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Abstract

Clustering stability is an increasingly popular family othods for performing
model selection in data clustering. The basic idea is tleathtosen model should
be stable under perturbation or resampling of the data. iBebping reason-
ably effective in practice, these methods are not well ustded theoretically, and
present some difficulties. In particular, when the data siaeed to be sampled
from an underlying distribution, the solutions returnediy clustering algorithm
will usually become more and more stable as the sample siredses. This raises
a potentially serious practical difficulty with these medBpbecause it means there
might be some hard-to-compute sample size, beyond whisleclag stability es-
timators 'break down’ and become unreliable in detectirggrtiost stable model.
In this paper, we provide a set of general sufficient cond#javhich ensure the
reliability of clustering stability estimators in the l&gample regime. In con-
trast to previous work, which concentrated on specific tayritiutions or specific
idealized clustering frameworks, here we make no such gssoms. We then
exemplify how these conditions apply to several importamifies of clustering
algorithms, such as maximum likelihood clustering, certgpes of kernel clus-
tering, and centroid-based clustering with any Bregmaerdience. In addition,
we explicitly derive the non-trivial asymptotic behavidrtbese estimators, for
any framework satisfying our conditions. This may help udamtand what is
considered a 'stable’ model by these estimators, at leakirige enough samples.

1 Introduction

Clustering stability is an increasingly popular approamhpferforming model selection in data clus-
tering, such as determining the number of clusters in thee @4},[6],[13],[8], [5]). The basic idea is
that a 'correct’ model for the data is a stable model, in theseghat perturbing the dataset in some
manner should not change the clustering too much. Suitaldytified and estimated, the amount
of instability can be compared for different models, in orttechoose the most appropriate one.
In this paper, we will focus on sampling based estimatorgrelthe perturbation is performed by
resampling the data. These estimators work by drawing arlezing different random subsets of
the data, and estimating the dissimilarity of the differeosterings induced on the data space.

Despite being relatively successful in practice, thesehou are still not well understood theo-
retically. An important and non-trivial difficulty with tree methods is the following observation,
made and rigorously analyzed in [3], [2] and also pointedioy7]. If we assume that the data is
sampled from some underlying distribution, and the clus¢gealgorithm works by optimizing some
sort of objective function, then as the sample size inciedbe algorithm will often converge to a
single solution, which is a global or local optimum with respto the underlying distribution, no



matter which model we choose. Therefore, for large enougipks we might get a stable solution

regardless of the chosen model. As a result, it is quite plesthat there exists some sample size
(intimately related to the particular underlying data wigttion and hence difficult to compute), be-

yond which stability estimators will 'break down’ and becemnreliable. Namely, the estimated

amount of instability will be close to zero for any model ceoswith differences between the mod-

els depending just on random and meaningless sampling@stif

A possible solution to this problem was introduced in [11here an analysis of a suitably scaled
version of the instability estimators indicated that thagtmactually be able to discern the stability
of different models, no matter how large is the sample andstabie the models become. However,
this was proven to hold only on a single toy example, as a ppbadncept. In [12], this was extended
to any continuous distribution oR™ using an ’ideal’k-means algorithm (capable of returning a
global minimizer of thek-means objective function). However, these results stilhdt give us
generalsufficient conditions for the reliability of clustering bility estimators in the large sample
regime.

In this paper, we present such a set of conditions, withdagtpurselves to a particular cluster-
ing framework. The main condition is the existence afeatral limit theoremfor the clustering
framework, in an appropriately defined sense. We then exgnipgw this is fulfilled in several
important and practical families of clustering algorithreach as maximum likelihood clustering,
certain types of kernel clustering, and centroid-basedteting with any kind of Bregman diver-
gence. As a useful byproduct, we are able to explicitly cttarize the asymptotic value to which
these stability estimators, suitably scaled, convergearfiy framework satisfying our conditions. A
similar characterization was given in [12] for themeans framework, but here the result is much
more general, and the analytical expression is simpler. Xect this to lead to useful insights on
the assumptions inherent in using clustering stabilitinestiors for model selection.

Due to lack of space, the full proofs of our theorems are piteskin a separate supplementary.

