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Abstract

Statistical evolutionary models provide an important mechanism for describing
and understanding the escape response of a viral population under a particular
therapy. We present a new hierarchical model that incorporates spatially varying
mutation and recombination rates at the nucleotide level. It also maintains sep-
arate parameters for treatment and control groups, which allows us to estimate
treatment effects explicitly. We use the model to investigate the sequence evolu-
tion of HIV populations exposed to a recently developed antisense gene therapy,
as well as a more conventional drug therapy. The detection of biologically rele-
vant and plausible signals in both therapy studies demonstrates the effectiveness
of the method.

1 Introduction

The human immunodeficiency virus (HIV) has one of the highest levels of genetic variability yet
observed in nature. This variability stems from its unusual population dynamics: a high growth
rate (∼10 billion new viral particles, or virions, per patient per day) combined with a replication
cycle that involves frequent nucleotide mutations as well as recombination between different HIV
genomes that have infected the same cell.

The rapid evolution of HIV and other viruses gives rise to a so-called escape response when infected
cells are subjected to therapy. Widespread availability of genome sequencing technology has had a
profound effect on the study of viral escape response. Increasingly, virologists are gathering two-
sample data sets of viral genome sequences: a control sample contains genomes from a set of virions
gathered before therapy, and a treatment sample consists of genomes from the post-therapeutic vi-
ral population. HIV treatment samples gathered just days after the start of therapy can exhibit a
significant escape response.

Up to now, statistical analyses of two-sample viral sequence data sets have been mainly rudimentary.
As a representative example, [7] presents tabulated counts of mutation occurrences (relative to a
reference wild-type sequence) in the control group and the treatment group, without attempting any
statistical inference.
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In this paper we develop a model which allows for a detailed quantification of the escape response
present in a two-sample data set. The model incorporates mutation and recombination rate param-
eters which vary positionally along the viral genome, and which differ between the treatment and
control samples. We present a reversible-jump MCMC procedure for approximate posterior infer-
ence of these parameters. The resulting posterior distribution suggests specific regions of the genome
where the treatment sample’s evolutionary dynamics differ from the control’s: this is the putative
escape response. Thus, the model permits an analysis that can point the way to improvements of
current therapies and to the development of new therapeutic strategies for HIV and other viruses.

In the remainder of the paper, we first provide the details of our statistical model and inference
procedure. Then we illustrate the use of the model in two applications. The first study consists of a
control sample of viral sequences obtained from HIV-infected individuals before a drug treatment,
and a corresponding post-treatment sample [9]. The second study set is an in vitro investigation of a
new gene therapy for HIV; it contains a control sample of untreated virions and a treatment sample
of virions challenged with the therapy [7].

2 Methods

We begin by briefly describing the standard statistical genetics framework for populations evolving
under mutation and recombination. Then we present a new Bayesian hierarchical model for two
groups of sequences, each group sampled from one of two related populations. We derive an MCMC
procedure for approximate posterior inference in the model; this procedure is implemented in the
program PICOMAP. Our approach involves modifications and generalizations of the OMEGAMAP
method [12], as we explain. In what follows, each “individual” in a population is a sequence of L
nucleotides (plus a gap symbol, used when sequences have insertions or deletions relative to each
other). The positions along a sequence are called sites. An alignment is a matrix in which rows are
sequences, columns are sites, and the (i, j)th entry is individual i’s nucleotide at site j.

2.1 The coalescent with recombination

The genome sequences in the control sample were drawn at random from a large population of
sequences at a fixed point in time. We approximate the evolution of this population using the Wright-
Fisher evolutionary model with recombination [3]. Similarly, the treatment sample sequences are
viewed as randomly drawn from a Wright-Fisher recombining population, but governed by different
evolutionary parameters.

In the basic Wright-Fisher model without recombination, a fixed-size population evolves in discrete,
nonoverlapping generations. Each sequence in the gth generation is determined by randomly choos-
ing a sequence from the (g − 1)th generation, mutating it at one position with probability u, and
leaving it unchanged with probability 1− u. Typically, many individuals in each generation share a
parent from the previous generation.

