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Abstract

We present a novel method for inducing synchronous context free grammars
(SCFGs) from a corpus of parallel string pairs. SCFGs can model equivalence
between strings in terms of substitutions, insertions and deletions, and the reorder-
ing of sub-strings. We develop a non-parametric Bayesian model and apply it to a
machine translation task, using priors to replace the various heuristics commonly
used in this field. Using a variational Bayes training procedure, we learn the
latent structure of translation equivalence through the induction of synchronous
grammar categories for phrasal translations, showing improvements in translation
performance over maximum likelihood models.

1 Introduction

A recent trend in statistical machine translation (SMT) has been the use of synchronous grammar
based formalisms, permitting polynomial algorithms for exploring exponential forests of translation
options. Current state-of-the-art synchronous grammar translation systems rely upon heuristic rel-
ative frequency parameter estimates borrowed from phrase-based machine translation[1, 2]. In this
work we draw upon recent Bayesian models of monolingual parsing [3, 4] to develop a generative
synchronous grammar model of translation using a hierarchical Dirichlet process (HDP) [5].

There are two main contributions of this work. The first is that we include sparse priors over the
model parameters, encoding the intuition that source phrases will have few translations, and also ad-
dressing the problem of overfitting when using long multi-word translations pairs. Previous models
have relied upon heuristics to implicitly bias models towards such distributions [6]. In addition, we
investigate different priors based on standard machine translation models. This allows the perfor-
mance benefits of these models to be combined with a principled estimation procedure.

Our second contribution is the induction of categories for the synchronous grammar using a HDP
prior. Such categories allow the model to learn the latent structure of translational equivalence be-
tween strings, such as a preference to reorder adjectives and nouns when translating between French
to English or to encode that a phrase pair should be used at the beginning or end of a sentence. Au-
tomatically induced non-terminal symbols give synchronous grammar models increased power over
single non-terminal systems such as [2], while avoiding the problems of relying on noisy domain-
specific parsers, as in [7]. As the model is non-parametric, the HDP prior will provide a bias towards
parameter distributions using as many, or as few, non-terminals as necessary to model the training
data. Following [3] we optimise a truncated variational bound on the true posterior distribution.

We evaluate the model on both synthetic data, and the real task of translating from Chinese to
English, showing improvements over a maximum likelihood estimate (MLE) model. We focus
on modelling the generation of a translation for a source sentence, putting aside for further work
integration with common components of a state-of-the-art translation system, such as a language
model and minimum error rate training [6].

While we are not aware of any previous attempts to directly induce synchronous grammars with
more than a single category, a number of generatively trained machine translation models have been
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Figure 1: An example SCFG derivation from a Chinese source sentence which yields the English
sentence: “Standing tall on Taihang Mountain is the Monument to the Hundred Regiment Offensive.”
(Cross-bars indicate that the child nodes have been reordered in the English target.)

proposed. [8] described the ITG subclass of SCFGs and performed many experiments using MLE
training to induce translation models on small corpora. Most subsequent work with ITG grammars
has focused on the sub-task of word alignment [9], rather than actual translation, and has continued
to use MLE trained models. A notable recent exception is [10] who used Dirichlet priors to smooth
an ITG alignment model. Our results clearly indicate that MLE models considerably overfit when
used to estimate synchronous grammars, while the judicious use of priors can alleviate this problem.
This result raises the prospect that many MLE trained models of translation (e.g. [7, 11, 12]),
previously dismissed for under-performing heuristic approaches, should be revisited.

2 Synchronous context free grammar

A synchronous context free grammar (SCFG, [13]) describes the generation of pairs of strings.
A string pair is generated by applying a series of paired context-free rewrite rules of the form,
X � ��, φ,��, where X is a non-terminal, � and φ are strings of terminals and non-terminals and
�specifies a one-to-one alignment between non-terminals in � and φ. In the context of SMT, by
assigning the source and target languages to the respective sides of a SCFG it is possible to describe
translation as the process of parsing the source sentence, while generating the target translation [2].