2 Problem Setting and Notation

We assume that objects to be clustered belong to a measstdidett’ of R™, which for simplicity
shall be assumed to be compact (i.e. closed and bounded)s3¥ma there exists a distributidnh
with a density functiomn(-) on X', from which we sample our data. Clustering is performed amsu
samples by an algorithiy, parameterized by the number of clusterand in general corresponding
to the clustering model whose stability we wish to estimate.

We assume that the algorithm returns a measurable funggiont — R”, fy = (f51,- -, fo.,),

which is parameterized by some parameter sgade which 6 belongs. This function measures
the amount of association’ or 'dis-association’ of eacétémce inXt to each of the: clusters. For
example, in centroid based clustering, this function cathbelistance of each instance from each of
the centroids, an@ is a subset oR™*, representing the concatenation of theentroids determining
the clustering. In mixture model estimatiof),(-) can be the probability of an instance to belong to
each of the mixture elements, aBdepresents the parameters of the mixture model. For siityplic
we will assume unless stated otherwise thais a measure of association. To prevent ambiguity, we
assume that clusters are numbered according to some urtdfimonical ordering (such as sorting
with respect to the centroid coordinates in centroid basestering).

In this paper, we shall assume for simplicity that the patemgpaceO can be framed as an open
subset of some finite dimensional Euclidean space, witheégalar Euclidean norm. This is not
really essential for proving the sufficiency of our condiso However, some of our sufficient condi-
tions become less obvious in an infinite dimensional, naaspatric settings, and might fail to hold
in some cases (see Subsec. 4.2 for further details).

LetCy , be the i-th cluster’ with respect tg, (). Namely, the subset of which is most associated
with cluster;:

Cp,:=qx€X: argmax fp (x)=1i,p.
’ ac{l,....k}



For any two clusters # j, definef i; 10 be the boundary between the two clusters, with respect
to . Formally:

Fé,i,j = {x € X : argmax fé,a(x) = {Lj}} .

ac{l,....,k}

fo(-), as an output of our clustering algorithm, is a random fuimchiased on the randomness of the
sample used by the algorithm. In understanding the asyiogiehavior of this function, we will
need to use the concept ofGaussian proces&/(-) indexed byX. In our context, this refers to a
collection of random vectors iR* (G(x) for anyx € X), defined on the same probability space,
such that any finite subset of them has a joint multivariatesGin distribution. In particulay(x)

for anyx is a Gaussian random vectorit.

A typical clustering stability method relies on a measur&dtance’ between clusterings derived
from two independent samples. The prototypical measurehaifocus on is the mass @ which
switches between clusters, when we compare differenteringfs derived from independent sam-
ples. In order to treat all the different clustering framekgin a unified manner, we assume that for
soft clustering, this mass is measured after assigning elachent inX’ to its most likely cluster.
Formally, letS; and .S, be two independent samples of size drawn i.i.d fromD, to which we
apply the clustering algorithm,. Assume thaty(S;) returnsfy(-), andAx(S2) returnsfy (-) for

somed, 6’ ¢ ©. Then the distance between the two clusterings is defined as
dp (Ax(51), A(52)) = Pr (argmang,i(X) # arglnang,/J(X)) :

We note that this definition differs a little from the one usedsome previous literature on the
topic (such as [3],[11]), since it is easier to work witiAssuming the underlying data distribution
is not unusually symmetric, our clustering algorithm winwverge in probability to some fixed

optimal solutiond, as the sample sizex increases [3]. Therefore, bothandd’ in the equation
above will converge to the sanég. As a result, the random variabdie, (A (51 ), Ax(S2)) will tend

to become smaller and smaller, converging in probability) ssm — oo. As discussed in the
introduction, if this convergence to zero behavior occordifferent model choices, then it might
ultimately become impossible to reliably distinguish beéw the models in terms of their stability.
This is because the distance measure as defined above waysle very close to zero, and it
is possible that relative differences in estimates of thesasures will depend more on random
sampling artifacts than any true underlying characteristithe model. In this paper, we wish to
investigate when will the reliability of clustering stabjil estimators be maintained, despite this
convergence to zero phenomenon.

3 Sufficient Conditions for the Reliability of Clustering Stability Estimators

In this section, we will present a set of conditions on thestdting framework, and prove that
whenever these conditions are fulfilled, clustering siigbéstimators remain reliable in the large
sample regime, in an appropriately defined sense. Thesatiedlyeconsist of a consistency and
central limit condition for@ (the solution returned by the algorithm based on a randonpkm
plus some regularity conditions to prevent various pathie® (plausibly not the tightest possible).
These regularity conditions are usually a simple consezpienthe specific clustering framework
that we are dealing with, plus the central limit condition.the next section, we will see examples
for well known clustering frameworks which seem to satisfggde conditions in general.