A key insight in statistical population genetics, due to Kingman [5], is the following. If we have
a small sample from a large Wright-Fisher population at a fixed time, and we want to do calcula-
tions involving the probability distribution over the sample’s unknown ancestral history, it is highly
uneconomical to “work forwards” from older generations – most individuals will not be part of the
sample’s genealogy. Instead, we should follow the lineages of the sampled individuals backwards
in time as they repeatedly coalesce at common ancestors, forming a tree rooted at the most recent
common ancestor (MRCA) of the sample. Kingman showed that the continuous-time limit of the
Wright-Fisher model induces a simple distribution, called the coalescent process, on the topology
and branch lengths of the resulting tree. Mutation events in the coalescent can be viewed as a sepa-
rate point process marking locations on the branches of a given coalescent tree. This point process
is independent of the tree-generating coalescent process.

Recombination, however, substantially complicates matters. The Wright-Fisher dynamics are ex-
tended to model recombination as follows. Choose one “paternal” and one “maternal” sequence
from generation (g − 1). With probability r, their child sequence in generation g is a recombinant:
a juncture between two adjacent sites is chosen uniformly at random, and the child is formed by
joining the paternal sequence to the left of the juncture with the maternal sequence to the right. With
probability (1 − r), the child is a copy of just one of the two parents, possibly mutated as above.
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Now look backwards in time at the ancestors of a sample: we find both coalescence events, where
two sequences merge into a common ancestor, and recombination events, where a single sequence
splits into the two parent sequences that formed it. Thus the genealogy is not a tree but a graph, the
ancestral recombination graph (ARG). The continuous-time limit of the Wright-Fisher model with
recombination induces a distribution over ARGs called the recombinant coalescent [4, 2].

In fact, the ARG is the union of L coalescent trees. A single site is never split by recombination, so
we can follow that site in the sample backwards in time through coalescence events to its MRCA. But
recombination causes the sample to have a possibly different ancestral tree (and different MRCA)
at each site. The higher the rate of recombination (corresponding to the parameter r), the more
often the tree changes along the alignment. For this reason, methods that estimate a fixed, global
phylogeny are badly biased in samples from highly recombinant populations, like viruses [10].

The Wright-Fisher assumptions appear quite stylized. But experience has shown that the coalescent
and the recombinant coalescent can give reasonable results when applied to samples from popula-
tions not matching the Wright-Fisher model, such as populations of increasing size [3].

2.2 A two-sample hierarchical recombinant coalescent

We now present the components of our new hierarchical model for a control sample and a treatment
sample of nucleotide sequences drawn from two recombining populations. To our knowledge, this is
the first fully specified probabilistic model for such data. There are four parameter vectors of primary
interest in the model: a control-population mutation rate µC which varies along the sequence, a
corresponding spatially varying treatment-population vector µT, and analogous recombination rate
parameter vectors ρC and ρT. (The µ and ρ here correspond to the u and r mentioned above.)

The prior distribution on µC and µT takes the following hierarchical form:

(Bµ, Sµ) | qµ ∼ Blocks(qµ) , (1)

logµi | µ0, σ
2
µ0
∼ N(logµ0, σ

2
µ0

), i = 1, . . . , Bµ, (2)

(logµC
i , logµT

i ) | µi, σ2
µ

iid∼ N(logµi, σ2
µ), i = i, . . . , Bµ . (3)

This prior is designed to give µC and µT a block structure: the Blocks distribution divides the L
sequence positions into Bµ adjacent subsequences, with the index of each subsequence’s rightmost
site given by Sµ = (S1

µ, . . . , S
Bµ
µ ), 1 ≤ S1

µ < · · · ≤ S
Bµ
µ ≤ L. Under the Blocks distribution,

(Bµ − 1) is a Bin(L − 1, qµ) random variable, and given Bµ, the indexes Sµ are a simple random
sample without replacement from {1, . . . , L}. The sites in the ith block all mutate at the same rate
µC
i (in the control population) or µT

i (in the treatment population). We lose no generality in sharing
the same block structure between the populations: two separate block structures can be replaced with
a single block structure formed from the union of their Sµ’s. To generate the per-population mutation
rates within a block, we first draw a lognormally distributed variable µi, which then furnishes the
mean for the independent lognormal variables µC

i and µT
i . The triples (µi, µC

i , µ
T
i ) are mutually

independent across blocks i = 1, . . . , Bµ.

