

with respect to the unknown distribution ptest(x, y|z) for each individual z.

This abstract problem setting models the targeted advertising application as follows. The feature
vector x encodes the web surfing behavior of a user of web portal z (task). For a small number of
users the sociodemographic target label y (e.g., gender of user) is collected through web surveys. For
new portals the number of such labeled training instances is initially small. The sociodemographic
labels for all users of all portals are to be predicted. The joint distribution ptest(x, y|z) can be differ-
ent between portals since they attract specific populations of users. The training distribution differs
from the test distribution because the response to the web surveys is not uniform with respect to the
test distribution. Since the completion of surveys cannot be enforced, it is intrinsically impossible
to obtain labeled samples that are governed by the test distribution. Therefore, a possible difference
between the conditionals ptest(y|x, z) and ptrain(y|x, z) cannot be reflected in the model.

One reference strategy is to learn individual models for each target task z by minimizing an ap-
propriate loss function on the portion of Lz = {(xi, yi, zi) ∈ L : zi = z}. This procedure does
not exploit data of related tasks. In addition, it minimizes the loss with respect to ptrain(x, y|z);
the minimum of this optimization problem will not generally coincide with the minimal loss on
ptest(x, y|z). The other extreme is a one-size-fits-all model f∗(x) trained on the pooled training
sample L. The training sample may deviate arbitrarily from the target distribution ptest(x, y|z).

In order to describe the following model accurately, we introduce selector variable s which distin-
guishes training (s = 1) from test distributions (s =−1). Symbol ptrain(x, y|z) is a shorthand for
p(x, y|z, s=1); likewise, ptest(x, y|z) = p(x, y|z, s=−1).

3 Transfer Learning by Distribution Matching

In learning a classifier ft(x) for target task t, we seek to minimize the loss function with respect
to ptest(x, y|t) = p(x, y|t, s =−1). Both, t and z are values of the random variable task; value t

identifies the current target task. Simply pooling the available data for all tasks would create a sample
governed by

∑
z p(z|s = 1)p(x, y|z, s = 1). Our approach is to create a task-specific resampling

weight rt(x, y) for each element of the pool of examples. The resampling weights match the pool
distribution to the target distribution p(x, y|t, s=−1). The resampled pool is governed by the correct
target distribution, but is larger than the labeled sample of the target task. Instead of sampling from
the pool, one can weight the loss incurred by each instance by the resampling weight.

The expected weighted loss with respect to the mixture distribution that governs the pool equals the
loss with respect to the target distribution p(x, y|t, s =−1). Equation 1 defines the condition that
the resampling weights have to satisfy.

E(x,y)∼p(x,y|t,s=−1)[`(f(x, t), y)] (1)
= E(x,y)∼∑

z p(z|s=1)p(x,y|z,s=1) [rt(x, y)`(f(x, t), y)]
In the following, we will show that

rt(x, y) =
p(x, y|t, s=1)∑

z p(z|s=1)p(x, y|z, s=1)
p(x|t, s=−1)
p(x|t, s=1)

(2)

satisfies Equation 1. Equation 3 expands the expectation and introduces two fractions that equal
one. We can factorize p(x, y|t, s = −1) and expand the sum over z in the numerator to run over
the entire expression because the integral over (x, y) is independent of z (Equation 4). Equation 5
rearranges some terms and Equation 6 is the expected loss over the distribution of all tasks weighted
by rt(x, y).
E(x,y)∼p(x,y|t,s=−1)[`(f(x, t), y)]

=
∫ ∑

z p(z|s=1)p(x, y|z, s=1)∑
z′ p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=1)
p(x|t, s=1)

p(x, y|t, s=−1)`(f(x, t), y)dxdy (3)

=
∫ ∑

z

(
p(z|s=1)p(x, y|z, s=1)∑
z′p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=1)
p(x|t, s=1)

p(x|t, s=−1)p(y|x, t)`(f(x, t), y)
)

dxdy

(4)

=
∫ ∑

z

(
p(z|s=1)p(x, y|z, s=1)

p(x|t, s=1)p(y|x, t)∑
z′ p(z′|s=1)p(x, y|z′, s=1)

p(x|t, s=−1)
p(x|t, s=1)

(5)

`(f(x, t), y)
)

dxdy

= E(x,y)∼∑
z p(z|s=1)p(x,y|z,s=1)

[
p(x, y|t, s=1)∑

z′ p(z′|s=1)p(x, y|z′, s=1)
p(x|t, s=−1)
p(x|t, s=1)

`(f(x, t), y)
]

(6)

Equation 5 signifies that we can train a hypothesis for task t by minimizing the expected loss over
the distribution of all tasks weighted by rt(x, y). This amounts to minimizing the expected loss with
respect to the target distribution p(x, y|t, s =−1). The resampling weights of Equation 2 have an
intuitive interpretation: The first fraction accounts for the difference in the joint distributions across
tasks, and the second fraction accounts for the covariate shift within the target task.