To avoid making things too complex, the regularity condisiowill be presented in a somewhat
informal manner, sometimes in a way which is a bit strongantivhat is really needed. A fully
rigorous and precise formulation of the regularity corwfi§ may be found in the supplementary
material to this paper.

In previous work, the clustering distance measure was defined asabahjility over apair of instances
drawn independently fror®, that this pair is in the same cluster under one clustering, and in diffdresters
under the other clustering. The two definitions are very closely relatednafadt inter-convertible in some
cases.



Conditions. The following conditions shall be assumed to hold:

1. Consistency Conditionf converges in probability (over drawing and clustering a gden
of sizem, m — o0) to somef, € O. Furthermore, the association of clusters to indices
{1,...,k} is constant in some neighborhood@y.

2. Central Limit Condition: /m(8 — 6,) converges in distribution to a multivariate zero
mean Gaussian random vectst

3. Regularity Conditions

(@) fo(x) is Sufficiently Smooth:The functionfy(x) is sufficiently smooth with respect
tox andé.

(b) Limit Cluster Boundaries are Reasonably NiceFor anyi, j, Fg, ; ; is a differen-
tiable hyper-surface (not necessarily a hyperplane), witheighborhood in which
the underlying density functign(-) is continuous. Moreover, the gradient of cluster
associationV (fe,.i(-) — fe,.;(-)), has positive magnitude everywhereds ; ;.

(c) Intersections and Edges of Cluster Boundaries are RelayBlegligible: For any
limit cluster boundaryFy, ; ;, and small enougle > 0, most of the volume in an
e-neighborhood aroundy, ; ; is bounded away from the boundary’s edges or other
cluster boundaries.

(d) Minimal Parametric Stability: The position of each cluster boundaFg - depend
in a sufficiently smooth manner @ at least in some smalll nelghborhooda@f.

We note that the conditions allow us to characterize the psytic Gaussian distribution of
Vm(fa(x) — fo,(x)) foranyx € X, as formalized in the following proposition.

Proposition 1. Conditions 2 and 3a above imply thaimn(f,(-) — fe,(-)) converges in distribution
to a Gaussian process(-) = (G1(-), ..., Gx(-)) onR*, indexed by¥, of the form

) = (g fon(x) |

In order to prove that stability doesn’t 'break down’ in tlaede sample regime, we have to model
how instability estimators work. The basic building bloskstraightforward: cluster two indepen-
dent samples and estimate the distadg@Ay(S1), Ax(S2)) between them. Sinc® is unknown,
we cannot computép (A, (S1), Ax(S2)) directly, since we don’t know what is the exact masdof
which switched between clusters. However, we can estinidtg using another sample, and cal-
culating the percentage of sample points which switchedidt clusters. In practice, this entire
process is repeated a number of times on different randosessibf the data, with the averaged
result returned as the estimate of instability for the mathelsen.

Our central result, stated in the theorem below, implies tiese kind of estimators do not 'break
down’ in the large sample regime, in an appropriately defgetse.

Theorem 1. Define the clustering stability estimatﬁfm as follows. Given an i.i.d sample of size
at leastm(2q + 1), split it randomly intog disjoint subsample pair$S}, S?}7_; of sizem each,
and an additional sampl&? of sizem. Cluster all pairs{S}, 52}7_, with aIgonthmAk, resulting

K3

in a set of function pair:{fé () fg /(1)},_,. Return the estimate:
- Z Z (argmaxféi’j(x) =+ argmaxféf7j(x)) .
m g J J '

If f5() is a measure of d|s-aSSOC|ation rather than associatiegmax should be replaced above
by argmin. With the set of conditions defined earlier, we have that fogrea> 0,

lim Pr (’\/Eﬁfmq - mﬁAk,D)’ > e) =o(qg?),

m— 00

(x)y/Var(G;(x) — G;(x))
tab(Ay, e
D) = S [ e e

where




The theorem implies that if we take to be large enough and see what happens/io ﬁ’;w
in the large sample regime, it will return estimates whicé eliably close tdn/sat(Ak,D). If

@k{Ak,D) differs for different model choices far,, then we will be able to discern the more
'stable’ model with high probability over the sampling pess, simply by comparing the value of
ﬁ,’th for each model. This is despite the fact that without scatipghe square root of the sample

size,ﬁfn’q converges to zero in probability.

