
A Proof of asymptotic convergence

This short proof consists in showing that the above assumptions satisfy conditions C1
through C5 of [21], as well as convergence of the non-stationary target to a fixed point.
Our proof borrows elements from [24].

1. Since we have a convex program, the solution must be unique globally (see, for instance,
Theorem 18 of [6]).

2. By convexity, second-order conditions are satisfied automatically. Constraint qualifica-
tions ensure that a linear approximation of the constraints properly characterizes the
set of feasible search directions (and that strong duality holds [2]), thereby guarantee-
ing that the set of feasible descent directions is empty at x⋆. Strict complementarity
avoids complications in stating sufficient optimality conditions. One sufficient condi-
tion for first-order constraint qualification is that the gradient vectors ∇ci(x) restricted
to active inequality constraints i are linearly independent. Under the above regularity
assumptions, θ⋆ is isolated and unique by second-order sufficiency (Theorem 4 of [6])
and, furthermore, by the Kuhn-Tucker Sufficiency Theorem [6], the unperturbed KKT
conditions (4) are satisfied for some z⋆ ≥ 0.

3. Assumption 2 with ck = 1 immediately implies Condition C1. The choice of ck makes
no difference in the gradient-based case; Spall [20] describes the role of ck in the simul-
taneous perturbation algorithm. Note that the condition is applied to the maximum
step sizes âk (see Fig. 1), not the feasible step sizes ak ≤ âk. C2 is satisfied by the
martingale difference assumption (see [20]).

4. Convexity of the objective f(x) and constraints c(x) implies convexity of the barrier
function (3) because − log(−u) is convex and monotonically increasing in u [2]. By
similar logic, the gradient of the barrier function is Lipschitz-continuous.

5. Theorem 25 of [6] or Theorem 3.12 of [7], convexity, strict complementarity, constraint
qualifications and existence of the KKT solution θ⋆ imply that unconstrained minimiz-
ers exist for all nonlinear systems Fµ(x, z) = 0, the minimizer is isolated at µ = 0, and
every limit point of the time-varying target and barrier trajectory {x⋆

µ} converges in
norm to x⋆ as long as σk → 0. Due to continuity of the barrier function, condition C4
holds because the individual coordinates xk,i clearly satisfy |xk+1,i − xk,i| < |x⋆

i − xk,i|
when k is large and when the iterate is bounded away from the solution (see [24])—and
similarly for the components of zk. C5 is guaranteed by having bounded iterates in
combination with the other assumptions [20].

6. Convexity of the barrier function and boundedness of the gradient imply that the
Newton step (∆xk,∆zk) with gradient estimate yk is sufficiently steep to push iterates
toward (x⋆

µ, z⋆
µ) (Condition C3).4 However, this doesn’t quite satisfy C3 as the step

at iteration k is actually (ak∆xk, ak∆zk)/âk, so we need to show âk > 0 implies ak >
0. Under the same assumptions of strict complementarity and first-order constraint
qualification, El-Bakry et al. establish local convergence by deriving a bound on the
step size, presented here with slight modification to fit the formulation of our algorithm:

ak = min{1, τk + O(‖Fµ(xk, zk)‖) + O(µk/mini(zic(xi)))}, (14)

where y = O(x) means that the sequence x bounds the sequence y from above [13],
and τk is the largest number guaranteeing that ak remains smaller than âk.5 This
identity applies without modification when ∇f(xk) is replaced by yk. Therefore,
unbiased gradient estimates yk will eventually produce a search direction with nonzero
step sizes ak, and condition C3 holds. The proof is complete.

4A differentiable function f(x) is convex if and only if for all x, f(x⋆) ≥ f(x) +∇f(x)T (x⋆
− x)

as shown in [2], which implies (x − x⋆)∇f(x) ≥ 0.
5See: A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation and theory

of the Newton interior-point method for nonlinear programming, Journal of Optimization Theory
and Applications, 89 (1996), pp. 507–541.



B Stability of primal-dual iterates near the central path

In this section, we take a few moments to step through Wright’s [26] line of reasoning
that establishes some vital stability properties of primal-dual iterates that closely follow the
central path. The key points of [26] are as follows:

1. When solving for x in Ax = b using a backward stable algorithm (e.g. the Cholesky
factorization), the computed solution can be characterized as the exact solution to
a system with perturbed matrix A and vector b [23]. Provided the iterate (x, z)
is within a small δ-neighbourhood of the central path but not too close to the
boundary of the feasible region (i.e. c(x) is asymptotically bounded from below by
δ), and µ = O(δ), then the perturbation in the computed value of b = −∇fµ(x) is
on the order of ε, and the perturbation in A = W −JT ΣJ is roughly proportional to
ǫmachine/δ. Considering the poor condition number of A, this is not a good result.
The next four points shed a more favourable light.

2. The matrix A is almost entirely dominated by a matrix that lies in the space spanned
by the gradient vectors ∇ci(x) of the active constraints i, and likewise for b. The
perturbations of A and b are also restricted to this space. This is fortunate because
this space corresponds precisely to a well-conditioned invariant subspace of A.

3. The (relative) condition numbers of the matrix-vector products Ax and x = A−1b
are bounded from above by κ(A) ≡ ‖A‖‖A−1‖, where ‖A‖ is an induced matrix
norm of A [23]. The problem is that A—the matrix arising in the reduced sys-
tem (6)—is notoriously ill-conditioned as µ approaches 0. Fortunately, we are able
to derive a tighter bound by exploiting special structure within the matrix.

4. By dividing the singular values of a matrix into a group of large singular values
and a group of small singular values (A = UΣV where Σ has diagonal sub-blocks
Σlarge and Σsmall), the relative condition number of x projected onto the invariant
subspace of Σlarge is bounded by κ(Σlarge). When the separation of the singular
values within each group is much smaller than the separation of the full set, then
the bound κ(Σlarge) is much tighter than the bound κ(A).

5. The matrix in (6) possesses precisely these properties. Collecting all the evidence,
the solution ∆x projected onto the range space of active constraints has perturba-
tions on the order of δε+ ǫmachine, a factor of δ better than the bound stated above.
The error bounds for the remaining portion of ∆x are worse, O(δε + ǫmachine/δ),
but it is precisely this portion—the projection onto the the null space of the Jaco-
bian of the active constraints—that has negligible impact on determination of the
first-order KKT conditions near the solution [13, Theorem 12.1]. (Note these error
bounds are of little use when J is ill-conditioned.)

6. Finally, Wright [26] applies analogous analysis to the dual search direction to show
that the computed value of ∆z in (7) has a similar condition number.

In conclusion, an off-the-shelf backward stable Cholesky factorization can be used to solve (6)
so long as the iterates are feasible.

Of concern is the ill-effect of cancellation in the constraints near ci(x) = 0 (see Example 12.3
of [23]), but we defer the issue since cancellation did not arise in our experiments. Note that
even though the full system (5) is well-conditioned, the solution is not any more accurate
because the right-hand side incurs cancellation errors. S. J. Wright presents an alternate
derivation of stability that does not require the linear independence constraint qualification.6

6See: S. J. Wright, Effects of finite-precision arithmetic on interior-point methods for nonlinear
programming, SIAM Journal on Optimization, 12 (2001), pp. 36–78.