In this paper we only consider binary normal-form SCFGs which allow productions to rewrite as
either a pair of a pair of non-terminals, or a pair of non-empty terminal strings (these may span
multiple words). Such grammars are equivalent to the inversion transduction grammars presented in
[8]. Note however that our approach is general and could be used with other synchronous grammar
transducers (e.g., [7]). The binary non-terminal productions can specify that the order of the child
non-terminals is the same in both languages (a monotone production), or is reversed (a reordering
production). Monotone and reordering rules are written:

Z � �X 1 Y 2 , X 1 Y 2� and Z � �X 1 Y 2 , Y 2 X 1�
respectively, where X,Y and Z are non-terminals and the boxed indices denote the alignment.
Without loss of generality, here we add the restriction that non-terminals on the source and target
sides of the grammar must have the same category. Although conceptually simple, a binary normal-
form SCFGs can still represent a wide range of linguistic phenomena required for translation [8].

Figure 1 shows an example derivation for Chinese to English. The grammar in this example has
non-terminals A and B which distinguish between translation phrases which permit re-orderings.

3 Generative Model

A sequence of SCFG rule applications which produces both a source and a target sentence is referred
to as a derivation, denoted z. The generative process of a derivation in our model is described in
Table 1. First a start symbol, z1, is drawn, followed by its rule type. This rule type determines
if the symbol will rewrite as a source-target translation pair, or a pair of non-terminals with either
monotone or reversed order. The process then recurses to rewrite each pair of child non-terminals.



HDP-SCFG
π|α ∼ GEM(α) (Draw top-level constituent prior distribution)
φS |αS , π ∼ DP(αS , π) (Draw start-symbol distribution)
φTz |αY ∼ Dirichlet(αY ) (Draw rule-type parameters)
φMz |αM , π ∼ DP(αM , ππT ) (Draw monotone binary production parameters)
φRz |αR, π ∼ DP(αR, ππT ) (Draw reordering binary production parameters)
φEz |αE , P0 ∼ DP(αE , P0) (Draw emission production parameters)

z1|φS ∼ Multinomial(φS) (First draw the start symbol)
For each node i in the synchronous derivation z with category zi:
ti|φTzi

∼ Multinomial(φTzi
) (Draw a rule type)

if ti = Emission then:
〈e, f〉|φEzi

∼ Multinomial(φEzi
) (Draw source and target phrases)

if ti = Monotone Production then:
〈zl 1 zr 2 , zl 1 zr 2 〉|φMzi

∼ Multinomial(φMzi
) (Draw left and right (source) child constituents)

if ti = Reordering Production then:
〈zl 1 zr 2 , zr 2 zl 1 〉|φRzi

∼ Multinomial(φRzi
) (Draw left and right (source) child constituents)

Table 1: Hierarchical Dirichlet process model of the production of a synchronous tree from a SCFG.

This continues until no non-terminals are remaining, at which point the derivation is complete and
the source and target sentences can be read off. When expanding a production each decision is
drawn from a multinomial distribution specific to the non-terminal, zi. This allows different non-
terminals to rewrite in different ways – as an emission, reordering or monotone production. The prior
distribution for each binary production is parametrised by π, the top-level stick-breaking weights,
thereby ensuring that each production draws its children from a shared inventory of category labels.

The parameters for each multinomial distributions are themselves drawn from their corresponding
prior. The hyperparameters, α, αS , αY , αM , αR, and αE , encode prior knowledge about the sparsity
of each distribution. For instance, we can encode a preference towards longer or short derivations
using αY , and a preference for sparse or dense translation lexicons with αE . To simplify matters
we assume a single hyperparameter for productions, i.e. αP ∆= αS = αM = αR. In addition to
allowing for the incorporation of prior knowledge about sparsity, the priors have been chosen to be
conjugate to the multinomial distribution. In the following sections we describe and motivate our
choices for each one of these distributions.

3.1 Rule type distribution

The rule type distribution determines the relative likelihood of generating a terminal string pair,
a monotone production, or a reordering. Synchronous grammars that allow multiple words to be
emitted at the leaves of a derivation are prone to focusing probability mass on only the longest
translation pairs, i.e. if a training set sentence pair can be explained by many short translation pairs,
or a few long ones the maximum likelihood solution will be to use the longest pairs. This issue is
manifested by the rule type distribution assigning a high probability to emissions versus either of
the binary productions, resulting in short flat derivations with few productions. We can counter this
tendency by assuming a prior distribution that allows us to temper the model’s preference for short
derivations with large translation pairs. We do so by setting the concentration parameter, αY , to a
number greater than one which smooths the rule type distribution.