The theorem gives us more than that: it explicitly charaoésrto what value our clustering instabil-
ity estimator, after scaling, converdest should be emphasized that this value is not very depgnden
on the exact form of our estimator, at least in terms of thennfegtors appearing there. In a nut-
shell, the asymptotic instability of a clustering modeliimgly the integral, across all limit cluster
boundaries, of the product of three quantities:

e The underlying probability density(-) along the cluster boundaries. Therefore, high den-
sity along the cluster boundaries contributes to more filétia

e The variance of the Gaussian process characterizing timepdstic fluctuations of the ran-
dom functionf, ;(-) — f5 ;(-). By definition, the association of a poirtto clusteri or
cluster;j under the limit clusteringfy, is determined by the sign gf, ;(x) — fe,,; (x).
Thus, the larger are these fluctuations, the larger are tbeiéitions of the cluster bound-
aries, which contributes to more instability.

e The inverse of the gradient of the fixed limit functigp, (-) across the cluster boundaries.
A large gradient forfg, () — fe,,;(-) at the boundary points implies that its value changes

abruptly as we cross the cluster boundary. In this caseprarftlictuations o) around
6, will correspond to relatively smaller fluctuations of thestier boundary, and this con-
tributes to less instability.

For example, if for some model choice, the probability dgnsix) is exactly zero at the boundaries,

thenﬁsﬁt{Ak, D) equals zero. Namely, the clustering stability estimatgngxotically considers

a model with zero density at the boundaries as the most spaisigible. Also, ag increases,
integration is performed over a larger area, and as a resuttight get more instability, a fact which
has been noted empirically [8]. It should be emphasizedttiethree quantities described above
are not independent, and it is possible that a change in oaetitpuwill be offset by a reciprocal
change in another quantity. Thus, an exact analysis isiat and the observations above should
be viewed as preliminary.

4 \When do the Conditions Hold?

In this section, we investigate when does the set of comditfoom subsection 3 hold. Recall that
these conditions can be divided irigarts: a consistency condition, a central limit conditiangl
some regularity conditions to ensure that the frameworke behaved.

The most basic requirement for the problem we are dealinig twibe meaningful at all is consis-
tency. Namely, we assume that as the sample size increas@mity, the clustering returned by
the algorithm will converge to some limit clustering, ane ttistance between independent clus-
terings converge to zero in probability. If this does noteqp the problem of clustering stability
potentially 'breaking down’ in the large sample regime iglievant.

On the other hand, the central limit condition is the most-trivial, and cannot simply be assumed
to hold. Therefore, the focus of this subsection will be oeraglifying clustering frameworks where

the central limit condition holds. As to the other reguladbnditions, they are relatively mild, and

are mostly a simple consequence of the specific clusterargdwork that we are considering, plus
the central limit condition. Due to lack of space, we will fiotther discuss them here.

We will present three theorems, which demonstrate thatehnéral limit condition holds on some
important families of clustering frameworks. These fagsldo not cover all interesting clustering

2It is reassuring to note that the formula io/sEt(Ak, D) can be shown to be a strict generalization of the
one appearing in [12], which applied ismeans only, after taking care of the slightly different definition of
dp (A (S1), Ax(S2)) there.



algorithms, but should be sufficient evidence that clustestability provably does not 'break down’
in many situations.

A convenient framework in which to derive such central lingsults is the statistical theory @f
estimators Intuitively, a Z-estimator is any statistical estimatahich works by trying to zero a
function or a set of functions based on a sample. For exarapfgose that: instances are drawn
i.i.d from some distribution ofR. Then the sample mean can be seen as a Z-estimator: given a

samplexy,...,x,,, itreturns a valud which zeros the functiod,,, () = >-1" (6 — z;). A more
general and relevant example is when one attempts to findriteimum likelihood’ parameters of a
probabilistic model, by searching for a solution which zerthe derivative of the likelihood function
on the data. For a full formal treatment of Z-estimators,[$d¢ Proving central limit theorems for
Z-estimators is a well studied topic. Therefore, if we mantmdefine our clustering algorithms as

Z-estimators, we can apply known results on such estimatagst central limit theorems.