The recombination rate parameters (ρC, ρT) are independent of (µC, µT) and have the same form of
prior distribution (1)–(3), mutatis mutandis. In our empirical analyses, we set the hyperparameters
qµ and qρ to get prior means of 20 to 50 blocks; results were not sensitive to these settings. We
put simple parametric distributions on the hyperparameters µ0, σ2

µ0
, σ2

µ, and their ρ analogs, and
included them in the sampling procedure.

The remaining component of the model is the likelihood of the two observed samples. Let HC

be the alignment of control-sample sequences and HT the treatment-sample sequence alignment.
Conditional on all parameters, HC and HT are independent. Focus for a moment on HC. Since we
wish to view it as a sample from a Wright-Fisher recombining population, its likelihood corresponds
to the probability, under the coalescent-with-recombination distribution, of the set of all ARGs that
could have generated HC. However, using the nucleotide mutation model described below, even
Monte Carlo approximation of this probability is computationally intractable [12].

So instead we approximate the true likelihood with a distribution called the “product of approximate
conditionals,” or PAC [6]. PAC orders the K sequences in HC arbitrarily, then approximates their
probability as the product of probabilities from K hidden Markov models. The kth HMM evaluates

3



the probability that sequence k was produced by mutating and recombining sequences 1 through
k − 1. We thus obtain the final components of our hierarchical model:

HC | µC, ρC, η ∼ PAC(µC, ρC, η) , (4)

HT | µT, ρT, η ∼ PAC(µT, ρT, η) . (5)

In order to apply PAC, we must specify a nucleotide substitution model, that is, the probability that a
nucleotide i mutates to a nucleotide j over evolutionary distance t. In the above, η parametrizes this
model. For our analyses, we employed the well-known Felsenstein substitution model, augmented
with a fifth symbol to represent gaps [8]. For simplicity, we constructed fixed empirical estimates of
the Felsenstein parameters η, in a standard way.

To incorporate the extended Felsenstein model in PAC, it is necessary to integrate evolutionary
distance out of the substitution process p(j | i, 2t), using the exponential distribution induced by the
coalescent on the evolutionary distance 2t between pairs of sampled individuals. It can be shown
that the required quantity is

p(j | i) =
∫
p(j | i, 2t)p(t) dt =(

1− k

k + 2β

)
πj +

(
k

k + 2(α1[i 6= gap] + β)

)
1[i = j] +(

k

k + 2β
− k

k + 2(α+ β)

)(
πj

πi + πj

)
1[(i, j) ∈ {(A,G), (C, T )}] . (6)

Here k is the number of sampled individuals, and πi, πj , α, and β are Felsenstein model parameters
(the last two depending on the mutation rate at the site in question). 1[·] is the indicator function of
the predicate in brackets.

The blocking prior (1) and the use of PAC with spatially varying parameters are ideas drawn from
OMEGAMAP [12]. But our approach differs in two significant respects. First, OMEGAMAP models
codons (the protein sequence encoded by nucleotides), not the nucleotides themselves. This is some-
times unsuitable. For example, in one of our empirical analyses, the treatment population receives
RNA antisense gene therapy. The target of this therapy is the primary HIV genome sequence itself,
not its protein products. So we would expect the escape response to manifest at the nucleotide level,
in the targeted region of the genome. Our model can capture this. Second, we perform simultaneous
hierarchical inference about the control and treatment sample, which encourages the parameter es-
timates to differ between the samples only where strongly justified by the data. Using a one-sample
tool like OMEGAMAP on each sample in isolation would tend to increase the number of artifactual
differences between corresponding parameters in each sample.