3.2 Emission distribution

The Dirichlet process prior on the terminal emission distribution serves two purposes. Firstly the
prior allows us to encode the intuition that our model should have few translation pairs. The trans-
lation pairs in our system are induced from noisy data and thus many of them will be of little use.
Therefore a sparse prior should lead to these noisy translation pairs being assigned probabilities



close to zero. Secondly, the base distribution P0 of the Dirichlet process can be used to include
sophisticated prior distributions over translation pairs from other popular models of translation. The
two structured priors we investigate in this work are IBM model 1, and the relative frequency count
estimators from phrase based translation:

IBM Model 1 (Pm1
0 ) IBM Model 1 [14] is a word based generative translation model that assigns

a joint probability to a source and target translation pair. The model is based on a noisy channel in
which we decompose the probability of f given e from the language model probability of e. The
conditional model assumes a latent alignment from words in e to those in f and that the probability
of word-to-word translations are independent:

Pm1
0 (f , e) = Pm1(f |e)× P (e) = P (e)× 1

(|e|+ 1)|f | ×
|f |∏
j=1

|e|∑
i=0

p(fj |ei) ,

where e0 represents word insertions. We use a unigram language model for the probability P (e), and
train the parameters p(fj |ei) using a variational approximation, similar to that which is described in
Section 3.4.

Model 1 allows us to assign a prior probability to each translation pair in our model. This prior
suggests that lexically similar translation pairs should have similar probabilities. For example, if
the French-English pairs (chapeau, cap) and (rouge, red) both have high probability, then the pair
(chapeau rouge, red cap) should also.

Relative frequency (PRF0 ) Most statistical machine translation models currently in use estimate
the probabilities for translation pairs using a simple relative frequency estimator. Under this model
the joint probability of a translation pair is simply the number of times the source was observed to
be aligned to the target in the word aligned corpus normalised by the total number of observed pairs:

PRF0 (f , e) =
C(f , e)
C(∗, ∗)

,

where C(∗, ∗) is the total number of translation pair alignments observed. Although this estimator
doesn’t take into account any generative process for how the translation pairs were observed, and
by extension of the arguments for tree substitution grammars is biased and inconsistent [15], it has
proved effective in many state-of-the-art translation systems.1

3.3 Non-terminal distributions

We employ a structured prior for binary production rules inspired by similar approaches in mono-
lingual grammar induction [3, 4]. The marginal distribution over non-terminals, π, is drawn from
a stick-breaking prior [5]. This generates an infinite vector of scalars which sum to one and whose
expected values decrease geometrically, with the rate of decay being controlled by α. The pa-
rameters of the start symbol distribution are drawn from a Dirichlet process parametrised by the
stick-breaking weights, π. In addition, both the monotone and reordering production parameters are
drawn from a Dirichlet process parameterised by the matrix of the expectations for each pair of non-
terminals, ππT , assuming independence in the prior. This allows the model to prefer grammars with
few non-terminal labels and where each non-terminal has a sparse distribution over productions.

3.4 Inference

Previous work with monolingual HDP-CFG grammars have employed either Gibbs sampling [4] or
variational Bayes [3] approaches to inference. In this work we follow the mean-field approximation
presented in [16, 3], truncating the top-level stick-breaking prior on the non-terminals and optimising
a variational bound on the probability of the training sample. The mean-field approach offers better
scaling and convergence properties than a Gibbs sampler, at the expense of increased approximation.

First we start with our objective, the likelihood of the observed string pairs, x = {(e, f)}:

log p(x) = log
∫
dθ
∑
z

p(θ)p(x, z|θ) ≥
∫
dθ
∑
z

q(θ, z) log
p(θ)p(x, z|θ)

q(θ, z)
,

1Current translation systems more commonly use the conditional, rather than joint, estimator.



where θ = (π, φS , φM , φR, φE , φT ) are our model parameters and z are the hidden derivations.
We bound the above using Jensen’s inequality to move the logarithm (a convex function) inside
the integral and sum, and introduce the mean-field distribution q(θ, z). Assuming this distribution
factorises over the model parameters and latent variables, q(θ, z) = q(θ)q(z),

log p(x) ≥
∫
dθq(θ)

(
log

p(θ)
q(θ)

+
∑
z

q(z) log
p(x, z|θ)
q(z)

)
∆= F(q(θ), q(z)) .