4.1 Bregman Divergence Clustering

The first case we shall consider is centroid clustering baedgfegman divergences. This family of
clustering algorithms has received growing attention aphst few years (see for example [1] and
references therein). The idea is to perform centroid-bakestering (where clusters are represented
by centroids, and each data instance is associated witha@tést’ centroid), but instead of using
just the regular squared Euclidean distance, we use anydkiBdegman divergence. A Bregman
divergencely (-, -) between two vectors iR" is defined as

dy(x,y) =T(x) = T(y) - (x -y, VY(y)),
whereY(+) is any differentiable, strictly convex real function definen a closed convex set in
R™. A large variety of distances and divergence measures agnfan divergences. These include
squared Euclidean distance, Mahalanobis distancesmatarn theoretic divergences such/gé.-
divergence and-divergence, and quite a few others (see [1] for furtheriigta

In the framework that we consider, the goal of clusteringisinid a set of centroids iiR™, such
that the average divergence between each instance andsestkentroid is minimized. Namely,

given a sample;, . . ., x,,, we seek a set df centroidscy, . . ., ¢ which minimizes the objective
function
1 m
— E min dy (x;, ;). 1)
mi= 7

The parameter spa¢ of possible clusterings can be thought of as a subsBf*6f such that any
6 < © is simply the concatenation of thecentroids inR™, by some canonical ordering. We will
use the notatio = (04, ...,0y), so that9; € R" is the centroid corresponding to ti¢h cluster.

We assume that our clustering algorithm attempts to mirériig. (1). For concreteness, the algo-
rithm may use an iterative scheme similarkianeans, as in [1]: in each step, points are assigned
to the nearest centroid (with respect to the Bregman divegesed), and the centers are updated
S0 as to minimize the average divergence between them aimktaaces in the clustewe will not
need to assume that a globally optimal solution is faundnvergence in probability to a locally
optimal solution (with respect to the underlying distribut as the sample size increases to infinity)
will suffice.

The first step will be to cast our clustering algorithm as as#peator, using a generalization of an
idea from [9]. For this, define for anye {1, ..., k} the following function from© x R" to R™:

0, —x xecCg;
Ai 9, = ;
0,%) {0 otherwise
Furthermore, assuming, .. . , x,, is a sample drawn i.i.d frorf, define the random map,,,(-) =

(Ul (-),...,¥* () and the deterministic ma@(8) = (V1(0), ..., ¥*(0)) as

‘Ilin(a) = % Z A?(gv xj) ) \Iji (0) = N Az (9, X)p(X)dX.



The key insight is that given an empirical sample of sizeour Bregman Clustering algorithm
always returns a solution @ such thal\Ifm(é) = 0. This is a consequence of the fact, proven as
Proposition 1 in [1], that the optimum location for a centr@i any Bregman Clustering framework
lies at the center of mass of its cluster, and our algorithdeéa returns a set of centroids which
fulfill this condition. It can be easily verified that such dwmn zeros?,,(-). Thus, our algorithm
can indeed be viewed as a Z-estimator, and it is possibleoiem central limit behavior.

Theorem 2. LetAy be a centroid-based clustering algorithm using any Bregutigargence, which

returns a solutiord such that¥,,, (8) = 0. Asm — oo, assume thal converges in probability to a
fixed@, € O, such thatl(6,) = 0, and¥'(-) has a non-singular derivative &, with a continuous

inverse. Ther/m(6 — 6,) converges in distribution to a zero mean Gaussian randortovec

We note that the form of the derivative 8f(-) at 8, depends on the specific clustering algorithm
that we are considering. For example, an explicit calcofafor thek-means framework has been
carried out in [9], and the analysis can be generalized terdtameworks.

4.2 Kernel Clustering

The second example we shall examine is kernel clusteringatticular, we will focus on the kernel
k-means algorithm [10]. Recall that kerrieineans can be seen as implicitly transforming our data
points into a high or even infinite dimensional reproduciegiel Hilbert spacé{, and performing
regulark-means in that space: points are assigned to their neargsbicks in7+ (with respect to
the norm induced by the inner product), and the centroidsipdated to represent the mean of the
points in each cluster. These operations are performed kéaireel function, which corresponds to
the inner product operation iH.