2.3 Inference

The posterior distribution of the parameters in our model cannot be calculated analytically. We
therefore employ a reversible-jump Metropolis-within-Gibbs sampling strategy to construct an ap-
proximate posterior. In such an approach, sets of parameters are iteratively sampled from their pos-
terior conditional distributions, given the current values of all other parameters. Because the Blocks
prior generates mutation and recombination parameters with piecewise-constant profiles along the
sequence, we call our sampler implementation PICOMAP.

The sampler uses Metropolis-Hastings updates for the numerical values of parameters, and
reversible-jump updates [1] to explore the blocking structures (Bµ, Sµ) and (Bρ, Sρ). The block
updates consider extending a block to the left or right, merging two adjacent blocks, and splitting a
block. They are similar to the updates (B2)-(B4) of [12], so we omit the details.

To illustrate one of the parameter updates within a block, let (µC
i , µ

T
i ) be the current values of the

control and treatment mutation rates in block i. We sample proposal values

log µ̃C
i ∼ N(logµC

i , τ
2) , (7)

log µ̃T
i ∼ N(logµT

i , τ
2) , (8)
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Figure 1: Posterior estimate of the effect of enfuvirtide drug therapy on mutation rates. Blue line is
posterior mean, Black lines are 95% highest-posterior-density (HPD) intervals.

where τ2 is a manually configured tuning parameter for the proposal distribution. These proposals
are accepted with probability

p(HC | µ̃C
i , θ) p(H

T | µ̃T
i , θ)

p(HC | µC
i , θ) p(HT | µT

i , θ)
· p(µ̃

C
i , µ̃

T
i | µi)

p(µC
i , µ

T
i | µi)

, (9)

where

p(µ̃C
i , µ̃

T
i | µi)

p(µC
i , µ

T
i | µi)

=
µT
i µ

C
i

µ̃T
i µ̃

C
i

exp {−((log µ̃T
i − logµi)2 + (log µ̃C

i − logµi)2)/2σ2}
exp {−((logµT

i − logµi)2 + (logµC
i − logµi)2)/2σ2}

. (10)

Here θ denotes the current values of all other model parameters. Notice that symmetry in the pro-
posal distribution causes that part of the MH acceptance ratio to cancel.

The PICOMAP sampler involves a number of other update formulas, which we do not describe here
due to space constraints.

3 Results

In this section, we apply the PICOMAP methodology to HIV sequence data from two different stud-
ies. In the first study, several HIV-infected patients were exposed to a drug-based therapy. In the
second study, the HIV virus was exposed in vitro to a novel antisense gene therapy. In both cases,
our analysis extracts biologically relevant features of the evolutionary response of HIV to these
therapeutic challenges.

For each study we ran at least 8 chains to monitor convergence of the sampler. The chains con-
verged without exception and were thinned accordingly, then combined for analysis. In the interest
of brevity, we include only plots of the posterior treatment-effect estimates for both mutation and
recombination rates.

3.1 Drug therapy study

In this study, five patients had blood samples taken both before and after treatment with the drug
enfuvirtide, also known as Fuzeon or T-20 [11]. Sequences of the Envelope (Env) region of the HIV
genome were generated from each of these blood samples. Pooling across these patients, we have
28 pre-exposure Env sequences which we label as the control sample, and 29 post-exposure Env
sequences which we label as the treatment sample. We quantify the treatment effect of exposure
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Figure 2: Posterior estimate of the effect of enfuvirtide drug therapy on recombination rates. Blue
line is posterior mean, Black lines are 95% HPD intervals.

to the drug by calculating the posterior mean and 95% highest-posterior-density (HPD) intervals of
the difference in recombination rates ρT − ρC and mutation rates µT − µC at each position of the
genomic sequence.

The very existence in the patient of a post-exposure HIV population indicates the evolution of
sequence changes that have conferred resistance to the action of the drug enfuvirtide. In fact,
resistance-conferring mutations are known a priori to occur at nucleotide locations 1639-1668 in
the Env sequence. Figure 1 shows the posterior estimate of the treatment effect on mutation rates
over the length of the Env sequence. From nucleotide positions 1590-1700, the entire 95% HPD in-
terval of the mutation rate treatment effect is above zero, which suggests our model is able to detect
elevated levels of mutation in the resistance-conferring region, among individuals in the treatment
sample.