Equation 5 leaves us with the problem of estimating the product of two density ratios rt(x, y) =
p(x,y|t,s=1)∑

z p(z|s=1)p(x,y|z,s=1)
p(x|t,s=−1)
p(x|t,s=1) . One might be tempted to train four separate density estimators,

one for each of the two numerators and the two denominators. However, obtaining estimators for
potentially high-dimensional densities is unnecessarily difficult because ultimately only a scalar
weight is required for each example.

3.1 Discriminative Density Ratio Models

In this section, we derive a discriminative model that directly estimates the two factors r1
t (x, y) =

p(x,y|t,s=1)∑
z p(z|s=1)p(x,y|z,s=1) and r2

t (x) = p(x|t,s=−1)
p(x|t,s=1) of the resampling weights rt(x, y) = r1

t (x, y)r2
t (x)

without estimating the individual densities.

We reformulate the first density ratio r1
t (x, y) = p(x,y|t,s=1)∑

z p(z|s=1)p(x,y|z,s=1) in terms of a conditional
model p(t|x, y, s = 1). This conditional has the following intuitive meaning: Given that an in-
stance (x, y) has been drawn at random from the pool distribution

∑
z p(z|s = 1)p(x, y|z, s = 1)

over all tasks (including target task t); the probability that (x, y) originates from p(x, y|t, s = 1) is
p(t|x, y, s = 1). The following equations assume that the prior on the size of the target sample is
greater than zero, p(t|s = 1) > 0. In Equation 7 Bayes’ rule is applied to the numerator and z is
summed out in the denominator. Equation 8 follows by dropping the normalization factor p(t|s=1)
and by canceling p(x, y|s=1).

r1
t (x, y) =

p(x, y|t, s=1)∑
z p(z|s=1)p(x, y|z, s=1)

=
p(t|x, y, s=1)p(x, y|s=1)

p(t|s=1)p(x, y|s=1)
(7)

∝ p(t|x, y, s=1) (8)

The significance of Equation 8 is that it shows how the first factor of the resampling weights r1
t (x, y)

can be determined without knowledge of any of the task densities p(x, y|z, s = 1). The right hand
side of Equation 8 can be evaluated based on a model p(t|x, y, s = 1) that discriminates labeled
instances of the target task against labeled instances of the pool of examples for all non-target tasks.

Similar to the first density ratio, the second density ratio r2
t (x) = p(x|t,s=−1)

p(x|t,s=1) can be expressed
using a conditional model p(s=1|x, t). In Equation 9 Bayes’ rule is applied twice. The two terms
of p(x|t) cancel each other out, p(s = 1|t)/p(s = −1|t) is just a normalization factor, and since
p(s=−1|x, t) = 1− p(s=1|x, t), Equation 10 follows.

r2
t (x) =

p(x|t, s=−1)
p(x|t, s=1)

=
p(s=−1|x, t)p(x|t)

p(s=−1|t)
p(s=1|t)

p(s=1|x, t)p(x|t) (9)

∝ 1
p(s=1|x, t)

− 1 (10)

The significance of the above derivations is that instead of the four potentially high-dimensional
densities in rt(x, y), only two conditional distributions with binary variables (Equations 8 and 10)
need to be estimated. One can apply any probabilistic classifier to this estimation.

3.2 Estimation of Discriminative Density Ratios

For estimation of r1
t (x, y) we model p(t|x, y, s=1) of Equation 8 with a logistic regression model

p(t|x, y, s=1,ut) =
1

1 + exp(−uT
t Φ(x, y))

over model parameters ut using a problem-specific feature mapping Φ(x, y). We define this map-
ping for binary labels, Φ(x, y) =

[
δ(y, +1)Φ(x)
δ(y,−1)Φ(x)

]
, where δ is the Kronecker delta. In the absence

of prior knowledge about the similarity of classes, input features x of examples with different class
labels y are mapped to disjoint subsets of the feature vector. With this feature mapping the models
for positive and negative examples do not interact and can be trained independently. Any suitable
mapping Φ(x) can be applied. In [8], p(t|x, y, s = 1) is modeled for all tasks jointly in single op-
timization problem with a soft-max model. Empirically, we observe that a separate binary logistic
regression model (as described above) for each task yields more accurate results with the drawback
of a slightly increased overall training time.