Upon taking the functional partial derivatives of F(q(θ), q(z)) and equating to zero, we
obtain sub-normalised summary weights for each of the factorised variational distributions:
Wi

∆= exp{Eq(φ) [log φi]}. For the monotone and reordering distributions these become:

WM
z (zl, zr) =

exp{ψ
(
C
(
z → 〈zl 1 zr 2 , zl 1 zr 2 〉

)
+ αPπzl

πzr

)
}

exp{ψ
(
C
(
z → 〈∗ 1∗ 2 , ∗ 1∗ 2 〉

)
+ αP

)
}

WR
z (zl, zr) =

exp{ψ
(
C
(
z → 〈zl 1 zr 2 , zr 2 zl 1 〉

)
+ αPπzl

πzr

)
}

exp{ψ
(
C
(
z → 〈∗ 1∗ 2 , ∗ 2∗ 1 〉

)
+ αP

)
}

,

where C(z → · · · ) is the expected count of rewriting symbol z using the given production. The
starred rewrites in the denominators indicate a sum over any monotone or reordering production,
respectively. The weights for the rule-type and emission distributions are defined similarly. The
variational training cycles between optimising the q(θ) distribution by re-estimating the weights W
and the stick-breaking prior π, then using these estimates, with the inside-outside dynamic program-
ming algorithm, to calculate the q(z) distribution. Optimising the top-level stick-breaking weights
has no closed form solution as a dependency is induced between the GEM prior and production
distributions. [3] advocate using a gradient projection method to locally optimise this function. As
our truncation levels are small, we instead use Monte-Carlo sampling to estimate a global optimum.

3.5 Prediction

The predictive distribution under our Bayesian model is given by:

p(z|x, f) =
∫
dθ p(θ|x)p(z|f , θ) ≈

∫
dθ q(θ)p(z|f , θ) ≥ exp

∫
dθ q(θ) log p(z|f , θ) ,

where x is the training set of parallel sentence pairs, f is a testing source sentence and z its deriva-
tion.2 Calculating the predictive probability even under the variational approximation is intractable,
therefore we bound the approximation following [16]. The bound can then be maximised to find the
best derivation, z, with the Viterbi algorithm, using the sub-normalised W parameters from the last
E step of variational Bayes training as the model parameters.

4 Evaluation

We evaluate our HDP-SCFG model on both synthetic and real-world translation tasks.

Recovering a synthetic grammar This experiment investigates the ability of our model to recover
a simple synthetic grammar, using the minimum number of constituent categories. Ten thousand
training pairs were generated from the following synthetic grammar, with uniform weights, which
includes both reordering and ambiguous terminal distributions:

S → 〈A 1 A 2 , A 1 A 2 〉 A→ 〈a, a〉|〈b, b〉|〈c, c〉
S → 〈B 1 B 2 , B 2 B 1 〉 B → 〈d, d〉|〈e, e〉|〈f, f〉
S → 〈C 1 C 2 , C 1 C 2 〉 C → 〈g, g〉|〈h, h〉|〈i, i〉

2The derivation specifies the translation. Alternatively we could bound on the likelihood of a translation,
marginalising out the derivation. However, this bound cannot be maximised tractably when e is unobserved.
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Figure 2: Synthetic grammar experiments. The HDP model correctly allocates a single binary
production non-terminal and three equally weighted emission non-terminals.

Training Development Test
Sentences Chinese English Chinese English Chinese English
Sentences 33164 500 506
Segments/Words 253724 279104 3464 3752 3784 3823
Av. Sentence Length 7 8 6 7 7 7
Longest Sentence 41 45 58 62 61 56

Table 2: Chinese to English translation corpus statistics.

Figure 2 shows the emission and production distributions produced by the HDP-SCFG model,3 as
well as an EM trained maximum likelihood (MLE) model. The variational inference for the HDP
model was truncated at five categories, likewise the MLE model was trained with five categories.

The hierarchical model finds the correct grammar. It allocates category 2 to the S category, giving
it a 2

3 probability of generating a monotone production (A,C), versus 1
3 for a reordering (B). For

the emission distribution the HDP model assigns category 1 to A, 3 to B and 5 to C, each of which
has a posterior probability of 1

3 . The stick-breaking prior biases the model towards using a small set
of categories, and therefore the model correctly uses only four categories, assigning zero posterior
probability mass to category 4.

The MLE model has no bias for small grammars and therefore uses all available categories to model
the data. For the production distribution it creates two categories with equal posteriors to model the
S category, while for emissions the model collapses categories A and C into category 1, and splits
category B over 3 and 5. This grammar is more expressive than the target grammar, over-generating
but including the target grammar as a subset. The particular grammar found by the MLE model is
dependent on the (random) initialisation and the fact that the EM algorithm can only find a local
maximum, however it will always use all available categories to model the data.