Another preliminary observation from this study was that both the pre-exposure and post-exposure
sequences are mixtures of several different HIV subtypes. Subtype identity is specified by the V3
loop subsequence of the Env sequence, which corresponds to nucleotide positions 887-995. Since it
is unlikely that resistance-conferring mutations developed independently in each subtype, we suspect
that the resistance-conferring mutations were passed to the different subtypes via recombination.
Recombination is the primary means by which drug resistance is transferred in vivo between strains
of HIV, so recombination at these locations involving drug resistant strains would allow successful
transfer of the resistance-conferring mutations between types of HIV.

Figure 2 shows the spatial posterior estimate of the treatment effect on recombination. We see
two areas of increased recombination, one from nucleotide positions 1020-1170 and another from
nucleotide positions 1900-2200. As an interesting side note, we see a marked decrease in mutation
and recombination in the V3 loop that determines sequence specificity.

3.2 Antisense gene therapy study

In the VIRxSYS antisense gene therapy study, we have two populations of wild type HIV in vitro.
The samples consist of 19 Env sequences from a control HIV population that was allowed to evolve
neutrally in cell culture, along with 48 Env sequences sampled from an HIV population evolving in
cell cultures that were transfected with the VIRxSYS antisense vector [7]. The antisense gene ther-
apy vector targets nucleotide positions 1325 - 2249. Unlike drug therapy treatments, whose effect
can be nullified by just one or two well placed mutations, a relatively large number of mutations
are required to escape the effects of antisense gene therapy. We again quantify the treatment effect
of exposure to the antisense vector by calculating the posterior mean and 95% HPD interval of the
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Figure 3: Posterior estimate of the effect of VIRxSYS antisense gene therapy on mutation rates.
Blue line is posterior mean, Black lines are 95% HPD intervals.

difference in recombination rates ρT − ρC and mutation rates µT − µC at each position of the Env
sequence.

Figures 3 and 4 show the posterior estimate of the treatment’s effect on mutation and recombination,
respectively. The most striking feature of the plots is the area of significantly elevated mutation in the
treatment sequences. The leftmost region of the highest plateau corresponds to nucleotide position
1325, the 5’ boundary of the antisense target region. This area of heightened mutation overlaps
with the target region for around 425 nucleotides in the 3’ direction. We see fewer differences in
the recombination rate, suggesting that mutation is the primary mechanism of evolutionary response
to the antisense vector. In fact, we estimate lower recombination rates in the target region of the
treatment sequences relative to the control sequences.

4 Discussion

We have introduced a hierarchical model for the estimation of evolutionary escape response in a
population exposed to therapeutic challenge. The escape response is quantified by mutation and
recombination rate parameters. Our method allows for spatial heterogeneity in these mutation and
recombination rates. It estimates differences between treatment and control sample parameters,
with parameter values encouraged to be similar between the two populations except where the data
suggests otherwise. We applied our procedure to sequence data from two different HIV therapy
studies, detecting evolutionary responses in both studies that are of biological interest and may be
relevant to the design of future HIV treatments.

Although virological problems motivated the creation of our model, it applies more generally to two-
sample data sets of nucleic acid sequences drawn from any population. The model is particularly
relevant for populations in which the recombination rate is a substantial fraction of the mutation rate,
since simpler models which ignore recombination can produce seriously misleading results.

Acknowledgements

This research was supported by a grant from the University of Pennsylvania Center for AIDS Re-
search. Thanks to Neelanjana Ray, Jessamina Harrison, Robert Doms, Matthew Stephens and Gwen
Binder for helpful discussions.

7



Figure 4: Posterior estimate of the effect of VIRxSYS antisense gene therapy on recombination
rates. Blue line is posterior mean, Black lines are 95% HPD intervals.
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