In this case, we can think @ as?”*, whereH is the reproducing kernel Hilbert space associated
with the kernel. Thus, each element@represent a set of centroids inH. Kernel k-means
always returns a solution where the centroids are at thecehimass of their respective clusters.
Thus, to cast this algorithm as a Z-estimator, we can singge the function¥, ¥,,, defined in
Subsec. 4.1, only this time these are functions fifto H*. Formally, lety : X — H be the
feature map from the data space to the reproducing kerneéHispace induced by the kernel, and
defineA,(0,x), ¥,,(0), ¥(0) exactly as in Subsec. 4.1, replacin@verywhere with)(x).

Following the framework of this paper, we will assume in thedrem below tha® (and hence
‘H) is a subset of a finite dimensional Euclidean space, carsreipg for example to polynomial
kernels. We note however that the tools we use allow us togpiiowsome cases, a similar theorem
for infinite dimensional{ as well. Unfortunately, these tools are not applicable medmportant
infinite-dimensional kernel clustering frameworks, sushtaose employing universal kernels (see
the full proof for further details). Once again, we do notchémassume that the algorithm returns a
globally optimal solution, only that it consistently comges to some local optimum.

Theorem 3. Let A; be a finite dimensional kernétmeans clusterlng algorithm, which returns a

solution® such thatl,, (0) = 0. Assume that as: — oo, 6 converges in probability to a fixed
0, € O, such that¥(6,) = 0, and ¥(-) has a non-singular derivative &, with a continuous

inverse. Ther/m(0 — 6,) converges in distribution to a zero mean Gaussian randortovec

4.3 Maximum Likelihood Clustering

The next theorem treats estimators which are based on atis@tinodeling of the clusters, and
attempt to maximize the log-likelihood of the data given thedel. Namely, we assume thatis

m

a parametric family of distributions, and attempt to maxiel . , log(q (x|@))/m, whereg(x|6)

is the probability of the observation given the modeB. In this case, we assume thag(x)
corresponds to a vector in tiesimplex, so tha#é)i(x) is the probability thak belongs to cluster
i. © is the parameter space of the distributional family that veecansidering. For exampl®, can
encode the mean, covariance matrix and relative weightai eamponent in a Gaussian mixture
model. The asymptotic normality of maximum likelihood estiors is a classical and well-known
result. Here we present a variant (not the strongest pejsivhich emphasizes the fact that the
returned solution need not be globally optimal, as long asistency is maintained and a locally
optimal solution is returned.



Theorem 4. Let A, be a statistical model estimator, based on a parametricfaafidistributionso,
where® is an open subset of some Euclidean space. Given ani.i.dsamp. ., x,,, the algorithm
returns a solutiord € © which locally maximizes the log-likelihood function wiéspect to the
sample. Assume that as — o, @ converges in probability to a fixed local maximizkr < © of the
log-likelihood function with respect to the underlyingtdisution D, namelny log(q(x|é))p(x)dx.

Assume that the latter is twice differentiable with resged at some neighborhood @), with a

non-singular second derivative @. Then/m(6 — 6,) converges in distribution to a zero mean
multivariate Gaussian random variable.

5 Conclusions and Future Work

In this paper, we investigated the reliability of clusteristability estimators in the large sample
regime. We provided a set of sufficient conditions, revajvaround a central limit requirement,
which ensure that these estimators do not 'break down’ ewearbitrarily large samples, and char-
acterized their asymptotic behavior. In contrast to presiwork, the results are general and do
not assume a particular clustering framework or distrdwutiWe also discussed several families of
well-known clustering algorithms, for which the main cehtlimit requirement holds in general.
These include maximum likelihood clustering, certain g/pékernel clustering, and centroid-based
clustering with any Bregman divergence.

Although the central limit approach proved to be a convarfimmework, it remains an open ques-
tion how far it is from beinghecessaryor stability estimators not to 'break down’ in the large sden
regime. This question is relevant because a central lingitirement might be too strong to hold
over all useful clustering frameworks. In addition, welstied to better understand the meaning
of the asymptotic value of clustering instability as giveriTihm. 1, beyond extreme cases such as
zero density along cluster boundaries. Hopefully, thi$ al8o help to understand the behavior of
clustering stability on small samples.
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