Optimization Problem 1 For task t: over parameters ut, maximize

∑

(x,y)∈Lt

log p(t|x, y, s=1,ut) +
∑

(x,y)∈L\Lt

log(1− p(t|x, y, s=1,ut))− uT
t ut

2σu
.

The solution of Optimization Problem 1 is a MAP estimate of the logistic regression using a
Gaussian prior on ut. The estimated vector ut leads to the first part of the weighting factor
r̂1
t (x, y) ∝ p(t|x, y, s=1,ut) according to Equation 8. r̂1

t (x, y) is normalized so that the weighted
empirical distribution over the pool L sums to one, 1

|L|
∑

(x,y)∈L r̂1
t (x, y) = 1.

According to Equation 10 density ratio r2
t (x) = p(x|t,s=−1)

p(x|t,s=1) ∝ 1
p(s=1|x,t) − 1 can be inferred

from p(s = 1|x, t) which is the likelihood that a given x for task t originates from the training

distribution, as opposed to from the test distribution. A model of p(s = 1|x, t) can be obtained by
discriminating a sample governed by p(x|t, s=1) against a sample governed by p(x|t, s=−1) using
a probabilistic classifier. Unlabeled test data Tt is governed by p(x|t, s=−1). The labeled pool L
over all training examples weighted by r1

t (x, y) can serve as a sample governed by p(x|t, s = 1);
the labels y can be ignored for this step. Empirically, we find that using the weighted pool L
instead of just Lt (as used by [4]) achieves better results because the former sample is larger. We
model p(s=1|x,vt) of Equation 10 with a regularized logistic regression on target variable s with
parameters vt (Optimization Problem 2). Labeled examples L are weighted by the estimated first
factor r̂1

t (x, y) using the outcome of Optimization Problem 1.

Optimization Problem 2 For task t: over parameters vt, maximize

∑

(x,y)∈L

r̂1
t (x, y) log p(s=1|x,vt) +

∑

x∈Tt

log p(s=−1|x,vt)− vT
t vt

2σv
.

With the result of Optimization Problem 2 the estimate for the second factor is r̂2
t (x) ∝ 1

p(s=1|x,vt)
−

1, according to Equation 10. r̂2
t (x) is normalized so that the final weighted empirical distribution

over the pool sums to one, 1
|L|

∑
(x,y)∈L r̂1

t (x, y)r̂2
t (x) = 1.

3.3 Weighted Empirical Loss and Target Model

The learning procedure first determines resampling weights r̂t(x, y) = r̂1
t (x, y)r̂2

t (x) by solving
Optimization Problems 1 and 2. These weights can now be used to reweight the labeled pool over
all tasks and train the target model for task t. Using the weights we can evaluate the expected
loss over the weighted training data as displayed in Equation 11. It is the regularized empirical
counterpart of Equation 6.

E(x,y)∼L

[
r̂1
t (x, y)r̂2

t (x)`(f(x, t), y)
]
+

wT
t wt

2σ2
w

(11)

Optimization Problem 3 minimizes Equation 11, the weighted regularized loss over the training
data using a standard Gaussian log-prior with variance σ2

w on the parameters wt. Each example is
weighted by the two discriminatively estimated density fractions from Equations 8 and 10 using the
solution of Optimization Problems 1 and 2.

Optimization Problem 3 For task t: over parameters wt, minimize

1
|L|

∑

(x,y)∈L

r̂1
t (x, y)r̂2

t (x)`(f(x,wt), y) +
wT

t wt

2σ2
w

.

In order to train target models for all tasks, instances of Optimization Problems 1 to 3 are solved for
each task.

4 Targeted Advertising

We study the benefit of distribution matching and other reference methods on targeted advertising
for four web portals. The portals play the role of tasks. We manually assign topic labels, out of
a fixed set of 373 topics, to all web pages on all portals. For each user the topics of the surfed
pages are tracked and the topic counts are stored in cookies of the user’s web browser. The average
number of surfed topics per user over all portals is 17. The feature vector x of a specific surfer is the
normalized 373 dimensional vector of topic counts.

A small proportion of users is asked to fill out a web questionnaire that collects sociodemographic
user profiles. About 25% of the questionnaires get completely filled out (accepted) and in 75% of the
cases the user rejects to fill out the questionnaire. The accepted questionnaires constitute the training
data L. The completion of the questionnaire cannot be enforced and it is therefore not possible to
obtain labeled data that is governed by the test distribution of all users that surf the target portal. In
order to evaluate the model, we approximate the distribution of users who reject the questionnaire

as follows. We take users who have answered the very first survey question (gender) but have
then discontinued the survey as an approximation of the reject set. We add the correct proportion
(25%) of users who have taken the survey, and thereby construct a sample that is governed by an
approximation of the test distribution. Consequently, in our experiments we use the binary target
label y ∈ {male, female}. Table 1 gives an overview of the data set.