Chinese-English machine translation The real-world translation experiment aims to determine
whether the model can learn and generalise from a noisy large-scale parallel machine translation
corpus, and provide performance benefits on the standard evaluation metrics. We evaluate our model
on the IWSLT 2005 Chinese to English translation task [17], using the 2004 test set as development
data for tuning the hyperparameters. The statistics for this data are presented in Table 2. The training
data made available for this task consisted of 40k pairs of transcribed utterances, drawn from the
travel domain. The translation phrase pairs that form the base of our grammar are induced using the
standard alignment and translation phrase pair extraction heuristics used in phrase-based translation
models [6]. As these heuristics aren’t based on a generative model, and don’t guarantee that the
target translation will be reachable from the source, we discard those sentence pairs for which we
cannot produce a derivation, leaving 33,164 sentences for training. Model performance is evaluated
using the standard Bleu4 metric [18] which measures average n-gram precision, n ≤ 4.

3No structured P0 was used in this model, rather a simple Dirichlet prior with uniform αE was employed
for the emission distribution.
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Figure 3: Tuning the Dirichlet α parameters for the emission and rule type distributions (develop-
ment set).

MLE Uniform P0 P0 = M1 P0 = RF
Single Category 32.9 35.5 37.1 38.7

Table 3: Test results for the model with a single non-terminal category and various emission priors
(BLEU).

MLE P0 = RF
5 Categories 29.9 38.8

Table 4: Test set results for the hierarchical model with the variational distribution truncated at five
non-terminal categories (BLEU).

We first evaluate our model using a grammar with a single non-terminal category (rendering the
hierarchical prior redundant) and vary the prior P0 used for the emission parameters. For this model
we investigate the effect that the emission and rule-type priors have on translation performance.
Figure 3 graphs the variation in Bleu score versus the two free hyperparameters for the model with a
simple uniform P0, evaluated on the development corpus. Both graphs show a convex relationship,
with αY being considerably more peaked. For the αE hyperparameter the optimal value is 0.75,
indicating that the emission distribution benefits from a slightly sparse distribution, but not far from
the uniform value of 1.0. The sharp curve for the αY rule-type distribution hyperparameter confirms
our earlier hypothesis that the model requires considerable smoothing in order to force it to place
probability mass on long derivations rather than simply placing it all on the largest translation pairs.

The optimal hyperparameter values on the development data for the two structured emission distri-
bution priors, Model 1 (M1) and relative frequency (RF ), also provide insight into the underlying
models. The M1 prior has a heavy bias towards smaller translation pairs, countering the model’s
inherent bias. Thus the optimal value for the αY parameter is 1.0, suggesting that the two biases
balance. Conversely the RF prior is biased towards larger translation pairs reinforcing the model’s
bias, thus a very large value (106) for the αY parameter gives optimal development set performance.

Table 3 shows the performance of the single category models with each of the priors on the test set.4
The results show that all the Bayesian models outperform the MLE, and that non-uniform priors
help considerably, with the RF prior obtaining the highest score.

In Table 4 we show the results for taking the best performing RF model from the previous experi-
ment and increasing the variational approximation’s truncation limit to five non-terminals. The αP
was set to 1.0, corresponding to a sparse distribution over binary productions.5 Here we see that the
HDP model improves slightly over the single category approximation. However the baseline MLE
model uses the extra categories to overfit the training data significantly, resulting in much poorer
generalisation performance.

4For comparison, a state-of-the-art SCFG decoder based on the heuristic estimator, incorporating a trigram
language model and using minimum error rate training achieves a BLEU score of approximately 46.

5As there are five non-terminal categories, an αP = 52 would correspond to a uniform distribution.



5 Conclusion

We have proposed a Bayesian model for inducing synchronous grammars and demonstrated its effi-
cacy on both synthetic and real machine translation tasks. The sophisticated priors over the model’s
parameters address limitations of MLE models, most notably overfitting, and effectively model the
nature of the translation task. In addition, the incorporation of a hierarchical prior opens the door to
the unsupervised induction of grammars capable of representing the latent structure of translation.
Our Bayesian model of translation using synchronous grammars provides a basis upon which more
sophisticated models can be built, enabling a move away from the current heuristically engineered
translation systems.
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