Table 1: Portal statistics: number of accepted, partially rejected, and test examples (mix of all partial
reject (=75%) and 25% accept); ratio of male users in training (accept) and test set.

portal # accept # partial reject # test % male training % male test
family 8073 2035 2713 53.8% 46.6%
TV channel 8848 1192 1589 50.5% 50.1%
news 1 3051 149 199 79.4% 76.7%
news 2 2247 143 191 73.0% 76.0%

We compare distribution matching on labeled and unlabeled data (Optimization Problems 1 to 3)
and distribution matching only on labeled data by setting r̂2

t (x) = 1 in Optimization Problem 3 to
the following reference models. The first baseline is a one-size-fits-all model that directly trains a
logistic regression on L (setting r̂1

t (x, y)r̂2
t (x) = 1 in Optimization Problem 3). The second baseline

is a logistic regression trained only on Lt, the training examples of the target task. Training only on
the reweighted target task data and correcting for marginal shift with respect to the unlabeled test
data is the third baseline [4].

The last reference method is a hierarchical Bayesian model. Evgeniou and Pontil [6] describe a fea-
ture mapping for regularized regression models that corresponds to hierarchical Bayes with Gaus-
sian prior on the regression parameters of the tasks. Training a logistic regression with their feature
mapping over training examples from all tasks is equivalent to a joint MAP estimation of all model
parameters and the mean of the Gaussian prior.

We evaluate the methods using all training examples from non-target tasks and different numbers
of training examples of the target task. From all available accept examples of the target task we
randomly select a certain number (0-1600) of training examples. From the remaining accept exam-
ples of the target task we randomly select an appropriate number and add them to all partial reject
examples of the target task so that the evaluation set has the right proportions as described above.
We repeat this process ten times and report the average accuracies of all methods.

We use a logistic loss as the target loss of distribution matching in Optimization Problem 3 and all
reference methods. We compare kernelized variants of Optimization Problems 1 to 3 with RBF,
polynomial, and linear kernels and find the linear kernel to achieve the best performance on our data
set. All reported results are based on models with linear kernels. For the optimization of the logistic
regression models we use trust region Newton descent [9].

We tune parameters σu, σv, and σw with grid search by executing the following steps.

1. σu is tuned by nested ten-fold cross-validation. The outer loop is a cross-validation on Lt. In
each loop Optimization Problem 1 is solved on L¬t merged with current training folds of Lt.

• The inner loop temporarily tunes σw by cross-validation on rescaled L¬t merged with the
rescaled current training folds of Lt. At this point σw cannot be finally tuned because σv has
not been tuned yet. In each loop Optimization Problem 3 is solved with fixed r̂2

t (x) = 1. The
temporary σw is chosen to maximize the accuracy on the tuning folds.

Optimization Problem 3 is solved for each outer loop with the temporary σw and with r̂2
t (x) = 1.

The final σu is chosen to maximize the accuracy on the tuning folds of Lt over all outer loops.

2. σv is tuned by likelihood cross-validation on Tt ∪ L. The labels of the labeled data are ignored
for this step. Test data Tt of the target task as well as the weighted pool L (weighted by r̂1

t (x, y),
based on previously tuned σu) are split into ten folds. With the nine training folds of the test data
and the nine training folds of the weighted pool L, Optimization Problem 2 is solved. Parameter

distr. matching on lab. and unlab. data
distribution matching on labeled data
hierarchical Bayes

one-size-�ts-all on pool of labeled data
training only on lab. data of target task
training on lab. and unlab. data of targ. task

 0.56

 0.6

 0.64

 0.68

0 25 50 100 200 400 800 1600

ac
cu

ra
cy

training examples for target portal

family

 0.64

 0.68

 0.72

0 25 50 100 200 400 800 1600

ac
cu

ra
cy

training examples for target portal

TV channel

 0.72

 0.76

 0.8

0 25 50 100 200 400 800 1600

ac
cu

ra
cy

training examples for target portal

news 1

 0.8

 0.84

 0.88

0 25 50 100 200 400 800 1600

ac
cu

ra
cy

training examples for target portal

news 2

Figure 1: Accuracy over different number of training examples for target portal. Error bars indicate
the standard error of the differences to distribution matching on labeled data.

σv is chosen to maximize the log-likelihood
∑

(x,y)∈Ltune

r̂1
t (x, y) log p(s=1|x,vt) +

∑

x∈T tune
t

log p(s=−1|x,vt)

on the tuning folds of test data and weighted pool (denoted by Ltune and T tune
t) over all ten

cross-validation loops.
Applying non-uniform weights to labeled data (some of which may even be zero) reduces the
effective sample size. This leads to a bias-variance trade-off [1]: training on unweighted data
causes a bias, applying non-uniform weights reduces the sample size and increases the variance
of the estimator. We follow [1] and smooth the estimated weights by r̂2

t (x)λ before including
them into Optimization Problem 3. The smoothing parameter λ biases the weights towards
uniformity and thereby controls the trade-off. Without looking at the test data of the target task
we tune η on the non-target tasks so that the accuracy of the distribution matching method is
maximized. This procedure usually results in η values around 0.3.

3. Finally, σw is tuned by cross-validation on L rescaled by r̂1
t (x, y)r̂2

t (x) (based on the previously
tuned parameters σu and σv). In each cross-validation loop Optimization Problem 3 is solved.

Figure 1 displays the accuracies over different numbers of labeled data for the four different target
portals. The error bars are the standard errors of the differences to the distribution matching method
on labeled data (solid blue line).

For the “family” and “TV channel” portals the distribution matching method on labeled and unla-
beled data outperforms all other methods in almost all cases. The distribution matching method on

labeled data outperforms the baselines trained only on the data of the target task for all portals and
all data set sizes and it is at least as good as the one-size-fits-all model in almost all cases. The
hierarchical Bayesian method yields low accuracies for smaller numbers of training examples but
becomes comparable to the distribution matching method when training set sizes of the target portal
increase. The simple covariate shift model that trains only on labeled and unlabeled data of the target
task does not improve over the iid model that only trains on the labeled data of the target task. This
indicates that the marginal shift between training and test distributions is small, or could indicate that
the approximation of the reject distribution which we use in our experimentation is not sufficiently
close. Either reason also explains why accounting for the marginal shift in the distribution matching
method does not always improve over distribution matching using only labeled data.

Transfer learning by distribution matching passes all examples for all tasks to the underlying logistic
regressions. This is computationally more expensive than the reference methods. For example, the
single task baseline trains only one logistic regression on the examples of the target task. Empiri-
cally, we observe that all methods scale linearly in the number training examples.

5 Conclusion

We derived a multi-task learning method that is based on the insight that the expected loss with
respect to the unbiased test distribution of the target task is equivalent to the expected loss over
the biased training examples of all tasks weighted by a task specific resampling weight. This led
to an algorithm that discriminatively estimates these resampling weights by training two simple
conditional models. After weighting the pooled examples over all tasks the target model for a
specific task can be trained.

In our empirical study on targeted advertising, we found that distribution matching using labeled
data outperforms all reference methods in almost all cases; the differences are particularly large for
small sample sizes. Distribution matching with labeled and unlabeled data outperforms the reference
methods and distribution matching with only labeled data in two out of four portals. Even with no
labeled data of the target task the performance of the distribution matching method is comparable to
training on 1600 examples of the target task for all portals.

Acknowledgments

We gratefully acknowledge support by nugg.ad AG and the German Science Foundation DFG. We
wish to thank Stephan Noller and the nugg.ad team for their valuable contributions.

References
[1] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood func-

tion. Journal of Statistical Planning and Inference, 90:227–244, 2000.
[2] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf. Correcting sample selection bias by

unlabeled data. In Advances in Neural Information Processing Systems, 2007.
[3] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, and M. Kawanabe. Direct importance estimation

with model selection and its application to covariate shift adaptation. In Advances in Neural Information
Processing Systems, 2008.

[4] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training and test distributions.
In Proceedings of the International Conference on Machine Learning, 2007.

[5] A. Schwaighofer, V. Tresp, and K. Yu. Learning Gaussian process kernels via hierarchical Bayes. In
Advances in Neural Information Processing Systems, 2005.

[6] T. Evgeniou and M. Pontil. Regularized multi–task learning. Proceedings of the International Conference
on Knowledge Discovery and Data Mining, pages 109–117, 2004.

[7] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with Dirichlet
process priors. Journal of Machine Learning Research, 8:35–63, 2007.

[8] S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer. Multi-task learning for HIV therapy screening. In
Proceedings of the International Conference on Machine Learning, 2008.

[9] C. Lin, R. Weng, and S. Keerthi. Trust region Newton method for large-scale logistic regression. Journal
of Machine Learning Research, 9:627–650, 2008.

